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Structural ef�ciency maps for beams
subjected to bending

D Pasini*, D J Smith and S C Burgess
Department of Mechanical Engineering, University of Bristol, Bristol, UK

Abstract: The structural ef�ciency of different cross-sections subjected to bending is considered in this
paper. An envelope ef�ciency parameter, l, is de�ned in terms of two shape transformers, cA and cI. These
transformers describe the relative ratio of the area and the second moment of area of the cross-sectional shape
with respect to a rectangular envelope surrounding the shape. It is shown in a structural ef�ciency map that
the mass ef�ciency of all cross-sectional shapes subjected to bending is bounded by two limiting curves. One
limit curve represents cross-sections with material as far as possible from the neutral axis, the other limit
curve is for cross-sections with material close to the neutral axis. The application of the map to two practical
cases is also considered, together with scaling of the rectangular envelope.

Keywords: structural ef�ciency, optimal shape, shape selection

NOTATION

A cross-sectional area
b internal width (m)
B width (m)
E Young’s modulus (GPa)
h internal height (m)
H height (m)
I second moment of area (m4)
L length (m)
p performance criterion
rg radius of gyration (m)

l envelope ef�ciency parameter
r material density (mg/m3)
c shape transformer

1 INTRODUCTION

The minimization of mass is very often an important issue in
structural design. Lightweight structures help to achieve
lower material cost and environmental impact and provide
high performance such as low inertial loads and high natural
frequency. These features are often required in many
branches of engineering.

Selecting ef�cient cross-sectional shapes is one well-
founded way to reduce the mass of a structure. Several
methods for assessing the ef�ciency of cross-sectional
shapes have been developed in the last century. Cox [1]
considered the effect of shapes on the selection of different
structures. However, Shanley [2] �rst introduced a systema-
tic method to take into account the geometric properties
of shapes for the selection of light structures. He proposed a
shape parameter that is governed by the shape of the cross-
section. In more recent years, Parkhouse [3, 4] proposed a
dilution factor to describe the geometrical property relation-
ship between different cross-sections and their representa-
tive solid sections. Similarly, Ashby [5] suggested a method
to assess the structural performance of cross-sections using
shape factors and material indices and also showed that
visualizing the problem graphically helps to obtain insight.
Although the methodology is mainly applicable where there
are no dimensional restrictions, the case of height- or width-
constrained beams was addressed by Ashby [6], and his
theory was used by Burgess [7] to discuss the effects of
height constraints on structural ef�ciency. However, only
recently a general theory of modelling the structural ef�-
ciency of cross-sections scaled in any arbitrary direction was
presented [8, 9]. These studies have shown that a generic
geometrical constraint, which imposes restrictions to the
scaling of cross-sections, has an important effect on what are
the best material and/or shape for a particular application.

In this paper, structural ef�ciency maps are developed for
beams subjected to bending. These maps are used to explore
how a rectangular design space, de�ned by its height and
width, is ef�ciently occupied by shapes whose principal
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dimensions touch the boundaries of the design space. The
novel feature of this work is the de�nition of an envelope
ef�ciency parameter, l. The method allows direct visual
comparison of the performance of different shapes. The
ef�ciency maps are used to assess the relative performance
of currently available standard cross-sections. The maps
are also used to plot the performance of layered systems
such as those previously described by Smith and Partridge
[10]. Finally, the analysis is applied to cross-sections that are
arbitrarily scaled, that is, enlarged or contracted in any
direction including widthwise, heightwise, proportionally
and in any other direction.

2 RELEVANT GEOMETRIC PROPERTIES

This section describes the geometric properties that are
relevant to examine the ef�ciency of beams. In bending
stiffness design, the structures are designed to be as light as
possible for a given stiffness requirement and span. Expres-
sions for the mass, m, and the bending stiffness, k, of a
structure are

m ˆ rAL (1)

k ˆ c1
EI
L3 (2)

where c1 is a constant depending on boundary and loading
conditions applied to a beam subjected to bending, r is the
density, E is the Young’s modulus, L is the span and A and I
are the area and second moment of area of the cross-sections
respectively.

The minimum weight or performance criterion, p, for the
selection of structures, which maximizes the stiffness while
minimizing the mass, is the ratio of equations (2) and (1)

p ˆ k
m

ˆ c1

L4

E
r

I
A

(3)

Expressions (1) to (3) show that the geometrical properties
relevant to the ef�ciency of cross-sections are the area and
the second moment of area. It may be convenient to
represent the second moment of area in terms of radius of
gyration, noting that rg is de�ned as rg ˆ

�������

I /A
p

.

3 THEORY OF MODELLING THE GEOMETRIC
PROPERTIES OF SHAPES

The cross-section is de�ned as having shape and an envel-
ope. The envelope is described by the main dimensions of
the cross-section. Within the envelope there is a shape.
Figure 1 shows two examples. The width and depth of the
envelope de�ne the extremities of the cross-section shape.
The elliptical cross-section in Fig. 1a belongs to a class of
speci�c shapes, while the cross-section in Fig. 1b is a
general case.

The following de�nitions are adopted to distinguish the
content of the cross-section, i.e. the shape, from its envelope
(these de�nitions are consistent with those used in earlier
papers [8, 9]):

For a generic cross-section
I ˆ second moment of area
A ˆ area of shape
rgˆ radius of gyration

For the shape envelope
B, H ˆ width and height
IDˆ second moment of area of the envelope
ADˆ area of the envelope
rgDˆ radius of gyration of the envelope

Expressions for area, second moment of area and radius of
gyration of common cross-sections have been derived.
These expressions are shown in Table 1, where B and H
are the width and depth of the envelope and b and h are the
internal width and height of hollow cross-sections.

The area and second moment of area of a cross-section
and its envelope can be related by de�ning two geometric
shape transformers, cA and cI, as

cA ˆ A
AD

cI ˆ I
ID

(4)

The envelope ef�ciency parameter of a cross-section, l, is
now introduced. This parameter describes how ef�ciently
the area of a cross-sectional shape is placed in its envelope.
The parameter is de�ned as

l ˆ cI

cA
ˆ r2

g

r2
gD

(5)

Expressions for cI , cA and l are given in Table 2. For a
rectangular cross-section, its dimensions coincide with the

Fig. 1 Envelope and shape: the size of the envelope and the
type of shape make a cross-section
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envelope, and consequently the geometric transformers, cI
and cA, and the envelope ef�ciency parameter, l, are unity

A ˆ AD ! cA ˆ 1
I ˆ ID ! cI ˆ 1

rg ˆ rgD ! l ˆ 1

where cI , cA and l are dimensionless design parameters
that describe the geometric quantities and the ef�ciency of a
generic cross-section in relation to its envelope. They can be
used in a design task quickly to identify and distinguish the
contribution to the structural ef�ciency of the shape from its
envelope [11].

Table 1 Area, second moment of area and radius of gyration of the most common sections.
Note that B ˆ H in the last two rows is only for square boxes and circular tubes
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For a given class of cross-sectional shape within an
envelope there is a theoretical range of values for the
parameters cI , cA and l. For example, consider the case
of a hollow elliptical cross-section. The lowest value of
cA is zero, and this corresponds to an in�nitesimally

thin wall thickness for the cross-section. The largest
value of cA is p/4 and occurs when the elliptical
cross-section is solid. Theoretical ranges for the para-
meters cI , cA and l for other different cross-sections are
shown in Table 2.

Table 2 Geometric shape transformers, cI and cA, and envelope ef�ciency parameter, l, of sections. Note that B ˆ H in the
last two rows is only for square boxes and circular tubes

Proc. Instn Mech. Engrs Vol. 217 Part L: J. Materials: Design and Applications L02902 # IMechE 2003

210 D PASINI, D J SMITH AND S C BURGESS

 at MCGILL UNIVERSITY LIBRARY on August 15, 2012pil.sagepub.comDownloaded from 

http://pil.sagepub.com/


In the following sections, the geometric parameters
de�ned here are substituted into equation (3) to derive an
expression of the performance criterion function only of the
shape transformers. Firstly a performance criterion and then
an ef�ciency map are described.

4 ENVELOPE EFFICIENCY MAPS

4.1 Performance criterion

To establish the performance criterion of the cross-section
for beams subjected to bending, consider two beams of the
same material. One beam has a rectangular cross-section
that completely �lls its rectangular envelope and is conse-
quently called the reference beam. The ef�ciency p of the
reference beam is p0, and it is given by equation (3) so that

p0 ˆ c1

L4

E
r

ID

AD
(6)

The ratio of the performance criterion of the second beam
relative to the reference beam is

p
p0

ˆ I
ID

AD

A
ˆ cI

cA
ˆ l (7)

When the envelope is completely �lled, p ˆ p0 and
cI ˆ cA ˆ l ˆ 1. When only partially occupied, cI and

cA are less than 1, as indicated in Table 2. The variation in
the performance criterion ratio p/p0ˆ l can also be illu-
strated for various cross-sectional shapes by examining the
variations in the shape transformers cI and cA. This is
presented in the next section.

4.2 Envelope ef�ciency map

Using equation (7) and the expressions for cI and cA, given
in Table 2, results for l are plotted in Fig. 2. Within the
range de�ned by cI plotted as a function of cA there are two
limiting curves, curves 1 and 2. Within the curves 1 and 2
there exist all geometric cross-sectional shapes that partially
�ll the envelope de�ned by B and H. Furthermore, there are
no cross-sectional shapes within the envelope B £ H
subjected to bending that are outside the boundaries de�ned
by the curves 1 and 2.

Curve 1 represents the conditions where the upper and
lower outside surfaces of the beam are occupied by material.
This is the case of an I-beam with an in�nitely thin vertical
web with the dimensions B ¡ b tending to zero (see Table 2)
or a layered system with the centre �lled with material of
very low Young’s modulus relative to the outside material.

Curve 2 represents a rather idealized case of an I-section
beam turned on its side (e.g. an H-section). The outer sides
of the H are in�nitely thin (with the dimension b tending to
zero), with the centre cross-member increasing with thick-
ness with increasing cI and cA. It should be noted that for

Fig. 2 Rectangle ef�ciency map: the grey region represents the complete domain of cross-sectional shapes
with the same envelope. The domain is split into ef�cient and inef�cient regions according to l
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both curves 1 and 2 the rectangular design space coincides
with the envelope that completely surrounds the extremities
of the shape.

In Fig. 2, when cI ˆ cA ˆ l ˆ 1 the rectangular envel-
ope is completely �lled. When l ˆ 1 and cI ˆ cA < 1, the
envelope B £ H is �lled in direct proportion to the shape
transformers cI and cA. This is illustrated by the cross-
sections placed on the diagonal line in Fig. 2.

The domain between curves 1 and 2 can be split into
two regions, namely ef�cient and inef�cient regions.
Cross-sectional shapes where material is away from the
neutral axis lie in the ef�cient region, where 1 < l < 3.
Examples of shapes that partially �ll the envelope and lie
in the ef�cient region are I- and T-sections. Hollow
rectangular sections also lie in the ef�cient region. A
number of shapes are illustrated in Fig. 2. When the
majority of material is near to the neutral axis, 0 < l < 1,
the cross-sectional shapes lie in the inef�cient region.
Examples of cross-sectional shapes that occupy the inef�-
cient region are shown in Fig. 2.

In Fig. 3, the equivalent curves for curves 1 and 2 in
Fig. 2 are shown for different classes of shape. For
elliptical cross-sections, values of cA and cI are less than
unity, with their maxima at p/4 and 3p/16 respectively for

the solid shape, as shown in Table 2. These maximum
values are shown in Fig. 3 at point A. Curve 3 is the
limiting curve for all elliptical shapes that are hollow, but
with material close to the top and bottom of the outer
surfaces. When the material is on the outer side edges,
the ef�ciency of the beam in bending is described by
curve 4.

When the envelope is square, rather than rectangular,
B ˆ H , the limiting curves in the envelope ef�ciency map
move from curves 1 and 3 for rectangular and elliptical
shapes to curves 1s and 3s respectively. Since the domain
within the limiting curves is reduced, the range of l is also
reduced as shown in Table 2. For example, for rectangular
sections the ef�cient region is when 1 < l < 3, whereas for
square sections 1 < l < 2.

Similar to curves 1 to 4, curves are illustrated for
triangular and lozenge-shaped cross-sections. It is empha-
sized that none of these shapes has a performance or
ef�ciency that lies outside the boundary described by
curves 1 and 2. Analogous to the ef�cient and inef�cient
regions de�ned for rectangular shapes, each domain for each
shape class can be subdivided into two regions. For exam-
ple, a triangle has an ef�cient section when 2/3 < l < 2, and
an inef�cient section when 0 < l < 2/3.

Fig. 3 Ef�ciency maps for different shapes. For the same envelope B £ H , the shape domain of the rectangle
encloses any other domain (ellipse, triangle, lozenge)
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5 GEOMETRIC CONDITIONS FOR OPTIMIZING
STIFFNESS AND MASS

The performance criterion p/p0, given by equation (7)
represents a means of de�ning the ef�ciency of a beam
subjected to bending, i.e. maximizing the beam stiffness
while minimizing the mass. The ratio p/p0 is expressed in
terms of the two geometric shape transformers cA and cI .
These transformers also represent, for a given material, the
relative stiffness and mass of the cross-section respectively.
Consequently, as will be illustrated later, optimization of the
mass for a given stiffness (related to cI ) means changing the
geometric transformer cA. Similarly, improving the stiffness
for a given mass involves retaining cA at a constant value
and increasing cI . In the following, the geometric condi-
tions that arise for given stiffness and mass requirements are
explored.

5.1 Minimization of mass

The envelope ef�ciency map shown in Fig. 3 illustrates
ef�cient and inef�cient regions for cross-section shapes that
are bounded by the envelope B and H. For a given stiffness
requirement, e.g. cI ˆ 0:7, minimization of the mass
requires lower values of cA. An example is shown in
Fig. 4 for I-section beams and hollow box-sections. The
best path for minimizing the mass for a given stiffness is
from point R to A. It has already been shown that in bending
stiffness design there are no possible solutions for values of

cA less than that at point A in Fig. 4. At intermediate values
of cA between points R and A there are many shapes that
can provide the stiffness requirement. Furthermore, if
cI ˆ 0:7 represents the desired minimum stiffness, the
cross-sectional shapes that lie in the shaded area above
points R and A and the limit curve 1 also provide an
ef�ciency, l, greater than at point R in Fig. 4.

Further examples of minimization of mass for a given
stiffness requirement are illustrated in Fig. 5. One design
scenario is to consider reducing the mass of a solid circular
section. Values of cI and cA for this section correspond to
point E in Fig. 5. For a given stiffness (e.g. cI ˆ 0:59),
minimizing mass requires exploring shapes that lie along
path E to ERI. There are many shapes that occupy the
design space B £ H . For simplicity, H- and I-sections that
lie along path E to ERI are considered. Along the line E–W–
ERI the rectangular section equivalent to the solid elliptical
section that yields cI ˆ 0:59 has dimensions that satisfy

b
B

h
H

3

ˆ 0:411 (8)

This is also illustrated in Table 3. When b ˆ 0 and h < H,
the idealized I-section with cI ˆ 0:59 lies on curve 1 in
Fig. 5. The corresponding value of h/H for this condition is
0.743, as shown in Table 3. The variation in the thickness,
i.e. the ratio b/B and h/H, for box and I-sections that lie
along path W to ERI is given by equation (8) and is shown
in Fig. 6.

Fig. 4 Optimization path in an ef�ciency map. Only shapes above the stiffness line are selectable. However,
the best optimization path is from R to A
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Fig. 5 Optimization paths for given cI and cA

Table 3 For a givencI stiffnessrequirement(i.e. solid sectionon the �rst row), theabovegeometricconditions
allow the ef�ciency of hollow sections (�rst column) in a �xed envelope B 6 H to be improved
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5.2 Maximizing stiffness

For a given mass, the bending stiffness can be increased by
moving along a vertical line on the envelope ef�ciency map.
Several examples are shown in Fig. 5. By moving along the
line E–G–ERA in Fig. 5 with cA ˆ p/4, various shapes
occupying the design space can be chosen that improve the
stiffness. Again for simplicity, box and I-sections are exam-
ined. As shown in Table 4, those sections that provide the
same cA as for an elliptical solid section have dimensions
that satisfy

b
B

h
H

ˆ 0:215 (9)

The idealized I-section with b ˆ 0 and cA ˆ p/4 lies on
curve 1 in Fig. 5 at point ERA. The corresponding value of
h/H is 0.215 (see Table 4). The variation in the ratios of b/B
and h/H that corresponds to path G to ERA is given by
equation (9) and is shown in Fig. 7.

This example can be extended to consider other shapes in
a rectangular design space B £ H . Point T in Fig. 5
represents the best performance for a solid triangular

Fig. 6 Variation in beam dimensions for a given cI ˆ
3/16p ˆ 0:059

Table 4 For a given cA requirement (solid section on the �rst row), the above geometric conditions allow the
ef�ciency of hollow sections (�rst column) in a �xed envelope B 6 H to be improved
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cross-section cA ˆ 0:5 and cI ˆ 1/3 (see Table 2). Assum-
ing a given mass with cA ˆ 0:5, the solid triangle can be
replaced by a more ef�cient shape, such as a hollow ellipse,
at point TEA, or even better, an idealized box or I-section at
TRA. The geometric conditions for equivalent rectangular
shapes for solid ellipse, triangular and lozenge sections are
shown in Table 4.

6 APPLICATIONS OF THE ENVELOPE
EFFICIENCY MAP

The envelope ef�ciency map provides an effective means of
determining which cross-sectional shapes are the most
ef�cient in bending stiffness design. In this section, two
applications of the map are considered:

1. The ef�ciency limits of practical steel cross-sections are
explored.

2. The ef�ciency of multilayered material systems is
considered.

6.1 Ef�ciency of practical cross-sectional shapes

Standard structural elements are manufactured to be suitable
for different loading and operating conditions. In this sec-
tion, only the mass ef�ciency in bending stiffness design is
considered. Furthermore, standard cross-sections generally
have different envelope sizes, and consequently the enve-
lope ef�ciency map cannot be used to compare directly
the structural performance. However, the map can be
used to examine the practical limits imposed by current

manufacturing constraints on the shape transformers of the
cross-sections.

The shape properties, cA and cI, of steel cross-sections
available on the market are shown on the envelope ef�ciency
map in Fig. 8. The structures considered are I-shapes of
different typologies (IPE, HEA, HEB, INP), C shapes
(UPN), tubes and boxes. The data for these improved
sections are not very scattered, but they group together
close to the limit curve 1. For I-sections their ef�ciency
cannot achieve that provided by an idealized I-section with
b ˆ 0, since the web thickness has to be designed to avoid
buckling.

Hollow circular sections (or tubes) lie on a curve that lies
within the limit curve 3 for circular sections. Circular
sections with variable wall thickness are generally imprac-
ticable to manufacture.

The empirical limits of l for the various shapes in
bending stiffness design are: 2.32 for HEA, 2.25 for HEB,
2.08 for IPE, 1.92 for IPN, 1.82 for UPN, 1.94 for square
tubes and 1.46 for circular tubes. It is evident that these
limits refer only to the shape properties of sections, and
the contribution of the envelope sizes to the stiffness of the
cross-section is not considered on the envelope ef�ciency
map in Fig. 8.

6.2 Ef�ciency of multilayered systems

Multilayered systems are structures that contain different
combinations of materials placed in layers. In this section,
the ef�ciency envelope map is used to explain the properties
and the performance of multilayered systems.

Many authors have developed analytical solutions for
simple layered systems. However, the relationship between
layer location and stiffness has only been recently exam-
ined [10]. Smith and Partridge [10] explored the �exural
stiffness of planar multilayered systems that contain two
materials: titanium alloy IMI 834 and Ti–6A1–4V metal
matrix composite (MMC). The results of their analysis
are shown Fig. 9, where �exural modulus or bending
stiffness is shown as a function of density. All the
possible layered materials based on the two-material
systems Ti-MMC and Ti-834 are located in a domain
de�ned by curves 1 and 2.

The envelope ef�ciency map shown in Fig. 3 can be
related directly to the results shown in Fig. 9 for the layered
system. The ef�ciency map corresponds to a single material
subjected to bending. The ef�ciency of the cross-section
depends on its second moment of area, I, and the area
occupied by the material.

Now, consider a multilayered system consisting of two
materials with Young’s moduli E1 and E2 and densities r1

and r2. The performance of the combined system will
depend on the relative values of the moduli and densities.
Each material contributes to the total performance of the
envelope, B £ H . If h is the height of the envelope �lled by
material 1, then H ¡ h is the height �lled by material 2.

Fig. 7 Variation in beam dimensions for a given cA ˆ
p/4 ˆ 0:785
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Therefore, the total �exural modulus, ET and density, rT, of
the layered system are given by

ETBH3 ˆ Bh3E1 ‡ B(H 3 ¡ h3)E2 (10)

rTBH ˆ Bhr1 ‡ B(H ¡ h)r2 (11)

Dividing equations (10) and (11) by BH3 and BH respec-
tively and using the expressions of the shape transformers
given in Table 2 gives

ET ˆ cI E1 ‡ (1 ¡ cI )E2 (12)

rT ˆ cAr1 ‡ (1 ¡ cA)r2 (13)

The limits of the shape transformers cA and cI are given in
Table 2 and illustrated in Fig. 4. Using the properties for

Ti-MMC (E1ˆ 204 GPa, r1ˆ 4.38 mg/m3) and Ti-834
(E2ˆ 114 GPa, r2ˆ 4.57 mg/m3) together with equations
(10) and (11), gives the results in Fig. 9.

Note that when cA ˆ cI ˆ l ˆ 1 the layered system is
all Ti-MMC with ETˆ E1 and rTˆ r1. Similarly, when
cA ˆ cI ˆ 0, the layered system is all Ti-834. These
extreme values are illustrated in Fig. 9. Curves 1 and 2 in
Fig. 9 represent a symmetric layered system with Ti-MMC
on the upper and lower surfaces (curve 2), or with Ti-834 on
the upper and lower surface. As explained in this paper, all
the possible multilayered systems lie within the domain
bounded by the limiting curves. Smith and Partridge
explored alternative symmetric and asymmetric systems
and found them to be within curves 1 and 2. The envelope
ef�ciency map introduced in this paper illustrates that many
other cross-sectional shapes other than simple layered

Fig. 8 Steel cross-sections available in the market (data source: EURONORM 53-62; 19-57; 5679-73). Note
that the aim of this plot is to show only the limits of the shape transformers, and thus the effect of the
envelope sizes on the ef�ciency is neglected
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systems can be explored and the stiffness and density of the
system determined simply from equations (12) and (13).

7 SCALING OF THE CROSS-SECTION

This paper has so far examined the structural ef�ciency of
cross-sections that are not scaled. The cross-sectional shapes
have been considered to have the same envelope surround-
ing the shape as shown in Fig. 1. The �ndings provided in
this work can be related to earlier papers [8, 9] which
considered the arbitrary scaling of the envelopes enclosing
the shapes. Arbitrary scaling means that a cross-section is
enlarged or contracted in any direction including widthwise,
heightwise, proportionally and in any other direction. The
reason why a cross-section may be constrained to certain
directions of scaling is that practical design cases often
contain geometrical constraints on the design space. Cross-
sections need to be scaled in size in order to meet a
particular stiffness requirement with a different material or
to meet a changed stiffness requirement with same or a
different material.

Consider four cross-sections of the same material, D0 to
D3, shown in Fig. 10. Here, D0 is a rectangular cross-
sectional shape with shape transformers cAˆ 1 and cIˆ 1
and sizes of the envelope B0 and H0. Cross-section D1 is a
hollow section that lies in the ef�cient region in Fig. 2. Since

D0 and D1 are not scaled, the dimensions of the hollow
section are H0 and B0, while h0 and b0 are the internal
dimensions. Cross-sections D2 and D3 are arbitrarily scaled
cross-sections derived from D1. The relative changes in
widths B and b and heights H and h are described by two
linear multipliers u ˆ B/B0 ˆ b/b0 and v ˆ H /H0 ˆ h/h0.

Consider now the position of the rectangle D0 on the
envelope ef�ciency map shown in Fig. 11. If a shape with
cAˆ 0.43 and cIˆ 0.81 is selected for envelopeD0, B06 H0,
then D0 moves to D1 with coordinates (cA, cI), as shown by
the arrow D0D1 in Fig. 11. Cross-section D1 is a structure that
cannot provide the same stiffness as D0. However, if cross-
section D1 is scaled to D2, the stiffness, k0, provided by D0 can
be made the same as that for D2, i.e. k[D2] ˆ k0[D0]. It can be
shown [9] that, in stiffness design, the cross-sections meet the
same requirement for the following conditions

k
k0

ˆ uv3cI ˆ 1 (14)

Consequently, if u ˆ 0.5 is chosen, equation (14) can be
used to determine the appropriate value of v that satis�es
the stiffness requirement. Note that cI and cA correspond to
the value of the shape transformer for cross-section D1 with
cA ˆ 0:43 and cI ˆ 0:81. The values of v that satis�es
equation (14) is 1.26. Another example is to select u ˆ 2,

Fig. 9 Flexural stiffness of two- and three-layer system using Ti-MMC and Ti-834 (from Smith and
Partridge [10])
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and then using equation (14) gives v ˆ 0:79. The solution
corresponds to cross-section D3.

When cross-section D1 is scaled according to the stiffness
requirement given by equation (14), then point D1 in Fig. 11
moves along arrow D1D2 to coordinate D2 (c¤

A, c¤
I ) given by

c¤
I ˆ uv3cI

c¤
A ˆ uvcA

(15)

Figure 11 shows the effect of scaling on boundaries curves 1
and 2 of the envelope associated with D0 for two cases. In
the �rst case, all the shapes within curves 1 and 2 are
rescaled to meet the stiffness requirement with u ˆ 0:5 and

v ˆ 1:26. The shapes enclosed by limiting curves 1 and 2
are now enclosed by curves 3 and 4. In the second case,
u ˆ 2 and v ˆ 0:79 and any point of limiting curves 1 and 2
moves to the respective point of curves 5 and 6. In this case
the cross-sectional shape D1 moves to D3. In the �rst case
the effect of scaling is such that, since v > 1, the height of
D2 is increased and moves to the left with a consequent
improvement in ef�ciency. On the other hand, when v < 1,
this causes the curves to move to the right towards less
ef�cient cross-sections.

In practice, wide �anges on I- and T-sections are not fully
effective in carrying bending loads. In cases where wide
sections are needed on account of space constraints, it is
generally better to use box and channel sections rather than
I- and T-sections respectively.

Fig. 10 Changes in cross-sectional shapes and different scaling of the envelope

Fig. 11 Effect of scaling the envelope on the ef�ciency map
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8 COST MEASURE

The envelope ef�ciency map can be used to select cross-
sections that maximize the stiffness per unit cost. In Fig. 2,
cI is plotted against cA: cI is the shape transformer of the
second moment of area and is related to the stiffness, k, of
a structural component; cA is the shape transformer of the
area and therefore is directly related to the mass, m. If C
is the cost per unit mass, then the cost of a component
is Cm.

Using the de�nition of the shape transformer [equation
(4)], the cost Cm of a structural component with length L
and density r is given by Cm ˆ CrAL ˆ CrcAADL.
Therefore, for a given material, CcA represents the cost
measure of a beam per unit volume, i.e. ADL ˆ 1. Repla-
cing cA with CcA on the horizontal axis of the envelope
ef�ciency map shown in Fig. 2 allows the cost of a
structural member to be evaluated for a bending stiffness
requirement.

9 CONCLUDING REMARKS

The structural ef�ciency of beams subjected to bending
has been the focus of this paper. The performance cri-
terion for the beam is to make it as stiff as possible while
reducing mass. It has been shown that there are many
cross-sectional shapes whose main dimensions touch the
boundary of a rectangular design space, and all these
shapes lie within two limit curves. The curves are func-
tions of two parameters, cA and cI , called shape trans-
formers, which represent the area and second moment of
area of a cross-sectional shape relative to its surrounding
envelope.

The analysis presented in this paper is restricted to beams
of elastic material. Similar approaches could be adopted for
other loading conditions and also for elastic–plastic material

behaviour. The ef�ciency map provided in this paper gives
insight into the performance of structures.

REFERENCES

1 Cox, H. L. The Design of Structures of Least Weight, 1965
(Pergamon Press, Oxford).

2 Shanley, F. R. Weight–Strength Analysis of Aircraft Structures,
2nd edition, 1960 (Dover, New York).

3 Parkhouse, J. G. Structuring a process of material dilution. In
Proceedings of 3rd International Conference on Space Struc-
tures (Ed. H. Nooshin), 1984, pp. 367–374 (Elsevier Applied
Science Publishers, Oxford).

4 Parkhouse, J. G. and Sepangi, H. R. Macromaterials. Confer-
ence Proceedings (Ed. F. N. Spon), 1993, pp. 3–13 (Garas
Armer and Clarke, London).

5 Ashby, M. F. Materials and shape. Acta Metall. Mater., 1991,
39(6), 1025–1039.

6 Ashby, M. F. Materials Selection in Mechanical Design, 1st
edition, 1992 (Pergamon Press, Oxford).

7 Burgess, S. C. Shape factors and material indices for dimen-
sionally constrainedstructures.Part 1: beams. Proc. Instn Mech.
Engrs, Part C: J. Mechanical Engineering Science, 1998,
212(C2), 129–140.

8 Pasini, D., Burgess, S. C. and Smith, D. J. Performance indices
for arbitrarily scaled rectangular cross-sections in bending
stiffness design. Proc. Instn Mech. Engrs, Part L: J. Materials:
Design and Applications, 2002, 216, 1–13.

9 Pasini, D., Smith, D. J. and Burgess, S. C. Selection of
arbitrarily scaled cross-sections in bending stiffness design.
Proc. Instn Mech. Engrs, Part L: J. Materials: Design and
Applications, 2003, 217(2), 113–125.

10 Smith, D. J. and Partridge, P. G. Flexural stiffness envelopes
for planar system containing two dissimilar materials. Proc.
Instn Mech. Engrs, Part L: J. Materials: Design and Applica-
tions, 1999, 213, 1–20.

11 Pasini, D., Burgess, S. C. and Smith, D. J. A method of
selection for large scaled structures. ASME 2002 Design
Engineering Conference, Montreal, Canada, 2002.

Proc. Instn Mech. Engrs Vol. 217 Part L: J. Materials: Design and Applications L02902 # IMechE 2003

220 D PASINI, D J SMITH AND S C BURGESS

 at MCGILL UNIVERSITY LIBRARY on August 15, 2012pil.sagepub.comDownloaded from 

http://pil.sagepub.com/

