Composite Structures 94 (2012) 2306-2313

Contents lists available at SciVerse ScienceDirect "a COMPOSITE

4 STRUCTURES

Composite Structures \ A

|\ —‘

. . N
journal homepage: www.elsevier.com/locate/compstruct A U\ Y

Surrogate-based multi-objective optimization of a composite laminate

with curvilinear fibers

Mahdi Arian Nik, Kazem Fayazbakhsh, Damiano Pasini *, Larry Lessard

Department of Mechanical Engineering, McGill University, Macdonald Engineering Building, 817 Sherbrooke West, Montreal, QC, Canada H3A 2K6

ARTICLE INFO

Article history:
Available online 30 March 2012

Keywords:
Variable stiffness
Curvilinear fiber
Laminate design
Optimization
Metamodeling

ABSTRACT

Avariable stiffness design can increase the structural performance of a composite plate and provides flex-
ibility for trade-offs between structural properties. In this paper, we examine the simultaneous optimi-
zation of stiffness and buckling load of a composite laminate plate with curvilinear fiber paths. The
problem, which falls in the area of multi-objective optimization, is formulated and solved through a sur-
rogate-based optimization algorithm capable of finding the set of optimum Pareto solutions. We inte-
grate surrogate modeling into an evolutionary algorithm to reduce the high computational cost
required to solve the optimization process. The results show that a curvilinear fiber path can increase
both buckling load and stiffness simultaneously over the quasi-isotropic laminate. Furthermore, the opti-
mum direction for varying the fiber angle is dependent on the loading direction and boundary conditions.
The results for a plate under uniform compression with free transverse edges shows that varying the fiber
orientation perpendicular to the loading direction can increase the buckling load by 116% with respect to

that of a quasi-isotropic laminate.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The design of a laminated composite structure requires the
selection of the constituent materials and their best arrangement
within the structure. To this end, traditional and non-conventional
design strategies have been developed. With the former, the fiber
angle and the thickness within each layer are kept constant and
the design involves the search for the optimum stacking sequence
that results in the best mechanical properties of the composite
structure. With the latter, the fibers are allowed to follow curvilin-
ear paths within the plane of the laminates, thereby giving the
freedom to tailor the properties in directions that are favorable
to carry the load within the laminate [1].

Variable stiffness laminates can be manufactured using an
Automated Fiber Placement (AFP) technique [2]. AFP is capable of
combining tape placement and filament winding techniques to
overcome the limitations and exploit the benefits of the two man-
ufacturing methods. Tape placement is generally more efficient for
manufacturing large flat plates and its use is limited to compo-
nents with simple geometry. Filament winding has its limitations
in terms of the structural geometries that can be produced, which
are basically restricted to convex nearly cylindrical shapes. An AFP
machine typically has a self-contained fiber placement head with
three rotational degrees-of-freedom (DOF), which is then mounted
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on a motion base with several translational DOF. A mandrel with
an additional rotational DOF provides a tool surface on which the
tows are placed [3].

The improvement in buckling and in-plane stiffness of variable
stiffness over constant stiffness design has been demonstrated by
several authors. Hyer and Lee [4] improved the buckling resistance
of a plate with a circular hole using a curvilinear fiber path. Lund
et al. [5] examined two benchmark problems, i.e. a single-layer
and a 16-layer simply supported plate, and concluded that the buck-
ling load can be increased by up to 44% using a variable stiffness
compared to a constant stiffness design. Minimum compliance
design for a cantilever beam and a square plate was investigated
by Setoodeh et al. [6]. It was found that by allowing the in-plane
stiffness to vary spatially, the compliance can be improved up to
36% and 45% for a cantilever beam and a square plate, respectively.
In a follow up work [7], it was pointed out that variable stiffness de-
sign can increase the buckling load of a single-layer and a balanced
symmetric [t0]; square plate up to 166% and 67%, respectively.
[Jsselmuiden et al. [8] studied different loading and boundary con-
ditions on balanced symmetric [+60]5; square plates. Results demon-
strated improvements more than 100% in buckling loads of variable-
stiffness compared to the optimum constant stiffness designs.
While the above studies are promising because they demonstrate
the potential of optimizing the curvilinear fiber paths of composite
structures, their approaches did not consider the manufacturing
constraints, e.g. the minimum turning radius and the minimum
cut length imposed by AFP. As a result, several solutions although
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theoretically optimum might not satisfy the manufacturing con-
straints imposed by the AFP machine. To avoid this issue, other
researchers redefined the tow steered ply definitions to meet the
AFP manufacturing constraints. A continuous function was pro-
posed to describe the fiber path, which can also reduce the number
of design variables without compromising structural continuity.
Giirdal and Olmedo [9] suggested to model the fiber path with a lin-
ear fiber angle variation from one end of a plate to the other. In their
work, an analysis for calculating the in-plane stiffness of a plate with
the prescribed fiber path was proposed. In another attempt, Olmedo
and Giirdal [10] used the same fiber path model and layup to inves-
tigate the buckling resistance of the plates under uniform compres-
sion. It was found that up to 80% increase in the buckling load can be
achieved compared to constant stiffness laminates. Tatting and
Giirdal [11,12] designed and manufactured flat plates with curvilin-
ear fiber path for maximum buckling load under shear loading. An
improvement up to 224% in the buckling load for variable stiffness
compared to a constant stiffness design was found. Alhajahmad
et al. [13] used the same fiber path definition and found fiber paths
that maximized the buckling load of a plate subjected to pressure
and in-plane loads. It was shown that the buckling load and the
in-plane stiffness are generally unrelated and present opposing de-
sign trends. In previous research works [9,10,13,14], curvilinear fi-
ber paths were found to substantially improve one of the
properties under investigation while the other property was kept
constant. Since the concurrent improvement of the buckling load
and in-plane stiffness was not examined, the benefits of a variable
stiffness design were not fully exploited.

Buckling load and in-plane stiffness are examples of two con-
flicting objectives that can be simultaneously maximized in the de-
sign of composite plates, a problem that falls within the area of
multi-objective optimization. Instead of a single optimum solution,
this problem has a set of optimum solutions defining the Pareto
front, which represents the trade-offs among the objectives [15].

Among several design optimization algorithms, evolutionary
strategies have been demonstrated to be capable of returning a pop-
ulation of solutions at each iteration of the optimization process.
Genetic Algorithm (GA), which belongs to this category, has been
widely used and recommended for optimizing composite structures
[16]. GA, however, being a population-based algorithm, requires a
large number of function evaluations to reach the optimum solu-
tion. This requisite makes the process of finding an optimum solu-
tion computationally expensive. To overcome this issue, the
coupling of a surrogate model with GA has been recognized as ben-
eficial. For example, Lee and Lin [17,18] used a linear combination of
trigonometric basis functions as a surrogate model to optimize the
stacking sequence of a composite laminate. It was claimed that the
use of the surrogate model decreased the number of GA iterations
by one-third. In another study, Lanzi and Giavotto [19] compared
the performance of Radial Basis Function (RBF), Kriging, and Neural
Network surrogate modeling techniques to achieve a stiffened com-
posite plate with the minimum weight and maximum buckling
load. They concluded that all surrogate models under investigation
in their work return similar results for the specific case. In addition,
Irisarri et al. [20] used RBF to maximize the buckling and the failure
load of a stiffened composite plate. Vandervelde and Milani [21]
used a second order polynomial regression as a surrogate model,
which was developed by Wang et al. [22], to design and optimize
an airplane composite wing free vibration. Surrogate-based optimi-
zation has been successfully used also for constant stiffness com-
posite design [17-21]. Surrogate modeling, however, has not been
used to optimize variable stiffness composite structures.

The focus of this paper is on maximizing simultaneously in-
plane stiffness and buckling resistance of a variable stiffness com-
posite plate using a computationally efficient surrogate-based
optimization method. Curvilinear fiber paths are selected such that

the optimum result can be manufactured using existing fiber
placement machines. In the following sections, the fiber path for-
mulation is first presented before investigating two benchmark
cases previously studied in [9,10,14]. Analytical expressions for
the in-plane and out-of-plane responses of the plate under uniform
compression are provided to more accurately calculate the buck-
ling load compared to the aforementioned research. Next, a GA-
based optimization technique is briefly described. A discussion of
the results follows together with design recommendations and
directions for future research.

2. Problem definition

This section explains the fiber path used to design a variable
stiffness plate. Then, two case studies of square plates, each under
two dissimilar boundary conditions, are described.

2.1. Fiber path definition

For the design of a variable stiffness plate, it is necessary to de-
fine a reference path (Fig. 1a) along which the AFP machine places
the first course (a course is defined as a number of tows placed side
by side). The subsequent fiber paths can be obtained by offsetting
the machine along a given direction, e.g. x- or y-directions.

As suggested by Giirdal and Olmedo [9], a reference fiber path
that varies linearly along the x-axis of the plate can be formulated as

e(x) _ Z(Tlt; TO)

%] +To (M
where 0 represents the fiber orientation, a denotes the plate width,
To and T; are the fiber angles at the plate center (x = 0) and the plate
edge (x = a/2), respectively. In this case, since the path varies along
the x-axis, the reference path should be shifted along the y-direc-
tion to manufacture the entire plate (Fig. 1b). A single layer with
this fiber path definition may be represented by (Ty|T;), where
To = T, represents a straight fiber case. Similarly (Fig. 1c), the fiber
orientation can be formulated along the y-direction, in which y
replaces x in Eq. (1); in this case, the AFP machine should be
offset along the x-direction.

2.2. Case studies

A square plate 0.254 x 0.254 m made of 16-ply balanced sym-
metric [+0]4 laminate subjected to a uniform end shortening along
the x-direction is considered as a case study. Concerning the bound-
ary conditions, the transverse edges are considered free in case I-a,
while the edges are fixed against displacement in the y-direction
in case I-b (Fig. 2). The plates are designed with material properties:
E.=181GPa, E, = 10.27 GPa, G, = 7.17 GPa and vy, = 0.28 and with
the curvilinear fiber path given by Eq. (1) in two different scenarios:
case-I, the fiber orientation varies along x-direction (parallel to the
loading direction); case-Il, the fiber orientation varies along
y-direction (perpendicular to the loading direction).

3. Analysis

In this section, the analytical formulations for evaluating two
objectives, namely in-plane stiffness and critical buckling load,
for a composite plate with a curvilinear fiber path are derived.

3.1. In-plane response of a variable stiffness plate
Closed-form expressions for the in-plane stiffness evaluation of

a variable stiffness plate can be obtained from the in-plane plate
equilibrium equations given by



2308 M. Arian Nik et al. / Composite Structures 94 (2012) 2306-2313

> <

T,

Ty

A
\ 4

a

(a)

(b) (c)

Fig. 1. A composite laminate with a curvilinear fiber path; (a) definition of a reference fiber path; (b) fiber angle offset along y-direction (To = 60°, T; = 15°); and (c) fiber angle

offset along x-direction (To = 60°, T; = 15°).

Free
N le——
N l——
N le——

Ug Uo
—> Y 0=0(x) —
N le——

—_— X ———
Free

Case I-a: Square plate under uniform
compression, Free transverse edges

Up

, O O O O
N [P
) e

u

— 6=0(x) «—
) -
) e
N X PR

N C) O O O

v=0

Case I-b: Square plate under uniform
compression, Fixed transverse edges

Fig. 2. Case I: square plates with different boundary conditions.

Nyx + Ny, =0 (2a)

Nyy+Nyx=0 (2b)

where x and y are the plate coordinates, Ny, Ny, and N,, are the cor-
responding stress resultants, and the comma denotes the partial
derivatives of the term with respect to the subscripts. Employing
the generalized stress-strain relations and assuming a linear rela-
tion between displacement and strain, the above equations take
the form:

A1l + 2A16U xy + Assllyy + A16 Vxx + (A2 + Ass) Uny + Az6Vyy
+ (All,x +A16y)u,x + (Als,x +A66,y)u.y + (Als,x +A26y) Vx
+ (Ai2x +Azy)v, =0 (3a)

Avsllxx + (A12 + Ass ) Uy + Asllyy + Azs ¥y + Ass Usx + 2A26 U xy
+Ap» Vyy + (A16x +A12,y)u,x + (Assy +A26‘y)u'y
+ (Assx +Azey) Vx + (Azex +Any)vy =0 (3b)

where A; are the elements of the in-plane stiffness matrix of the
composite plate, u and v are mid-plane displacements in the x-
and y-direction, respectively. For more details on deriving these
equations, the interested reader may refer to [14].

Unlike a constant stiffness design, the derivatives of the A ma-
trix with respect to x and y elements are not zero. This difference

is a result of varying the fiber path in the xy plane. Since the above
two partial differential equations with variable coefficients are
coupled, a numeric solutions must be obtained. Here, MATLAB sub-
routines have been developed to solve the above equations and
calculate the displacement distribution of the plate as well as the
equivalent in-plane stiffness.

3.2. Buckling response of a square plate

This section presents the calculation of the critical buckling load
of a variable stiffness plate subjected to an in-plane uniform com-
pression (constant displacement along x-direction, uo). The plate is
assumed to be simply supported along all edges; these geometrical
conditions at the boundaries imply zero out-of-plane deflection
along the edges. The compression load at the plate edge (Nyp), cor-
responding to the displacement uy, is obtained using the equations
of the in-plane response mentioned in Section 3.1. To calculate the
buckling load, Ny is increased proportionally (ANy) where (1) is
the load multiplier. /. is defined as the minimum load multiplier
for a buckled plate and can be obtained using an energy method
[23]. The Ritz method is used to obtain the critical buckling load
and the out-of-plane deflection (w) of the plate. Since all edges
are simply supported, w should be zero along these edges. The fol-
lowing series approximation that satisfies the boundary conditions
is assumed for w
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where [ and J are arbitrary numbers used in the summations, and a
is the plate width. Gy are constants which can be calculated using
the principle of stationary potential energy defined as

or AU+ Q)

ac, = ac; O ®)

where II represents total potential energy, U is the strain energy
due to the out of plane deflection of the plate and £ denotes the po-
tential energy due to the external forces. The strain energy due to
the out-of-plane deflection of the plate can be calculated as

a a 2 2 2 2 2 2
1 D ow D ow 200w
2, | |PolGe) +on(ge) 0s( T

o*w o*w o*w
+2<D12W+D16M+2D26W dydx (6)

where U represents the strain energy, D; denotes the elements of
the bending stiffness matrix and w is the out-of-plane deflection
of the plate. These equations take into account the bending/twisting
coupling terms, i.e. D1 and Dy of the bending stiffness matrix. We
note that these terms were neglected by previous researchers to
simplify the calculations [10,14]. However, neglecting even small
D6 and D6 terms may result in a significant error in the buckling
load estimation [24]. The potential energy due to the external force
can be obtained by

1 b e ow ow ’w
== Nil—) +N 2N,y —— | dydx 7
2 [*(m) y<ay> ! "yaxay} v @)
Since the material properties, i.e. stiffness and Poisson’s ratio,
change within the plane due to varying fiber angles, the compres-
sion load at the plate edge may not be constant. Thus, N;*, the

average compression load (per unit length) along the plate edge,
can be defined as

% N.(@
Neve _ J2aNx(§,y)dy ®)
a
Substituting Eq. (4) into Egs. (6) and (7) and then replacing into
Eq. (5) yields an eigenvalue problem as follows

i m=123,...1
{. ©)

I J
L VR R PO

i=1j=1
where the elements of [G] are the summation of the integral terms in
Egs. (6) and (7) containing the Dy's and the elements of [b] are the
sums of the integral terms containing Ny, Ny and N,, The lowest eigen-
value (load multiplier) corresponds to the lowest buckling load [23].

4. Formulation of the optimization problem

Variable stiffness design provides flexibility for trade-offs be-
tween different structural properties. The involvement of two or
more conflicting objectives results in a multi-objective optimization
problem. The solution of this problem is not unique; instead of a sin-
gle optimum solution, there is a set of optimum solutions represent-
ing the trade-off between the objectives. In this work, buckling
resistance and in-plane stiffness of a plate, which are generally con-
flicting to each other, are considered as objective functions. The goal
here is to find the fiber path parameters (design variables) that
simultaneously maximize the in-plane stiffness and buckling
resistance. One way to convert a maximization problem into a min-

imization problem is to use the inverse of the objective functions.
Then, the optimization problem can be written as follows

min{1/E(X), 1/Ner(X)};
s.t. {To, T1 € [0°,90°]}

B T
X = (To, T1) (10)

where X is the vector of design variables, i.e., Ty and T; that are the
fiber angle at the plate center and plate edge, respectively; E.q and
N, are respectively the equivalent in-plane stiffness and the critical
buckling load of the plate. It is worth to mention that the design
variables should be integers to respect the manufacturing con-
straints. To reduce the computational cost involved in the optimiza-
tion process, we now resort to a surrogate modeling approach
which will be coupled with the optimization algorithm.

4.1. NSGA-II and motivation for surrogate modeling

Non-dominated sorting genetic algorithm-II (NSGA-II) is a mul-
ti-objective Evolutionary Algorithm (EA) that uses elite-preserva-
tion strategy and explicit diversity-preserving mechanism to find
a set of evenly distributed solutions to a multi-objective optimiza-
tion problem [25]. NSGA-II was developed to reduce the computa-
tional complexity, to improve the diversity among non-dominated
solutions and to add elitism to non-dominated sorting genetic
algorithm (NSGA) [26]. Simplicity, effectiveness, and independency
on user-defined parameters, make NSGA-II a flexible and robust EA
procedure for solving various multi-objective optimization prob-
lems using a common framework [27]. As mentioned in the intro-
duction, NSGA-II needs a large number of function evaluations to
find the Pareto optimal set. However, for the case of this study
since the objective functions are evaluated through expensive sim-
ulations, the high computational cost of the multi-objective opti-
mization becomes a major challenge.

For this reason, we resort here to a surrogate model that
approximates the computationally expensive simulations through
a multi-dimensional parametric surface [28,29]. The surrogate
model, which is significantly cheaper to evaluate than the high
fidelity simulation, replaces the expensive simulations during the
optimization process; as a result, the computational cost of the
optimization process can be significantly reduced.

4.2. Surrogate modeling

There are a variety of techniques to construct surrogate models.
Since their performance is problem-dependent, the best surrogate
model is not known at the outset. We thus emphasize that a com-
parative study of the performance of various surrogate models
should be performed before selecting the best surrogate model
for a specific design problem. This task, however, is beyond the
scope of this work. In this section, the method of polynomial regres-
sion (PR), which is the simplest non-linear model for constructing a
surrogate model, is selected and its formulation is briefly described.

4.2.1. Polynomial regression (PR)
A second-order polynomial can be expressed as

ﬁo + Zﬁzxi + Zﬁnx + Z Z ﬁyxlxj (11)

i=1 j=i+1

where fo, i, fii and fi(i,j=1, ..., n) are the regression coefficients,
x{(i=1,...,n) are the design varlables and f denotes the approxi-
mate value for the objective function. The coefficients of the surro-
gate model are evaluated through fitting the model to the initial
data samples using the least square method [28]. For a number of
data samples (Ns) and two design variables (x; and x;), the set of
equations specified in Eq. (13) can be written in matrix form as
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f=ap (12)

where fis a N; x 1 matrix of function values at data samples, and ®
is a Ny x 6 matrix, also known as Gramian matrix, of the design
variable values as the data samples defined by

(1 X1 X1 XuXar X3 X3 |

1 X2 Xn  XpXn sz X%z

2 2
1 X X XiXa  X§; X5

2 2
L1 Xiv, Xon, XuXon, Xin, X3, |

The vector g of the coefficients of Eq. (13) can then be obtained
by

p=(0'®) 'D'f (14)

4.3. Multi-objective optimization framework

In the conventional NSGA-II, all individuals in the population
are evaluated by the true function, whereas in the surrogate-based
NSGA-II only some of the individuals are evaluated by the true
functions [30]. The main steps implemented here for a surrogate-
based NSGA-II are (Fig. 3):

Step 1: The initial sample points are generated by the Latin
Hypercube (LH) method [28]. The LH method is used to gener-
ate an initial population that is predominantly random, but is
uniform in each dimension.

Step 2: Two different surrogate models are constructed based on
the initial sample points: the first one predicts the equivalent
plate stiffness, and the second one predicts the corresponding
buckling load.

Step 3: The intermediate population (offspring) is generated by
the standard genetic operators.

Step 4: The individuals in the offspring are divided into two
groups (based on their Euclidean distance to the parent individ-
uals): those which lie in the local vicinity of the individuals of
the parent population are evaluated by the surrogate model;
the remaining individuals (second group) are assessed through
true function evaluation.

Step 5: The non-dominate sorting algorithm is applied to create
a new population.

Step 6: If any individual in the new population has been evalu-
ated by the surrogate model, then it must be re-evaluated by
the true functions before proceeding to the next step.

Step 7: Proceed to step 2 unless the stopping criteria (which
requires reach the maximum number of true function evalua-
tion) is satisfied.

5. Results

In this section, first the viability of PR surrogate model in
increasing the performance of the design optimization of variable
stiffness composite structures is verified. In particular, single
objective optimization problems, which have known solutions,
are examined. Then, the surrogate model is integrated into
NSGA-II to solve multi-objective optimization problems.

5.1. PR surrogate model performance in single objective optimization
problems

The PR surrogate model is integrated into a conventional GA to
maximize the in-plane stiffness of a flat plate with free transverse

edges (case II-a). Fig. 4 shows the result of the each algorithm,
which are averaged over five trials. The result clearly shows supe-
riority of the surrogate-based optimization approach in reducing
the computational cost of the optimization compared to the GA.

In a similar approach, the performance of GA and surrogate-
based GA in maximizing the buckling load is compared in Fig. 5,
where the results are averaged over five trials. Also this graph indi-
cates superiority of the surrogate based optimization in reducing
the computational cost over the GA.

5.2. Multi-objective optimization results

The surrogate-based NSGA-II (NSGA-II + PR) is used to solve the
multi-objective optimization problems (Eq. (10)). In each case, the
stopping criterion is set to be the maximum number of function
evaluations, i.e. 500. The in-plane stiffness and the buckling load
of the variable stiffness plate are normalized using the correspond-
ing values for a constant stiffness quasi-isotropic laminate with
[45/0/—45/90],s layup.

The optimization results for a plate with free transverse edges
(cases I-a and II-a) and fixed transverse edges (cases I-b and II-b)
are illustrated in Figs. 6 and 7, respectively. A wide extent of the
Pareto front was captured for each case. A designer can select
any solution placed on the Pareto front considering the desirable
trade-off between in-plane stiffness and buckling.

6. Discussion

Figs. 4 and 5 show that PR surrogate-based optimization algo-
rithms perform better than the GA. In stiffness optimization prob-
lem, GA reaches the optimum solution after performing 200
function evaluations, whereas surrogate-based GA requires 116
function evaluations only. Buckling load optimization also con-
firms the dominance of the surrogate-based GA over GA. The
[£(90]15)]4s solution achieved by the surrogate-based GA after 72
function evaluations is achieved by GA after 225 function evalua-
tions. Therefore, it can be concluded that in this design problem
PR surrogate model significantly increases the efficiency of the
optimization process.

Fig. 6 shows the Pareto fronts obtained with surrogate-based
NSGA-II for a flat plate maximizing both in-plane stiffness and
buckling load and subjected to free transverse edges. According
to classical lamination theory, the obvious solution for maximum
stiffness is [0];6r laminate with all fibers aligned along the loading
direction (x). By comparing cases I-a and II-a it can be observed
that the direction of the fiber orientation angle variation does not
play a major role in the maximum achievement in stiffness, i.e.
160% higher compared to the quasi-isotropic laminate. However,
the direction is important for buckling load maximization. It
should be recalled that for case I-a the fiber orientation changes
along the loading direction (6 = 0(x)), whereas for case II-a the fiber
orientation varies perpendicular to the loading direction (0 = 0(y)).
In case II-a, an improvement of 116% in the buckling load can be
obtained for laminate at the cost of 46% reduction in the stiffness
over the quasi-isotropic laminate. On the other hand, case I-a can
only achieve 20% improvement in the buckling load for [+45]4s
laminate along with 62% reduction in stiffness. For cases I-a and
II-a, there is a set of optimum solutions in which both stiffness
and buckling load are higher compared to the quasi-isotropic lam-
inate (Fig. 6). Case IlI-a generally provides a better set of non-
dominated solutions compared to case I-a. Thus, plates with
varying fiber orientation perpendicular to the loading direction
(6 =0(y)) can provide a better performance for stiffness and buck-
ling load compared to the case where the fiber orientation changes
along the loading direction.
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Fig. 4. Performance comparison of surrogated based optimization. The results are
averaged over five trials.

Fig. 7 shows the Pareto fronts for a flat plate with fixed trans-
verse edges. Similar to the previous cases, [0];6r gives the maxi-
mum improvement in stiffness. For case I-b, the fiber orientation

Number of function evaluations

Number of function evaluations

averaged over five trials.

Fig. 5. Performance evaluation of surrogated based optimization. The results are

changes along the loading direction (6 = 6(x)), whereas for case II-
b the fiber orientation varies perpendicular to the loading direction
(0 =0(y)). In case II-b, at the extreme value of the buckling load, an
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Fig. 7. Pareto set obtained by maximizing the buckling load and the overall plate
stiffness.

improvement of 37% is achieved for [+(90]|10)]4s laminate which
comes at the cost of 14% reduction in stiffness over the quasi-
isotropic laminate. On the other hand, in case I-b for [+(0]49)]4s
laminate both buckling load and stiffness can be increased by
32% and 51%, respectively. Unlike the case with free transverse
edges (cases I-a and II-a), most of the solutions on the Pareto fronts
have both higher stiffness and buckling load compared to the qua-
si-isotropic laminate. Case I-b gives a significantly better set of
solutions compared to case II-b. Therefore, square plates with vary-
ing fiber orientation parallel to the loading direction can provide an
improved performance for stiffness and buckling load compared to
the case where the fiber orientation changes perpendicular to the
loading direction.

7. Conclusion and recommendations

This paper has examined the multi-objective optimization of
the in-plane stiffness and buckling load of a composite flat plate
with variable stiffness. Surrogate-based GA and GA have been com-
pared for two single objective optimization problems, i.e. stiffness
and buckling load maximization. The surrogate-based optimiza-
tion has been demonstrated to perform better than GA in solving
the optimization problem of a variable stiffness composite plate.

For a flat plate with free transverse edges, varying fiber orienta-
tion perpendicular to the loading direction can improve the buck-
ling load by 116% over the quasi-isotropic laminate. On the other
hand, for a flat plate with fixed transverse edges, the maximum
achievable improvement in the buckling load is only 37%. For all
cases, the use of curvilinear fiber paths results in a set of optimum
solutions in which both stiffness and buckling load are higher than
a quasi-isotropic laminate. For example, [+(0]49)],s laminate can
increase both buckling load and stiffness over quasi-isotropic lam-
inate by 32% and 51%, respectively. Hence, the optimum direction
of varying the fiber angle is dependent on the loading and bound-
ary conditions. For free edges, the optimum direction is perpendic-
ular to the loading direction, while for fixed transverse edges it is
along the loading direction.

Alternative fiber paths, e.g. constant curvature fiber path, might
bring additional improvement in the simultaneous optimization of
stiffness and buckling load. Further work, however, is required to
investigate this matter. In addition, a future work will compare
the performance of alternative surrogate models to identify the
one that can most efficiently reduce the computational cost re-
quired to solve the multi-objective optimization of composite lam-
inate structures with curvilinear fibers.

Acknowledgment

This work was supported by the National Research Council of
Canada, Bombardier Aerospace and Composites Atlantic.

References

[1] Ghiasi H, Fayazbakhsh K, Pasini D, Lessard L. Optimum stacking sequence
design of composite materials Part II: variable stiffness design. Compos Struct
2010;93:1-13.

[2] Evans DO, Vaniglia MM, Hopkins PC. Fiber placement process study. In: 34th
International SAMPE symposium and exhibition. Reno, Nevada, USA; 1989. p.
1822-33.

[3] Giirdal Z, Tatting BF, Wu KC. Tow-placement technology and fabrication issues
for laminated composite structures. In: 46th AIAA/ASME/ASCE/AHS/ASC
structures, structural dynamics and materials conference. Austin, Texas;
2005. p. 1-17.

[4] Hyer M, Lee H. The use of curvilinear fiber format to improve buckling
resistance of composite plates with central circular holes. Compos Struct
1991;18:239-61.

[5] Lund E, Stegmann ]. On structural optimization of composite shell structures
using a discrete constitutive parametrization. Wind Energy 2005;8:109-24.

[6] Setoodeh S, Abdalla MM, Giirdal Z. Design of variable-stiffness laminates using
lamination parameters. Compos Part B: Eng 2006;37:301-9.

[7] Setoodeh S, Abdalla M, Ijsselmuiden S, Giirdal Z. Design of variable-stiffness
composite panels for maximum buckling load. Compos Struct
2009;87:109-17.

[8] Ijsselmuiden ST, Abdalla MM, Giirdal Z. Optimization of variable-stiffness
panels for maximum buckling load using lamination parameters. AIAA ]
2010;48:134-43.

[9] Giirdal Z, Olmedo R. In-plane response of laminates with spatially varying fiber
orientations: variable stiffness concept. AIAA ] 1993;31:751-8.

[10] Olmedo R, Giidal Z. Buckling response of laminates with spatially varying fiber
orientations. SW, Washington, DC 20024-2518, USA: American Institute of
Aeronautics and Astronautics; 1993. p. 2261-9.

[11] Tatting BF, Giirdal Z. Design and manufacture of elastically tailored tow placed
plates. NASA contractor report no NASA/CR-2002-211919; 2002.

[12] Tatting BF, Giirdal Z. Automated finite element analysis of elastically-tailored
plates. NASA contractor report no NASA/CR-2003-212679; 2003.

[13] Alhajahmad AAM, Giirdal Z. Optimal design of tow-placed fuselage panels for
maximum strength with buckling considerations. ] Aircraft 2010;47:775-82.

[14] Giirdal Z, Tatting BF, Wu CK. Variable stiffness composite panels: effects of
stiffness variation on the in-plane and buckling response. Compos Part A: Appl
Sci Manuf 2008;39:911-22.

[15] Deb K. Multi-objective optimization using evolutionary algorithms. Wiley;
2001.

[16] Ghiasi H, Pasini D, Lessard L. Optimum stacking sequence design of composite
materials Part I: constant stiffness design. Compos Struct 2009;90:1-11.

[17] Lee Y-], Lin C-C. Regression of the response surface of laminated composite
structures. Compos Struct 2003;62:91-105.

[18] Lin C-C, Lee Y-J. Stacking sequence optimization of laminated composite
structures using genetic algorithm with local improvement. Compos Struct
2004;63:339-45.



M. Arian Nik et al. / Composite Structures 94 (2012) 2306-2313 2313

[19] Lanzi L, Giavotto V. Post-buckling optimization of composite stiffened panels:
computations and experiments. Compos Struct 2006;73:208-20.

[20] Irisarri FX, Laurin F, Leroy FH, Maire JF. Computational strategy for
multiobjective optimization of composite stiffened panels. Compos Struct
2011;93:1158-67.

[21] Vandervelde T, Milani AS. Layout optimization of a multi-zoned, multi-layered
composite wing under free vibration. In: Proceedings of SPIE, the international
society for optical engineering. San Diego, CA, USA; 2009.

[22] Wang GG, Dong Z, Aitchison P. Adaptive response surface method - a global
optimization scheme for approximation-based design problems. Eng Optim
2001;33:707-33.

[23] Kollar LP, Springer GS. Mechanics of composite structures. Cambridge:
University Press; 2003.

[24] Turvey GJ. Buckling and postbuckling of composite plates. Springer; 1995.

[25] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective
genetic algorithm: NSGA-II. Evol Comput IEEE Trans 2002;6:182-97.

[26] Srinivas N, Deb K. Muiltiobjective optimization using nondominated sorting in
genetic algorithms. Evol Comput 1994;2:221-48.

[27] Deb K. A robust evolutionary framework for multi-objective optimization.
ACM; 2008. p. 633-40.

[28] Forrester A, Keane A. Recent advances in surrogate-based optimization. Prog
Aerospace Sci 2009;45:50-79.

[29] Wang GG, Shan S. Review of metamodeling techniques in support of
engineering design optimization. ] Mech Des 2007;129:370-80.

[30] Li M, Li G, Azarm S. A kriging metamodel assisted multi-objective genetic
algorithm for design optimization. ] Mech Des 2008;130:031401-301410.



	Surrogate-based multi-objective optimization of a composite laminate  with curvilinear fibers
	1 Introduction
	2 Problem definition
	2.1 Fiber path definition
	2.2 Case studies

	3 Analysis
	3.1 In-plane response of a variable stiffness plate
	3.2 Buckling response of a square plate

	4 Formulation of the optimization problem
	4.1 NSGA-II and motivation for surrogate modeling
	4.2 Surrogate modeling
	4.2.1 Polynomial regression (PR)

	4.3 Multi-objective optimization framework

	5 Results
	5.1 PR surrogate model performance in single objective optimization problems
	5.2 Multi-objective optimization results

	6 Discussion
	7 Conclusion and recommendations
	Acknowledgment
	References


