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Automated Fiber Placement (AFP) is an advanced technology used to manufacture laminated composites
with curvilinear fiber paths. During the manufacturing, AFP generally leads to the formation of defects,
e.g. gaps and overlaps, that impact the laminate properties, to an extent that largely depends on the
geometry, such as thickness and curvature, of the part. This paper focuses on moderately-thick laminate
plates that present gaps and overlaps induced by AFP. We use higher-order shear deformation theories to
study the role of shear deformation on the plate responses. A hybrid Fourier-Galerkin method is used to
obtain a semi-analytic solution describing the static deformation of the plate. Eigenvalue analysis is also
conducted to determine its fundamental frequency and critical buckling load. The numeric results show
that shear deformation has a more severe impact on the structural responses of a variable stiffness than a
constant stiffness plate. We find also that gaps deteriorate the structural performance, while overlaps
improve it. Maps representing structural responses, in particular buckling vs. deflection and frequency
vs. deflection, are generated to gain insight into the design of a variable stiffness laminate plate with
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1. Introduction

Laminated composite structures have drawn special attention
from a variety of sectors including aerospace, automotive, naval,
and construction. Composite laminates are generally built by
stacking layers of dissimilar fiber orientation [1,2]. To achieve high
strength-to-weight ratio, high stiffness-to-weight ratio, fatigue
strength, and resistance to corrosion, composite laminates are
designed with either constant or variable stiffness. In a constant-
stiffness design, a laminate has layers of straight fibers that have
the highest stiffness and strength when loaded along the fiber
direction, whereas these properties are very low in the transverse
direction. In a variable stiffness laminate, the fiber direction can be
tailored to follow curvilinear fiber paths that best improve struc-
tural performance, such as buckling load [3-6], natural frequencies
[7-9], and flexural stiffness [10]. Variable stiffness plates have also
been demonstrated capable to offer trade-off properties that can
concurrently optimize opposing requirements, such as buckling
load and in-plane stiffness [4,11-13].

* Corresponding author. Tel.: +1 514 398 6295; fax: +1 514 398 7365.
E-mail addresses: hamid.akbarzadeh@mcgill.ca (A.-H. Akbarzadeh), mahdi.ariannik@
mail.mcgill.ca (M. Arian Nik), damiano.pasini@mcgill.ca (D. Pasini).

http://dx.doi.org/10.1016/j.compstruct.2014.07.027
0263-8223/© 2014 Elsevier Ltd. All rights reserved.

Several approaches exist in literature for the analysis of a
laminated composite. Among them, equivalent single-layer (ESL)
[14-16], three-dimensional (3D) elasticity [17-19], and multiple
model methods [2] have been successfully used, each with a cer-
tain level of complexity. In this paper, we use ESL theory to reduce
the computational effort required for the analysis of a variable-
stiffness composite. With ESL, an equivalent two-dimensional
(2D) layer is assumed to replace a heterogeneous 3D structure.
The simplest ESL theory is the classical laminated plate theory
(CLPT), whereby the lines that before deformation are straight
and normal to the midplane of the laminate are assumed to keep
these characteristics even after deformation. An outcome of this
hypothesis is the neglect of the deformation caused by transverse
shear (0,0,,) and transverse normal (o,;) stresses. For moder-
ately-thick composite laminates, such an assumption does not cap-
ture the real deformation of the composite laminate, thereby
justifying the proposition of alternative shear deformation theo-
ries. For example, first-order shear deformation theory (FSDT)
and third-order shear deformation theory (TSDT) have been intro-
duced to account for deformation caused by transverse shear stres-
ses [1,2,20-23]. FSDT assumes a constant shear strain through the
thickness of a laminate and introduces a shear correction coeffi-
cient to compute transverse shear forces. TSDT, on the other hand,
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uses a quadratic function to describe transverse shear stresses
through the thickness, with vanishing values at the top and bottom
surfaces of the laminate. As opposed to FSDT, TSDT avoids the need
to introduce a shear correction factor [2].

FSDT and TSDT have been extensively used to model the struc-
tural mechanics of constant stiffness laminates as well as function-
ally graded (FG) beams and plates [24-27]. ESL and 3D elasticity
theories were successfully applied to examine the buckling and
postbuckling responses of laminated composites [17,28-33]. Other
studies focused on the transient responses and resonance frequen-
cies of free and forced vibration of laminated composites with con-
stant stiffness [34-38]. FSDT and TSDT have been also used to
study the static, as well as free and forced vibration, responses of
heterogeneous plates and doubly curved panels [39-42]. Recently,
a microstructure-dependent theory has been proposed for the sta-
tic and dynamic analysis of FG beams and plates [43-45].

While there is a considerable amount of research that examines
transverse shear deformation in constant stiffness composites,
only a few studies look at variable stiffness laminates. One of these
is that of Groh et al. [46], who studied via FSDT the impact of trans-
verse shear deformation onto the flexural behavior of composite
laminates with curvilinear fibers. It was shown that for a laminate
with a length-to-thickness ratio of 10:1, an error of 43% may
appear in the predicted transverse deflection if transverse shear
stresses are neglected. Akhavan et al. [7,10] used the finite element
method and TSDT to study the natural frequency and large deflec-
tion of a variable stiffness laminate. It was found that a variable
stiffness design can remarkably reduce the deflection of a plate
compared to a constant stiffness design and might yield improve-
ment in the natural frequency.

Only until recently, the impact of defects within variable stiff-
ness laminates was overlooked in literature. In practice, however,
the formation of defects, mainly gaps and/or overlaps, is inevitable
during the manufacturing of a variable stiffness laminate by Auto-
mated Fiber Placement (AFP). A method, namely “Defect layer”, has
been introduced [11,13] to appraise the effect of gaps and overlaps
on the critical buckling load and in-plane stiffness of a thin lami-
nate. It has been shown that gaps and overlaps can significantly
change the buckling load and in-plane stiffness. In a study by Li
et al. [47], it is suggested that gap areas can be filled with fibers
from the layers above the gap, and those fibers dip down into
gap areas. While this may be true in some cases, in this paper we
assume that gap areas are relatively small; as such, the fibers
bridge over the gaps rather than the dipping down. The outcome
is that (1) gap regions are less stiff than those filled with composite
fibers, (2) overlaps tend to generate stiffener-like features, which
carry higher loads. With the recent use of AFP to build thick com-
posite laminates for manned submersible applications [48], and
moderately-thick composite laminates in megawatt-scale wind
turbine blades [49], we turn our attention in this paper to thick
and moderately-thick laminates with variable stiffness, with the
goal of assessing the effect of gaps and overlaps on their structural
performance. In particular, we use CLPT, FSDT, and TSDT theories
to examine the global impact of transverse shear deformation on
the structural responses of a variable stiffness plate with embed-
ded defects. To account for the local effects induced by shear defor-
mation, the reader is referred to [50-53] paper is organized as
follows. In Section 2, we introduce geometric parameters that are
used to model a curvilinear fiber path. Section 3 reviews the gov-
erning equations for structural analysis of variable stiffness plates
using ESL theories. Next, a semi-analytic methodology using the
hybrid Fourier-Galerkin method is developed to solve the govern-
ing differential equations. Finally, a discussion on the impact of
shear stresses as well as defects induced by AFP on the structural
behavior is presented before the closing remarks.

2. Variable stiffness laminate

A laminated plate manufactured with curvilinear fiber paths
can be modeled by defining a reference fiber path along which
the AFP machine places the first course. The subsequent fiber paths
can be obtained by shifting the reference fiber path perpendicular
to the steering direction. As a reference fiber path, we consider
here one with constant curvature [54]. For this, the fiber orienta-
tion can be written as:
cosf =cosTy Jrm

R (1)
R—|___ w2
" |[cos(T1) — cos(To)]

where 0 is the fiber orientation along the fiber path, T, and T; are
respectively the fiber orientation at the plate midpoint and edges,
R is the turning radius along the path, and a represents the plate
width. The fiber orientation varies between Ty (at the plate mid-
point, x=0) and T; (at the plate edges, x = +4), where the radius
of the path remains constant (Fig. 1(a)). Since the fiber orientation
changes along the x-direction, the reference fiber path should be
shifted along the y-direction. A variable stiffness design is repre-
sented by [(To|T;)], where Ty =T, represents the case of straight
fiber.

During the AFP process, the course width can be changed only
by a discrete value, via either adding or dropping tows. As a result,
defects in the form of gaps and overlaps emerge within the lami-
nate. There are several strategies to add or drop a tow, such as
complete gap and complete overlap strategies. With the former, a
tow is cut as soon as one edge of the tow reaches a course bound-
ary creating small triangular areas without fibers, i.e., gaps
(Fig. 1(b)). With the latter, a tow is cut when both edges of the
tow cross a course boundary, creating thickness buildup, i.e., over-
laps (Fig. 1(c)) [55].

To obtain the effective stiffness matrices of a variable stiffness
laminate with embedded defects, we use here the defect layer
method, recently introduced in [11,13]. According to this method,
a defect layer is similar to a regular composite layer with modified
material properties, or thickness proportional to the defect area
percentage. Compared to a regular composite layer, a gap-modified
defect layer has the same thickness and reduced elastic properties,
whereas an overlap-modified defect layer is thicker than a regular
composite layer and has its elastic properties. For more details
about the definition of a defect-layer, interested readers may refer
to [13].

(b) (©)

Fig. 1. (a) Fiber path definition; (b) gap (shaded area) distribution within the
laminate; (c) overlap (shaded area) distribution within the laminate.
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3. Problem definition and governing equations

Fig. 2 shows a rectangular laminated composite plate with
length a, width b, and thickness h. We use here the CLPT to write
displacement field as [2]:

owg(x,y,t
U(x,y,2,t) = Uo(x,, 1) *z%
V(X.Y,2,t) = Vo(X.Y, 1) 7% 2)

W(X7y7zv t) = WO(X7Y7 t)

where (u,7,w) are the displacement components along (x,y,z) coor-
dinate axes and (uo,%,Wp) stands for the displacement components
of the midplane (z=0).

Using the TSDT, the displacement field for a laminated plate can
be written as [2,22]:

u(X7y727 t) = uO(X7y7 t) +Z(/)x(x>y7 t) - C1Z3 <¢X(X’y7 t) +%>
Vxy.2) = (e ynt) + 26, (03,0~ 2 gy (xy.t) + P00

W(X,y,Z, t) = WO(va’ t)
3)

where ¢, and ¢, represent rotations about the x and y axes, respec-
tively,and ¢; = ﬁ. It is worth mentioning that Eq. (3) reduces to the
FSDT displacement field formulation by setting c; = 0. For small
strains and moderate rotations, the von-Karman strains in terms
of the FSDT/TSDT displacement field given in Eq. (3) are written
as follows [22]:

(1) 3)

fxx £ Ehx e
Gy o =2 &y »+28 &y v+ &) b,
Ty 7 T e (4)
{Vyz} _ {"/9 } +Zz{“/§? }
Ve e Ve
where
Ea Uox + 3 Wiy & rx
& ¢ = oy +3Way ; &y =19 ,
7 Uoy + Vox + WoxWoy 7y Puy + Pyx
£l Drx + Wosx
&y ¢ =—C1 by +Woyy
75 Gry + byx +2Woixy
{Vﬁ)} :{d)y"‘wo‘y} {Vﬁ)} - ¢ {¢y+w0~y} (5)
79 Gt wox ST @ 1y + Wox

and where the comma represents the partial differentiation
operator, and ¢, = 3c;. The strain-displacement equations given in
Egs. (4) and (5) have been written for TSDT; however, these equa-
tions could also be used for FSDT by setting c; = c; = 0. Moreover,

z

X

Fig. 2. Geometry of a rectangular laminated plate with a curvilinear fiber path.

substituting ¢x = —wpx and ¢, = —wy, into Egs. (4) and (5) elimi-
nates transverse shear strains and leads to the CLPT formulation.
The equations of motion for ESL theories, including classical and
shear deformation theories, are derived by using the principle of
virtual displacement; one can refer to [2] for further details. The
equations of motion using the CLPT are written as [2,23]:

Nxx‘x + ny.y = I()ﬁo - IIWO‘X
Nyyx + Nyyy = lo¥o — [1Woy
M + 2Miy sy + My + N(Wo) + q(x,)
= IoWo — L,(Woxx + Woyy) + I1 (llox + 2oy)

(6)

while the FSDT/TSDT equations of motion are expressed as [20,22]:

Nuxx + Nayy = loilo +J 1w — C1l5Wox
Nix 4+ Nyyy = lo¥o +]; Q.Z.’y — c1lsWoy
Qux + Qyy + €1 (Pos + 2Payy + Pryyy) + N(Wo) + q(x,9)

= IoW, — C%IG(WO.XX + WOyy) + 1 (I3 (flox + bo.y) +J4(('i)x.x + ‘.i’y\y))
Myex + Myyy — Qi = Jyilo + Ka by — C1J4Wox
My +Myyy — Qy =1 + Kadpy — C1]4WWoy

()

where

h

h
2 2

(N, Myg, Poy) = /h 0'“/;(1.,2723)(127 (QusRy) = Cr / O-ocz(lazz)dz
2 v

_ h
2

Ma/; = Myg — C1Puy, Q.= Q, — 2R,

h

I; = zpzidz, ]i =1 —C1I,'+2, Ky, =1, —2C1I4+C%I5
h
2

(i:0717"'76)
{CZ#O,szl TSDT @)
=0 FSDT

where q(x,y) is the distributed transverse load at the bottom/top
surface of the plate and o and § take the symbols x and y, g, is
the second Piola-Kirchhoff stress components, ¢yis the shear correc-
tion factor, p is the mass density, and the superposed dot on a var-
iable denotes the time derivation. It is worth noting that the
determination of the shear correction factor (¢;) for FSDT is cumber-
some since it depends on lamination properties, stacking sequence,
geometric parameters, loading, and boundary conditions. Therefore
in this work, we consider three values commonly used in literature,
¢r=1, ¢s=5/6, and cr=3/4 or homogeneous isotropic structures a
correction factor of ¢=7?/12, which is very close to ¢;=5/6, has
been suggested in the literature [56-58]. To conduct a bifurcation
buckling analysis, the nonlinear in-plane force resultant N(wp) is
written as [2,22]:

N(Wo) = (NxxWox + NyWoy) , + (NyWox + NyWoy) , 9)

The stress resultants N, M, P, Q, and R are related to strains as [2,22]:

{N} Al Bl [E]] ({9}
{M} > =|[B] D] [F]|q{eM} (10a)
{P} [E] [F] [H] ({e®}
{Q\ _[1A [DI]) {y%
{w)=lo [F]HW}} (100)
where the stiffness matrices are defined as:
(Ay, By, Dy, By, Fy Hy) = | Qy(1,2,2,2, 2, 5)dz (11)

_h
2

where Q; is the transformed plane stress-reduced stiffness.
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The governing equations of CLPT and TSDT, which are not given
for the sake of brevity, are derived by substituting Egs. (4), (5), and
(10) into Eqgs. (6) and (7), respectively. Herein, the nonlinear terms
for static and free vibration analyses are omitted; only the nonlin-
ear in-plane force resultant N(wy) is retained for buckling analysis.
The governing partial differential equations are written for a spe-
cially orthotropic (Dyg=Dg = Fis = F26 = Hig = H6 = 0) laminated
composite with a balanced (A = Az =0) symmetric (B =E;;=0)
layup. We note that in contrast to constant stiffness composites,
the elements of the stiffness matrices are a function of the spatial
coordinates (x, y). In other words, the derivatives of these matrices
with respect to x and y coordinates are not zero. As a result, the
governing equations of motion for CLPT, FSDT, and TSDT are dis-
similar from the conventional governing equations given for a con-
stant stiffness composite.

4. Methodology

In this paper, we consider the following simply-supported
boundary conditions:

v9(0,y,t) =0, wvo(a,y,t)=0, up(x,0,t)=0, up(x,b,t)=0
$y(0,y,)=0, ¢y(a,y,t)=0, ¢,(x,0,t)=0, ¢,(x,b,t)=0
wo(0,y,t) =0, wp(a,y,t)=0, wo(x,0,t)=0, wo(x,b,t)=
Ny (0,y,t) =0, Nx(a,y,t)=0, Ny, (x,0,t)=0, Nyy(x b t)
Mxx(ovya t)=0, mxx(avyvt) =0, MYJ’(xaovt) =0, ( x,b,t )

(12)

For CLPT analysis, the rotation terms ¢, and ¢, are neglected in the
boundary conditions. Because of the presence of the derivatives of
the stiffness matrices in the governing differential equations, the
Galerkin method along with the Fourier series expansion are used
to reach a semi-analytic solution. For the displacement fields in
FSDT/TSDT analysis, we consider the Fourier series expansions that
satisfy the boundary conditions in Eq. (12) [22,39]:

Up(X, Y, t) Upin(t) cOS(rmx) sin(ryy)
)

Vo(X,Y,t) ny me | Vin(t) SIn(rmX) cos(ray)

Wo(X,,8) & =" " Wiy (t) sin(rmX) sin(ray) (13)
(%, 1) n=tm=11 X .(£) cos(rmx) sin(r,y)
dy(x.y,t) Yo (£) SIN(rimX) COS(rnY)

where 1, =22, 1, =2 Upny, Vi Winny Xmne @and Y, are unknown
coefficients that should be determined to satisfy the governing
equations, with m and n as arbitrary integers for summation. Using
the Galerkin method and the approximate displacement field (Eq.
(13)), we can solve the governing differential equations for the

FSDT/TSDT analysis [2,40]:

/yjo/x:o R3§Um" dxdy =0 (14)
Rs(

R4(Up,

<<<
E
S SS:
3
> X X
3
~ < =<x
3

Umrh mn,

(p=1.2,..

where R{i=1,...5) are the residuals of the governing differential
equations for the admissible displacement field (Eq. (13)).
Substituting Eq. (13) into TSDT/FSDT governing equations and then
applying Galerkin formulation (Eq. (14)), for laminates with sym-
metric layups (B = E;; = 0) and prescribed transverse shear modulus
(Gxz = Gy;) in each lamina, leads to an expanded formulation (see
Appendix A), which results in a (5 x my xny,) x (5 x my x ny)
system of differential equations, here expressed as:

[I<TSDT}{ATSDT} + [MTSDT]{ATSDT} = {F'[SDT} (15)

mx7q 12“"7“}/)

where {ATSDT}T = { Un Vit Wi X Y : Umxny meny meny
Xinen, Ymen, }» Krspr and Mrspr are stiffness and mass matrices, and
Frspr represents the mechanical force vector. If no N(wo) exists, then
there is no nonlinear in-plane force resultant, and the system of dif-
ferential Eq. (15) can be solved for the static and free vibration anal-
yses. For the transient analysis, the Newmark integration procedure
can be adopted [2,22]. If N(wj) is present, however, a bifurcation
analysis is necessary to obtain the critical buckling load [2].

For CLPT analysis, the equations in Appendix A result in a
(3 x my x ny) x (3 x my x ny) system of differential equations:

Keierl{Acipr} + [MCLPT]{ACLPT} = {Farr} (16)

where {Aqpr} = {Un Vi Wy Unn, Vin, W, }. The
equations above are numerically solved via MATLAB scripts devel-
oped for variable stiffness composite laminates with embedded
defects.

5. Results and discussion

To validate the methodology presented in Section 4, we first
compare the results available in literature for static bending, buck-
ling, and natural vibration of plates with constant stiffness lami-
nated composites. Then, we examine variable stiffness plates. In
particular, we focus on the impact of shear stresses and manufac-
turing defects on their maximum static deflection, critical buckling
load, and fundamental frequency.

5.1. Validation

As a case study, we consider a simply-supported plate with con-
stant stiffness, symmetric cross-ply [0/90]s and planar square
(a=b=1m) geometry. Its material properties are E; =175 GPa,
E; =7 GPa, G132 = G13=3.5 GPa, G353 = 1.4 GPa, and vi2 =0.25. Table 1
shows the results of the dimensionless midpoint deflection

(W wo (4,5 ﬁﬁg ) of the plate subjected to a distributed transverse
load (q = qosin (rp,x) sin(ryy)), obtained with FSDT, TSDT, and 3D
elasticity. The results shows that all the predictions are very close
to those provided in [2]. For a plate with the length-to-thickness
ratio of a/h =4, the FSDT and TSDT show a discrepancy of 12.5%
and 3%, respectively, compared to the solution obtained with 3D
elasticity.

Table 2 shows the dimensionless uniaxial critical buckling load

(N 'Zza ) and fundamental frequency (w = \/%) as a function

of the modulus ratio E;/E, for a/h= 5 and 10, where
G12 = G13 = 0.6E;, Gy3 = 0.5E,, and v, =0.25. Similar to the case of
maximum deflection, the application of FSDT/TSDT leads to an
accuracy improvement, compared to CLPT, in calculating the
critical buckling load and natural frequency. The results given in
Tables 1 and 2 indicate that the difference between the results pre-
dicted by FSDT and TSDT is much more evident in the maximum
deflection than in the critical buckling load and natural frequency.

5.2. Structural responses of variable stiffness laminates

In this section, we use CLPT, FSDT, and TSDT to study the
influence of manufacturing defects on the structural responses of

Table 1
Dimensionless maximum deflection of a simply-supported, symmetric, and cross-ply
[0/90]; plate under a sinusoidally distributed transverse load.

a/lh  TSDT TSDT[2] FSDT* FSDT'[2] 3D Elasticity [59]
Wwx10> 4 18937 1894  1.7091 1.71 1.954
10 07146 0715 06625 0.6625 0.743

* The correction factor is ¢;=5/6.
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Table 2

Dimensionless critical uniaxial buckling load and fundamental frequency of a simply-supported, symmetric, and cross-ply [0/90]; plate.

alh EJE, TSDT TSDT [2] FSDT FSDT* [2] 3D Elasticity [60,61]
N 10 20 15.2984 15.298 15.3513 15.351 15.019
40 2334 23.34 23.4529 23.453 22.881
» 5 20 9.5625 9.526 9.566 9.567 9.56
40 10.821 10.787 10.8529 10.854 10.752

* The correction factor is ¢;=5/6.

variable stiffness plates. We consider a square plate (a=b=1m)
made of 16-ply balanced and symmetric laminate with a variable
stiffness design of [£(58|39)]4s. The material properties of prepreg
composites and resin that are used for the analysis of constant and
variable stiffness laminates are given in Table 3. It is worth men-
tioning that the effective material properties of variable stiffness
laminates, obtained with the defect layer method, spatially change
throughout the laminate as a function of the fiber orientation (Eq.
(1), which depends on the turning radius along the path, the plate
width, and the embedded defects. The structural responses of the
plate, including static deflection, uniaxial critical buckling load,
and fundamental frequency, are compared with those of a quasi-
isotropic (QI) plate, here selected as a baseline. The QI plate consid-
ered in this study has the following layup: [45/0/—45/90],s. The
plate is subjected to a uniform transverse loading, q(x,y,t) = qo(t),
for static analysis.

5.2.1. Static analysis

The maximum out-of-plane deflection occurs at the plate mid-
point, as shown in Table 4 for a set of length-to-thickness ratios (a/
h). For a very thin plate (a/h = 200), all ESL theories predict very
close maximum deflection. However for the length-to-thickness
ratio a/h = 20, discrepancies up to 7% emerge from CLPT and TSDT
results. For a very thick laminate with a/h =5, differences are
greater than 55%. Furthermore, the discrepancy between ESL
theories depends on the embedded manufacturing defects. For

instance, for a plate with a/h =10, incorporating the effect of
overlap increases the deviation by about 3% compared to the
defect-free case, whereas considering the effect of gap decreases
the discrepancy by 2%. These trends can be attributed to the emer-
gence of overlaps, which are thickness build-ups that decrease the
overall length-to-thickness ratio of the plate in comparison with
the defect-free case. On the other hand, a variable stiffness plate
with gaps has effective elastic properties lower than a defect-free
plate with higher length-to-thickness ratio.

Fig. 3 shows the out-of-plane mid-span deflection (y = b/2) for a
plate with a/h =10 for the cases: defect-free, complete gap, and
complete overlap. The trends reveal the importance of accounting
for the manufacturing defects in the analysis of variable stiffness
laminates. Compared to the defect-free case, the out-of-plane
deflection of a plate changed with respect to the type of defects
considered. For instance, for a plate with gaps, the maximum
out-of-plane deflection increases by 9% compared to the defect-
free case, whereas a decrease of 24% is observed for a plate with
overlaps. The reason for this difference is attributed to the mor-
phology of a defect. Gaps are resin-rich areas that lower the plate
out-of-plane stiffness, whereas overlaps along the fiber paths are
thickness build-ups that increase it.

5.2.2. Buckling analysis
Table 5 reports the critical buckling load obtained with alterna-
tive ESL theories, and manufacturing strategies. The values are

Table 3
Material properties of prepreg composite and resin.
E; (GPa) E, (GPa) G12 (GPa) Gy3 (GPa) Gy3 (GPa) V12 p (kg/m?)
Prepreg 143 9.1 4.82 49 4.9 0.3 1500
Resin 3.72 3.72 143 1.43 1.43 0.3 1100
Table 4
Dimensionless maximum deflection (w x 100) under uniform static load.
alh Layup Manufacturing defects CLPT FSDT TSDT
Cf=] Cf=5/6 Cf=3/4
5 Ql - 0.6970 1.2974 1.4174 1.4973 1.3968
[£(58|39)]4s Defect-free 0.5787 1.1784 1.2989 1.3793 1.2902
Complete gap 0.6483 1.2474 1.3679 1.4482 1.3601
Complete overlap 0.4233 0.9651 1.0738 1.1464 1.0139
10 Ql - 0.6970 0.8473 0.8773 0.8973 0.8735
[£(58]39)]4s Defect-free 0.5787 0.7269 0.7569 0.7769 0.7567
Complete gap 0.6483 0.7963 0.8263 0.8463 0.8262
Complete overlap 0.4233 0.5578 0.5848 0.6029 0.5739
20 QI - 0.6970 0.7346 0.7421 0.7471 0.7413
[£(58]39)]4s Defect-free 0.5787 0.6145 0.6219 0.6269 0.6223
Complete gap 0.6483 0.6841 0.6915 0.6965 0.6918
Complete overlap 0.4233 0.4565 0.4632 0.4677 0.4606
200 Ql - 0.6970 0.6974 0.6975 0.6975 0.6975
[£(58|39)]4s Defect-free 0.5787 0.5775 0.5775 0.5776 0.5779
Complete gap 0.6483 0.6471 0.6472 0.6472 0.6475
Complete overlap 0.4233 0.4232 0.4232 0.4233 0.4230
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Fig. 3. Non-dimensional deflection of the variable stiffness plate at the middle
width of the plate.

given for several length-to-thickness ratios of a plate loaded in the
x-direction. Table 5 shows significant discrepancies between the
results predicted with CLPT and TSDT. In particular for a plate with
a/h =20 and a/h =5, the discrepancies between results obtained
with CLPT and TSDT increase from 7% to 177% respectively. Com-
paring Tables 4 and 5 reveals that shear stresses have an impact
on the buckling load severer than that on the maximum out-
of-plane deflection. For example, for a plate with a/h =10, the
difference between the CLPT and TSDT results for the maximum
deflection is 23%, while this value is greater than 33% for buckling.
We can also observe that — compared to a defect-free case - gaps
embedded in a variable stiffness plate reduce the buckling load,
whereas overlaps increase it. For a/h=10, the buckling load
reduces by 8% for a plate with gaps, whereas it increases by 31%
for a plate with overlaps. Among the considered shear correction
factors in FSDT analysis, the results in Table 5 show that ¢;=5/6
leads to the most accurate results compared to the TSDT's.

5.2.3. Free vibration analysis

Table 6 shows the impact of length-to-thickness ratio, manufac-
turing defects, and ESL theories on the fundamental frequency of a
variable stiffness plate. From a comparison of CLPT and TSDT results
(Table 6), a discrepancy greater than 4% can be observed for a plate
with a/h = 20; this value increases up to 48% for a thick plate with
a/h =5. Comparing Tables 4-6 reveals that the differences between
CLPT and TSDT is the least for fundamental frequency, followed by
maximum out-of-plane deflection and critical buckling load. As
shown in Table 6, variable stiffness plates with gaps have a
fundamental frequency lower than defect-free laminates, whereas
plates with overlaps have a higher value. The presence of gaps in
a variable stiffness plate with a/h =10, for example, reduces the
natural frequency by 3%, while overlaps increase it by 10% when
compared to a defect-free case.

5.3. Influence of curvilinear fiber path

As explained in Section 2 for a variable stiffness laminate with a
constant curvature fiber path, the geometric parameters Ty and T;
define the fiber path trajectory. This section examines the impact
of Ty and T, on the structural responses of a variable stiffness plate.
For the plate here under investigation, Fig. 4 illustrates the gap and
overlap area percentages as a function of T and T; over the entire
design space. The white areas represent plate designs that do not
satisfy the manufacturing constraint, i.e., the minimum turning
radius of 0.635m imposed by a typical AFP machine. For
straight-fiber laminates (Tp=T;), no gaps or overlaps appear in
the laminate, whereas the area percentage for both gaps and over-
laps increases when the difference between T, and T; becomes
larger.

We examine a plate with a/h =10 for different manufacturing
strategies. Fig. 5 illustrates its critical buckling load and fundamen-
tal frequency versus maximum deflection, each normalized by the
corresponding values of a quasi-isotropic laminate. As opposed to
a constant stiffness design, whose response domain is represented
by a line, a variable stiffness design yields to domains of larger
extent. Furthermore, in comparison with the results obtained for
a defect-free plate, overlaps shift the response domain towards a
higher buckling load and lower maximum deflection. On the other
hand, gaps shift the domain towards a lower buckling load and
higher deflection. This behavior is attributed to the effect of over-
laps, which are thickness build-ups that tend to stiffen the plate
along the fiber path, thereby improving its structural responses.
In contrast gaps, resin-rich areas with reduced mechanical

Table 5
Non-dimensional critical uniaxial buckling load N.
alh Layup Manufacturing defects CLPT FSDT TSD
Cf=] Cf=5/6 Cf=3/4
5 Ql - 22.9449 11.0145 9.6400 8.8997 10.0207
[£(58|39)]4s Defect-free 27.3871 11.0053 9.6240 8.8359 9.8807
Complete gap 24.4371 10.6500 9.3505 8.6476 9.5668
Complete overlap 37.4079 12.8441 11.0096 10.0458 12.6159
10 QI - 22.9449 18.5992 17.9207 17.4953 17.9966
[£(58|39)]4s Defect-free 27.3871 21.4298 20.5281 19.9680 20.5376
Complete gap 24.4371 19.5815 18.8261 18.3541 18.8325
Complete overlap 37.4079 27.8196 26.4589 25.6235 26.9924
20 Ql - 22.9449 21.6782 21.4415 21.2866 21.4654
[£(58|39)]4s Defect-free 27.3871 25.6575 25.3244 25.1071 25.3122
Complete gap 24.4371 23.0510 22.7818 22.6059 22.7720
Complete overlap 37.4079 34.4681 33.9274 33.5763 34.1331
200 Ql - 22.9449 229315 22.9289 22.9271 22.9291
[£(58|39)]4s Defect-free 27.3871 27.4449 27.4410 27.4384 27.4256
Complete gap 24.4371 24.4829 24.4798 24.4778 24.4676
Complete overlap 37.4079 37.4199 37.4134 37.4091 37.4386
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Table 6
Dimensionless fundamental frequency .
alh Layup Manufacturing defects CLPT FSDT TSDT
Cf=] Cf=5/6 Cf=3/4
5 QI - 14.5766 10.7240 10.2568 9.9767 10.3671
[£(58|39)]4s Defect-free 15.9252 11.2059 10.6708 10.3534 10.7471
Complete gap 15.2834 11.0643 10.5641 10.2655 10.6347
Complete overlap 17.7628 11.8632 11.2461 10.8838 11.6402
10 QI - 14.9262 13.4755 13.2324 13.0775 13.2773
[£(58]39)]4s Defect-free 16.3072 14.4699 14.1679 13.9767 14.1887
Complete gap 15.6500 14.0493 13.7810 13.6103 13.8008
Complete overlap 18.2697 15.8181 15.4348 15.1940 15.6165
20 QI - 15.0177 14.6004 14.5210 14.4689 14.5347
[£(58|39)]4s Defect-free 16.4071 15.8846 15.7819 15.7145 15.7841
Complete gap 15.7459 15.2962 15.2073 15.1489 15.2098
Complete overlap 18.4033 17.6699 17.5320 17.4418 17.5953
200 QI - 15.0482 15.0438 15.0429 15.0423 15.0431
[£(58]39)]4s Defect-free 16.4404 16.4578 16.4566 16.4559 16.4521
Complete gap 15.7779 15.7926 15.7916 15.7910 15.7878
Complete overlap 18.4481 18.4510 18.4494 18.4483 18.4558
Gap area percentage Overlap area percentage
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Fig. 4. (a) Complete gap area percentage and (b) complete overlap area percentage as a function of Ty and T for a variable stiffness plate.
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Fig. 6. (a) Non-dimensional maximum deflection(w), (b) critical buckling load (N), and (c) natural frequency (@) of a defect-free variable stiffness plate.

properties, deteriorate the structural responses of the plate. As
shown in Fig. 4(a), a complete gap strategy yields a large amount
of gaps. In contrast, a complete overlap strategy results in an
amount of overlap that continuously increases as the fiber path
deviates from the straight path. As a result, a remarkable difference
exists between the boundary of the feasible domain of a plate with
gaps and the one with straight fibers. A similar behavior can be
observed in the domain fundamental frequency versus maximum
deflection. From a comparison of Fig. 5(a) and (b), we observe that
the buckling-deflection domain for a defect-free plate is signifi-
cantly larger than the corresponding frequency-deflection domain.
Since, the effectiveness of a variable stiffness laminate depends on
the boundary conditions [4], we gather that for a variable stiffness
plate other loading and boundary conditions can result in a larger
response domain.

To isolate the effect of the curvilinear fiber path from the effect
of gaps and overlaps, we plot in Fig. 6 the fiber path curvature ver-
sus the maximum deflection, critical buckling load, and fundamen-
tal frequency. As can be seen, the regions offering low deflection
correspond to regions with high critical buckling and fundamental
frequency. Bearing in mind that fibers located along the loading
direction result in the highest in-plane stiffness but not in the low-
est deflection, we see here the opportunity to find trade-offs
between in-plane and out-of-plane performance under vibration
and buckling constraints. This study requires further work.

6. Conclusions

This paper has examined the effect of transverse shear deforma-
tion and embedded manufacturing defects on the structural

responses of a variable stiffness plate made by AFP. Static bending,
buckling, and free vibration have been studied. We have first pre-
sented the governing equations obtained via classical and shear
deformation theories, and then solved them by using the hybrid
Fourier-Galerkin method. For very thin plates, all ESL theories pro-
vide close results. However, for moderately-thick plates with
length-to-thickness ratio a/h =10, major differences emerge
between CLPT and TSDT predictions. In particular, discrepancies
up to 23%, 33%, and 15% are observed for the maximum out-of-
plane deflection, critical buckling load, and fundamental
frequency.

The results obtained in this paper show the important role
played by shear deformation in moderately-thick plates with vari-
able stiffness, where the macroscopic mechanical properties spa-
tially vary. We have also highlighted that the discrepancy
between ESL theories depends on the amount of the embedded
defects. In a static bending analysis of a plate with a/h = 10, incor-
porating the effects of overlaps increases the discrepancy of the
maximum deflection calculated with CLPT and TSDT, up to 26%.
On the other hand, considering the effect of gaps results in about
22% difference. Finally maps have been presented to show how
the structural responses of a defected plate change with respect
to a defect-free plate.

Appendix A

The hybrid Fourier-Galerkin form of the governing differential
equations for FSDT/TSDT analysis of laminated plates, with sym-
metric layups (B = E;; = 0) and given transverse shear modulus in
each lamina, can be written as follows:
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The hybrid Fourier-Galerkin form of the governing differential
equations for CLPT analysis is also written as:
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