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  Size-dependent behavior of laminates with 
curvilinear fibers made by automated fiber 
placement   
  Abstract:   Variable stiffness laminates can be manufac-

tured using curvilinear fiber paths. A curvilinear fiber 

path is generally defined based on the plate size and has 

a curvature that is dependent on the plate size. In prac-

tice, however, the fiber path must satisfy manufacturing 

constraints, such as the minimum turning radius imposed 

by the automated fiber placement machine, thereby lim-

iting the possible amount of fiber steering. In this work, 

we studied the effect of the plate size on the structural 

properties of a plate manufactured with curvilinear fibers. 

We considered four plate sizes, which were designed by 

a constant curvature fiber path. We optimized the plates 

for both maximum buckling load and in-plane stiffness. 

The results showed that the in-plane stiffness of the plate 

was not controlled by the plate size, whereas the buckling 

load was highly affected by the curvature of the fiber path. 

Hence, the potential of a buckling load increase reduced 

for plate sizes smaller than the minimum turning radius. 

In addition, for a given maximum curvature of the fiber 

path, the influence of a complex layup on the buckling 

load was marginal.  
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1     Introduction 

 Automated fiber placement (AFP) is an advanced technol-

ogy used in aerospace industries to manufacture compos-

ite laminates. Thus far, AFP has proven to be capable of 

producing high quality parts with remarkable accuracy 

and repeatability. In addition, AFP can manufacture non-

traditional composite layups with curvilinear fiber paths, 

which are referred to as variable stiffness designs. The 

control of the fiber path orientation gives freedom to tailor 

the composite properties in directions within the laminate 

that are more favorable to carry loads. As a result, superior 

structural performance of a variable stiffness design over 

a constant stiffness design can be obtained for a range of 

structural properties, such as buckling resistance  [1 – 4] , 

post-buckling  [5 – 7] , fundamental frequency  [8 – 10] , and 

simultaneous maximization of buckling load and in-plane 

stiffness  [11, 12] . In practice, the method used by AFP to 

manufacture a laminate with curvilinear fibers generally 

leads to the generation of defects in the form of gaps and 

overlaps. The reason is that during the manufacturing 

process, an AFP machine can change the course width 

only by a discrete value by either adding or dropping tows. 

Thus, small areas of defects (i.e., either missing or over-

laying fibers) would form within the laminate. A method, 

namely Defect Layer, has been recently introduced  [12, 13]  

to appraise the impact of defects on the performance of 

variable stiffness composite structures. It has been found 

that the effect of gaps deteriorates the buckling load and 

in-plane stiffness of a variable stiffness laminate, whereas 

the effect of overlaps improves those properties. Croft 

et al.  [14]  experimentally explored the effect of gaps and 

overlaps on the ultimate strengths of constant stiffness 

laminates. They found that defects along the length of the 

specimen (0 °  direction) have a more severe decrease in the 

mechanical properties than defects along the width of the 

specimen (90 °  direction). 

 Several studies  [1 – 3]  reported that the use of a cur-

vilinear fiber path allows transfer of the load from the 

plate center to the edges, a feature that is highly desir-

able in raising the buckling resistance of a plate. Thus, on 
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one hand, variable stiffness laminates that are designed 

to maximize the buckling load tend to have a fiber path 

with large curvature  [3, 12] . On the other hand, AFP must 

respect a fiber curvature constraint to prevent the fibers to 

locally buckle along a curvilinear path. To design a vari-

able stiffness composite plate, a curvilinear fiber path is 

generally defined as a function of the fiber orientation, 

which is a variable that changes from the value of  T  
0
  at 

the plate center to  T  
1
  at a characteristic distance,  d , from 

the plate center. The characteristic distance of  d  is gener-

ally considered to be equal to half the plate width  [1, 15] . 

As a result, the plate size becomes an important factor 

that affects the curvature of the fiber path, the amount 

of defects within the laminate, consequently influencing 

the performance improvement that can be obtained with 

a variable stiffness design. In this study, the effect of the 

plate size on the maximum achievable improvements 

in the buckling load and in-plane stiffness of a variable 

stiffness plate was investigated. First, the feasible design 

space of a variable stiffness laminate with a constant cur-

vature fiber path was examined for four plate sizes. The 

optimum solutions for simultaneous maximization of the 

buckling load and in-plane stiffness were then obtained. 

Next, the buckling load and in-plane stiffness of a simple 

and a complex layup for a variable stiffness laminate were 

compared. Finally, a discussion of the results follows 

together with design recommendations.  

2     Formulation of the curvilinear 
fiber path 

 One way to design a variable stiffness plate is to define a 

reference path along which the AFP machine places the 

first course. Subsequent fiber paths can then be obtained 

by shifting the reference fiber path. As a reference fiber 

path, a constant curvature path was used here ( Figure 1  ). 

In the definition of a constant curvature fiber path  [15] , 

it is assumed that the path from  T  
0
  (fiber orientation at 

the plate center) to  T  
1
  (fiber orientation at the plate edges) 

varies in a way that the radius of the path remains con-

stant. Along this reference path, the fiber orientation can 

be defined as a function of the plate spatial coordinates 

given by 
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 Figure 1      Constant curvature fiber path definition.    

value. A single layer with this fiber path definition may 

be represented by [ +   <   T  
0
  |  T  

1
   >  ], where  T  

1
   =   T  

0
  represents the 

limiting case of a straight-fiber layer. 

 The turning radius of the fiber path can be expressed as 
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 According to Eq. (2), the turning radius of a constant 

curvature fiber path depends on the plate width,  a . A 

minimum constraint on the turning radius is gener-

ally used by an AFP machine so as to avoid local buck-

ling in the fibers placed along a curvilinear path. For 

a typical AFP machine, the minimum turning radius 

would be 0.635 m (25 in). When this manufacturing con-

straint is substituted in Eq. (2), the whole design space 

(the number of designs [  <   T  
0
  |  T  

1
   >  ] manufacturable with 

AFP) for a constant curvature fiber path becomes fea-

sible only for a plate width larger than 1.27  m (50 in). 

In other words, the number of variable stiffness designs 

[  <   T  
0
  |  T  

1
   >  ] manufacturable with AFP is limited for plates 

with a width that is smaller than the minimum turning 

radius.  

3    Manufacturable design space 
 To investigate the relation between the size of the feasi-

ble design space and the plate size, we considered four 

plate sizes. The first design was a plate of 0.101  ×  0.152 m 

(4  ×  6 in), as recommended in the ASTM D7137 standards 

for compressive strength properties. Given that the ASTM 

plate size was very small compared to the minimum AFP 
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turning radius, we selected, as second and third designs, 

plate sizes of 0.202  ×  0.304 m (8  ×  12 in) and 0.303  ×  0.456 m 

(12  ×  18 in), which were double and triple the size of the 

ASTM-recommended plate, respectively. Finally, as a 

fourth option, a plate size of 0.254  ×  0.406  m (10  ×  16 in), 

a size used in the industry, was also examined.  Figure 2   

shows the feasible design spaces (shaded area) with 

respect to  T  
0
  and  T  

1
  for the selected plate sizes, assuming 

the minimum turning radius of 0.635 m (25 in.). 

 As expected, an increase in the plate width resulted 

in a larger feasible space. For example, only 15% of the 

whole variable stiffness design space (shaded area in 

Figure 2A) can be manufactured for the smallest plate size. 

The percentage of feasible designs increased to 27%, 37%, 

and 32% for the second, third and fourth plate sizes con-

sidered in this work, respectively. In practice, for a very 

small  T  
1
 , the course width at the plate edges becomes too 

small, and AFP has to drop all the tows within the course 

before reaching the plate edges  [12, 16] . Hence for a con-

stant curvature fiber path, laminates with a very small  T  
1
  

are not manufacturable, regardless of the plate size. 

 To evaluate the impact of plate size on the response 

of a variable stiffness laminate, we simultaneously maxi-

mized the buckling load and in-plane stiffness for each 

of the plate sizes. As a case study, a 16-ply balanced 

symmetric [  ±    θ  ( x )] 
4 s 

  laminate subjected to a uniform end 

shortening along the  y -direction was considered. The opti-

mization problem can be formulated as 
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 where  x  is the vector of design variables (i.e.,  T  
0
  and 

 T  
1
 );  E  

 eq 
  and  N  

 cr 
  are the equivalent in-plane stiffness and 

the buckling load of the plate, respectively; and  R  
min

  is 

the minimum turning radius of the fibers over the entire 
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 Figure 2      Feasible design space (shaded area) for different plate sizes. 

 (A) 0.101 × 0.152 m, (B) 0.203 × 0.303 m, (C) 0.254 × 0.406 m, (D) 0.303 × 0.456.    
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course width. A comprehensive review of optimization 

algorithms used in variable stiffness design of composite 

laminates can be found in  [17] . The Genetic algorithm (GA) 

has been widely used and recommended for optimizing 

composite structures among several evolutionary opti-

mization algorithms capable of returning a population 

of solutions at each iteration  [17] . However, being a pop-

ulation-based algorithm, GA, requires a large number of 

function evaluations to reach the optimum solution. This 

requirement makes the process of finding an optimum 

design for a variable stiffness composite computation-

ally expensive. The reason for this is that a large compu-

tational effort is needed to evaluate the performance of a 

variable stiffness laminate, especially when the effect of 

defects within the laminate is accounted for. To overcome 

this issue, the coupling of an approximation concept, also 

called a metamodel or surrogate model, with GA has been 

recognized beneficial  [18] . Significantly cheaper to evalu-

ate, the surrogate model is used in place of a high fidelity 

finite element simulation. As a result, the surrogate model 

can significantly reduce the time required to run the opti-

mization. In this study, a surrogate-based multi-objective 

optimization algorithm (NSGAII + RBF)  [18]  was used to 

find the Pareto optimal solutions. The radial basis func-

tion (RBF) method uses a combination of basis functions 

expressed in terms of the Euclidean distance between 

sample data points to construct a surrogate model  [19] . 

The RBF model can be written as 

    1

( ) (|| - ||),
ns

i i
i

y w ψ
=

=∑ x xx�
 

(4)

 

 where  x  
 i   ( i   =  1,  … ,  ns ) are the  i   th   data point,   ψ   is the basis 

function, and  w  
 i   ( i   =  1,  … ,  ns ) are the basis function weights 

evaluated by fitting the model to the training data;  |  |  ·  |  |  

denotes the Euclidean distance between two sample data 

points; and   y�  is the approximate value of the objective 

function  [20] . For a more detailed description of the surro-

gate-based algorithm, please refer to  [11, 18] . 

 The Pareto fronts in  Figure 3   showed that the maximum 

achievable improvement in the buckling load and in-plane 

stiffness changed with the plate size for a defect-free (ignor-

ing the presence of defects) variable stiffness laminate. The 

buckling load and in-plane stiffness of the plates were nor-

malized by the corresponding values of a constant stiffness 

laminate with [45/0/-45/90] 
2s

  (quasi-isotropic) layup. By 

examining the right portions of the Pareto fronts, we noted 

that the plate size had no effect on the optimum designs for 

higher values of the in-plane stiffness. The reason for this 

trend is that for high in-plane stiffness, the fiber path is 

closed to the case with straight-fibers, which has a turning 

 Figure 3      Pareto sets obtained by maximizing the buckling load and 

in-plane stiffness for four plate sizes.    
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 Figure 4      The effect of the minimum turning radius ( R  
min

 ) on the 

Pareto front for maximum buckling load and in-plane stiffness.    

radius much larger than the minimum allowable turning 

radius. Meanwhile, the designs that provide a high buck-

ling load tend to have a fiber path with high curvature. As a 

result, the difference among the three Pareto fronts gener-

ally increases with higher values of the buckling load. The 

largest improvement in the buckling load can be obtained 

with the largest plate size. It is worth mentioning that for 

the smallest plate size (0.101  ×  0.152 m), there were no solu-

tions capable of simultaneously improving both the buck-

ling load and in-plane stiffness. 

 To evaluate the impact of the minimum turning radius, 

we plotted in  Figure 4   the Pareto fronts with and without 

accounting for the minimum turning constraint in the 

optimization formulation. The results given for a plate size 

of 0.254  ×  0.406 m (10  ×  16 in) showed that the constraint on 

the fiber path curvature had a more pronounced impact 
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on the solutions with high buckling load than on the base-

line. For the unconstrained case, 118% improvement in 

the buckling load was achieved by the [  ±    <  72 | 0  >  ] 
4s

  lami-

nate, which had a turning radius of 0.18 m (7.2 in), a value 

much smaller than the minimum allowable turning radius 

of a typical AFP machine. Meanwhile, the turning radius 

constraint resulted in a [  ±    <  45 | 26  >  ] 
4s

  laminate, which 

showed 56% improvement in buckling load. We note that 

a portion of the loss of the improvement in the buckling 

load may be regained by using a more complex layup, 

such as [  ±    θ   
1
 ( x )/±  θ   

2
  ( x )/±  θ   

3
 ( x )/±  θ   

4
 ( x )] 

 s 
  instead of [  ±    θ  ( x )] 

4 s 
 .  

4     The effect of layup on the 
 performance of a variable 
stiffness laminate 

 As mentioned in Section 3, the plate size of 0.254  ×  0.406 m 

(10  ×  16 in) was small compared with the minimum 

turning radius (0.635 m) of a typical AFP machine. 

As a result, the number of manufacturable designs 

became very limited (Figure 2C). One way to increase 

the benefit of a variable stiffness design for such a small 

plate is by designing each layer separately. In other 

words, using a more complex layup, such as [  ±    θ   
1
 ( x )/   ±    θ   

2
  

( x )/  ±    θ   
3
 ( x )/  ±    θ   

4
 ( x )] 

 s 
  instead of [  ±    θ  ( x )] 

4 s 
 , may result in 

higher buckling load.  Figure 5   compares the Pareto solu-

tions for the [  ±    θ  ( x )] 
4 s 

  and [  ±    θ   
1
 ( x )/  ±    θ   

2
  ( x )/  ±    θ   

3
 ( x )/  ±    θ   

4
 ( x )] 

 s 
  

layups, for a given plate size and maximum curvature of 

the fiber path.  Table 1   summarizes the buckling load and 

in-plane stiffness of the designs that provide the highest 

improvement in the buckling load compared with the 

baseline (quasi-isotropic laminate). In contrast to the 

[  ±    θ  ( x )] 
4 s 

  layup, the design that had the highest buckling 

load for the [  ±    θ   
1
 ( x )/  ±    θ   

2
  ( x )/  ±    θ   

3
 ( x )/  ±    θ   

4
 ( x )] 

 s 
  layup changed 

with the manufacturing strategy, either with complete 

gap or overlap (Table 1). The use of a complex layup 

tailored in each layer of the laminate also increased the 

maximum improvement in the buckling load of about 5% 

A B

C

 Figure 5      Pareto set obtained by maximizing the buckling load and the in-plane stiffness of a plate with [  ±    θ  ( x )] 
4 s 

 and [  ±    θ   
1
 ( x )/  ±    θ   

2
 ( x )/  ±    θ   

3
 ( x )/  ±    

θ   
4
 ( x )] 

 s 
  layups. (A) Defect-free, (B) Complete gap, (C) Complete overlap.    
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 Table 1      Structural properties of designs with the highest buckling load with [  ±    θ  ( x )] 
4 s 

  and [  ±    θ   
1
 ( x )/   ±    θ   

2
  ( x )/  ±    θ   

3
 ( x )/  ±    θ   

4
 ( x )] 

 s 
  layups normalized 

with respect to the baseline.  

Case  Layup  Normalized 
buckling load  

Normalized 
in-plane stiffness  

Defect-free [  ±    <  45 | 26  >  ] 
4s

 1.56 0.60

[  ±    <  42 | 52  >  /  ±    <  43 | 22  >  /  ±    <  41 | 19  >  /  ±    <  40 | 16  >  ] 
s
 1.63 0.84

Complete gap [  ±    <  45 | 26  >  ] 
4s

 1.39 0.52

[  ±    <  44 | 44  >  /  ±    <  41 | 21  >  /  ±    <  36 | 11  >  /  ±    <  37 | 11  >  ] 
s
 1.46 0.81

Complete overlap [  ±    <  45 | 26  >  ] 
4s

 1.86 0.61

  [  ±    <  49 | 32  >  /  ±    <  41 | 19  >  /  ±    <  40 | 16  >  /  ±    <  40 | 16  >  ] 
s
   1.97  1.06  

A B

 Figure 6      Gap distribution within the laminate averaged through the thickness. 

 (A) [  ±    <  45 | 26  >  ] 
4s

 , (B) [  ±    <  44 | 44  >  /  ±    <  41 | 21  >  /  ±    <  36 | 11  >  /  ±    <  37 | 11  >  ] 
s
 .    

(Figure 5). Although the use of a complex layup cannot 

significantly improve the maximum achievable buck-

ling load, we observed a shift of the Pareto front toward 

higher in-plane stiffness values. This trend indicated that 

the maximum improvement in the buckling load highly 

depended on the curvature of the fiber path; hence if 

the maximum allowable curvature was kept constant, a 

more complex layup would have had a minor effect on 

the buckling load. This observation coincides with the 

findings in Section 3, where the improvement in the 

buckling load of the laminate was significantly limited 

by the constraint on the maximum allowable curvature. 

 The improvement in in-plane stiffness by using the 

complex layup compared with the simple layup might be 

attributed to the defect distribution within the laminate. 

 Figure 6   shows the gap distribution for the [  ±    <  45 | 26  >  ] 
4s

  

and [  ±    <  44 | 44  >  /  ±    <  41 | 21  >  /  ±    <  36 | 11  >  /  ±    <  37 | 11  >  ] 
s
  layups, 

which show the highest buckling load for the manufactur-

ing case of a complete gap strategy. 

 It can be seen that the use of a more complex layup dis-

tributed the gap areas within the laminate, as opposed to 

the case of a simple layup. Furthermore, in the [  ±    <  45 | 26  >  ] 
4s

  

laminate, there were areas with 100% gap, indicat-

ing areas that were resin-rich through the whole thick-

ness. For a [  ±    <  44 | 44  >  /  ±    <  41 | 21  >  /  ±    <  36 | 11  >  /  ±    <  37 | 11  >  ] 
s
  

layup, the maximum gap area percentage through the 

thickness was about 75%.  

5    Conclusions 
 This work examined the potential improvement in the 

buckling load for a composite laminate with variable 
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stiffness. We showed that a plate smaller than twice the 

minimum AFP turning radius proportionally reduced the 

number of possible designs that can be manufactured 

with a constant curvature fiber path. As a result, the per-

formance improvement became marginal. We also found 

that the plate size did not affect the maximum achievable 

in-plane stiffness, as opposed to the buckling load, which 

was highly dependent on the fiber path curvature. Fur-

thermore, the maximum achievable improvement in the 

buckling load cannot be significantly increased when a 

more complex layup was used for a given maximum allow-

able curvature. In comparison, the use of a complex layup 

shifted the Pareto front towards higher in-plane stiffness 

values if both buckling load and in-plane stiffness were 

simultaneously optimized. The results in this paper help 

gain insight into the advantages and limitations that AFP 

technology offers for variable stiffness laminate. 

 The optimized fiber trajectories for the variable stiff-

ness designs were obtained for a specific pair of structural 

properties, i.e., maximum buckling load and in-plane stiff-

ness. Future research would be required to obtain a Pareto 

front for various conflicting structural properties, such as 

failure load, and fundamental frequency that might result 

in designs with different fiber trajectories.   
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