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Selection of arbitrarily scaled cross-sections
in bending stiffness design

D Pasini*, D J Smith and S C Burgess
Department of Mechanical Engineering, University of Bristol, Bristol, UK

Abstract: Performance indices can be used to model the relative structural ef�ciency of different cross-
sectional shapes. Performance indices have been previously de�ned mainly for structural cross-sections that
are scaled proportionally in size. This paper extends the method of performance indices by allowing scaling of
cross-sections in any direction. A novel feature of the method described in this paper is the inclusion of the
space envelopeas a design parameter. The �rst part of the papergives a derivation of the general solution for the
performance index.The second part presents a graphical selection procedureand discusses the ef�ciency limits
of cross-sections due to buckling instability. It concludes with a case study to demonstrate the method.

Keywords: optimal shape, performance index, arbitrary scaling, constrained design, structural ef�ciency

NOTATION

A cross-sectional area (m2)
B width (m)
b internal width (m)
cl constant for stiffness depending on boundary

conditions and load
D cross-section envelope dimensions (b, h)
E Young’s modulus (GPa)
F functional requirements
h internal height (m)
H height (m)
I second moment of area (m4)
k linear stiffness requirement (N/m)
L length (m)
m mass (Mg)
M material parameters
P performance index
q power of the performance index
rg radius of gyration (m)
S shape of the cross-section
u scaling factor of the widths
v scaling factor of the heights
W load (N)
z constant for the second moment of area

d de�ection (m)

r material density (Mg/m3)
c geometric transformer

1 INTRODUCTION

1.1 Background

The selection of light structures is often one of the main
targets in structural design. Minimizing mass helps to
achieve lower material cost and low environmental impact.
Low mass is also important where structures are required to
produce low inertial loads and high natural frequency.

Performance indices and parametric equations can be used
to carry out a systematic comparison of the mass-ef�ciency
of different materials and shapes. Performance indices also
provide a means of gaining insight into structural design.

The selection of ef�cient material-shape combinations has
been investigated by several different authors over the last
four decades. In the 1960s, Cox [1] and Shanley [2] produced
design charts to help the designer to select directly ef�cient
structures. Caldwell and Woodhead [3] also proposed a
graphical method in the 1970s, which allows different
beams and trusses to be compared. The results of the above
methods can be used for structural members of any size
provided all dimensions (length, width, and thickness)
remain proportional. In the 1980s, Parkhouse and colleagues
[4–6] investigated the complementarityof shape and material
for a structure and introduced the concept of structuring as a
material dilution. Structuring is the process of shaping
material, where a dilution factor describes the geometrical
property relationship between different cross-sections and
their representative solid sections. In the 1990s, Ashby [7]
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developed a material index, which includes the contribution
of shape to the performance of the structure. This index is
applicable mainly to the ef�ciency of geometrically uncon-
strained structures where the cross-sections can be propor-
tionally scaled. However, the effect of height and width
constraints was discussed brie�y for bending stiffness
design [8,9]. In 1994 Birmingham [10] explored the interac-
tion between material and form and presented a graphical
method to select structures. In the late 1990s, Burgess [11]
extended the theory of the shape factors to model the
ef�ciency of height-constrained structures.

In an earlier paper [12], an investigationwas carried out into
the effect of geometrical constraints in material selection. It
was shown that geometrical constraints can have an important
effect on what is the best material for a particular application.

In the �rst part of this paper the method of performance
indices is extended to structures whose generic cross-section
is scaled in any arbitrary direction. Performance maps are
also presented in order to support cross-section selection in
stiffness design. The ‘space envelope’ is introduced as a
design variable. Attention is focused on the space each
cross-section requires when a design requirement has to

be met. This feature is relevant where minimizing space
rather than mass is the design goal.

In the second section of the paper a complementary
graphical procedure is presented. This method will be
used to consider the effect of buckling instability on the
selection of the best cross-sections.

Finally, the performance index method is applied to a
design case study showing that geometric constraints can
have an important effect on what is the best cross-section for
a particular application.

1.2 Factors affecting the selection of the best
cross-sections and materials

In structural design it is very common that designers have to
take into account spatial limitations. For example, height
and width constraints are shown in Figs 1a and b. Height
constraints are common in �oor structures and width
constraints are common in wall structural components.
A slope constraint is shown in Fig. 1c. This type of
constraint is quite common in highly integrated structures
such as cars and aircraft. These constraints restrict the

Fig. 1 Geometric constraints and the direction of scaling: (a) height constraint, (b) width constraint, (c) slope
constraint, (d) arbitrary direction of scaling. (X) Horizontal scaling v ˆ 1, (Y) vertical scaling u ˆ 1,
(Z) 45¯ scaling u ˆ v
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magnitude and direction of scaling of the cross-sections and
thus affect the selection of the lightest structural member.

Figure 1 shows examples where geometric constraints
limit one or both of the envelope dimensions of different
cross-sections. In these cases the cross-sections are forced to
�t within a limited space and then to be scaled in a certain
direction. For example, a height constraint (Fig. 1a) forces
the cross-sections to be scaled horizontally. A width
constraint (Fig. 1b) imposes a vertical scaling direction.
Figure 1c illustrates the effect of a sloped constraint on both
the height and width of the cross-sections.

In the next section we show how to compare different
arbitrarily scaled cross-sections in pure bending stiffness
design. The materials are assumed to be homogenous and
isotropic with the Young’s modulus E being the same in both
tension and compression. Only pure bending stiffness
design is examined in this work.

2 GEOMETRIC TRANSFORMERS AND
SCALING FACTORS

In this section we derive expressions to compare the
geometrical properties of cross-sections that are arbitrarily
scaled. We de�ne a ‘cross-section’ as a ‘shape’ which �ts
inside a rectangular ‘envelope’. When the envelope is
scaled, the enclosed shape is also scaled.

Figure 2 shows two cross-sections, with different shapes
and where the relative scaling of their envelopes is arbitrary.
The square, where the envelope and the shape are the same,

is chosen as a reference section. The reasons for the choice
of a square as a reference section are:

° the square can be changed into different proportions
along the width and the depth into a rectangle, which is
the envelope of any generic shape.

° the square belongs to the class of the rectangular shape.
Rectangles meet the stiffness requirement in less space
than all other shapes.

The following de�nitions are used to compare cross-sections.

For a generic cross-section
I ˆ second moment of area
A ˆ area of shape
rgˆ radius of gyration

For the shape envelope
B, H ˆ width and height
IDˆ second moment of area of shape envelope
ADˆ area of shape envelope

For the reference cross-section
Bo, Hoˆ width and height, where Boˆ Ho

Ioˆ second moment of area of reference section
Aoˆ area of reference section
rgoˆ radius of gyration

Note that for the reference cross-section
I ˆ ID ˆ Io and A ˆ AD ˆ Ao

Table 1 shows expressions for the area, the second
moment of area and the radius of gyration of the most

Fig. 2 Relation between a reference square and a generic cross-section. While the scaling factors, u and v,
govern the scaling between the reference and a generic section envelope, cI and cA describe the
transformation of the geometrical properties, I and A, of a generic section into its envelope
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Table 1 Area (A), second moment of area (I ), and radius of gyration rg of the most common sections

Cross-sectional shape (same envelope B*H) A I r2
g ˆ I

A

BH
BH3

12
H2

12

p
4

BH
p
64

BH3 H2

16

BH
2

BH3

36
H2

18

BH
BH3

48
H2

48

p
4

(BH ¡ bh)
p
64

(BH3 ¡ bh3)
1
16

BH3 ¡ bh3

BH ¡ bh

1
2

(BH ¡ bh)
(BH3 ¡ bh3)

36
1
18

BH3 ¡ bh3

BH ¡ bh

1
2

(BH ¡ bh)
(BH3 ¡ bh3)

48
1
24

BH3 ¡ bh3

BH ¡ bh

B(H ¡ h)
B(H3 ¡ h3)

12
H2

12
1 ‡ h

H
‡ h2

H2

BH ¡ bh
BH3 ¡ bh3

12
1
12

BH3 ¡ bh3

BH ¡ bh

bH ‡ h(B ¡ b)
bH3

12
‡ (B ¡ b)h3

12
1
12

bH3 ‡ (B ¡ b)h3

bH ‡ (B ¡ b)h
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Table 2 Geometric transformers, c1 and cA, of sections

Cross-sectional shape for the same envelope cA ˆ A
AD

Range cA cI ˆ I
ID

Range cI

Envelope AD, ID 1 No range 1 No range

p
4

No range
3
16

p No range

1
2

No range
1
3

No range

1
2

No range
1
4

No range

p
4

1 ¡ bh
BH

0 to
p
4

3p
16

1 ¡ bh3

BH3 0 to
3p
16

1
2

1 ¡ bh
BH

0 to
1
2

1
3

1 ¡ bh3

BH3 0 to
1
3

1
2

1 ¡ bh
BH

0 to
1
2

1
4

1 ¡ bh3

BH3
0 to

1
4

1 ¡ h
H

0 to 1 1 ¡ h3

H3 0 to 1

1 ¡ bh
BH

0 to 1 1 ¡ bh3

BH3 0 to 1

b
B

‡ h
H

¡ bh
BH

0 to 1
b
B

‡ h3

H3
¡ bh3

BH3
0 to 1
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common cross-sections, where H and B are the dimensions
of the envelope and h and b are the internal width and
height.

First we introduce two dimensionless shape transformers,
cA and cI, which relate area and second moment of area of
a generic cross-section and its envelope. They describe the
geometric properties of the shape and are de�ned as

cA ˆ A
AD

cI ˆ I
ID

(1)

Expressions of cI and cA are given in Table 2. For a rectangle
and then for the reference, these shape transformers are unity

Ao ˆ AD ! cA ˆ 1

Io ˆ ID ! cI ˆ 1

Finally, two linear multiplicators, u and v, which we called
scaling factors, de�ne the scaling of the reference envelope
dimensions, Bo and Ho, and the generic cross-section
dimensions, B and H

u ˆ B
Bo

v ˆ H
Ho

(2)

In constrained height design (Fig. 1a), v ˆ 1 and this
corresponds to direction X in Fig. 1d. In constrained width
design (Fig. 1b), u ˆ 1 and this corresponds to direction Y
in Fig. 1d. When there is uniform proportional scaling of the
cross-section, u is equal to v and this corresponds to
direction Z in Fig. 1d.

The relations, in terms of area and second moment of
area, between the reference section and the generic shape
envelope are

AD

Ao
ˆ uv

ID
Io

ˆ uv3 (3)

and between the generic and the reference cross-section are

A
Ao

ˆ A
AD

AD

Ao
ˆ cAuv

I
Io

ˆ I
ID

ID

Io
ˆ cIuv3

(4)

In the next section these expressions will be used to derive
a relative performance index in any arbitrary direction.

3 PERFORMANCE INDEX FOR
CROSS-SECTIONS SCALED IN
ANY ARBITRARY DIRECTION

3.1 Performance index and design parameters

A performance index P is de�ned as a measure of mass
ef�ciency. In general, the performance of a cross-section is a
function f ( ) of four parameters

P ˆ f (F , D, S, M ) (5)

where F represents the functional requirements or design
input, D describes the dimensions (width B and height H) of
the cross-section envelope, S is a description of the shape
properties of the cross-section, and M describes the material
properties.

In a previous work [12], we examined conditions where
M and D are variable. In this paper we are interested in
selection conditions where D, S, and M are variables, that is
where P ˆ f (D, S) with F and M �xed, and P ˆ f (D, S, M)
with F �xed.

This paper will show that generic geometric constraints,
such as those shown in Figs 1a, b and c, limit the direction
and the magnitude of the scaling that can be carried out on a
reference cross-section.

3.2 The objective function

For a given material, cross-section, and set of design
requirements, expressions for the mass m and the elastic
bending stiffness k of a structural component are

m ˆ rAL (6)

k ˆ cl
EI
L3 (7)

where cl is a constant depending on the boundary condi-
tions, r is the density, A is the cross-sectional area, L is the
length of all the structural elements, and I is the second
moment of area. The objective function is minimization of
the mass.

For two structural members of the same length, L, the
ratio of their masses, m (for the generic case) and mo (for the
reference case), is

m
mo

ˆ r
ro

A
Ao

ˆ r
ro

cAuv (8)

where equation (4) is used for the ratio of the cross-sectional
areas.

As maximizing the performance index minimizes the
mass, then the ratio of the performance indices of the
generic cross-section relative to the reference is

P
Po

ˆ mo

m
ˆ ro

r
1

cAuv
(9)
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3.3 Performance index for height constraint

For a height constraint, the performance index can be
derived by replacing the free variables u and v with expres-
sions in terms of the design requirement. For bending
stiffness design, the generic and the reference cross-sections
are required to meet the same stiffness requirement. For a
given beam length L, and using equation (7), then

EoIo ˆ IE (10)

The ratio of the stiffness of the two cross-sections can
also be stated in terms of multipliers u and v and geometric
transformer, cI , so combining equations (10) and (4) gives

Eo

E
ˆ I

Io
ˆ cI uv3 (11)

When the height of the two cross-sections is constrained
v ˆ 1, and u from equation (11) is

u ˆ I
Io

1
cI

ˆ Eo

E
1
cI

(12)

and from equation (9) the ratio of the performance indices is

P
Po

ˆ ro

r
E
Eo

cI

cA
(13)

In equation (13), the material property group, E/r, can be
separated from the contribution of the shape properties,
cI /cA. The ratio E/r is consistent with previous results
for a height constraint [8, 12, 13].

3.4 Performance index for width constraint

When the width is constrained u ˆ 1; and v from equa-
tion (11) is given by

v ˆ I
Io

1
cI

1/3
ˆ Eo

E
1
cI

1/3
(14)

and from equation (9) the ratio of the performance indices is

P
Po

ˆ ro

r
E
Eo

1/3 cI

cA

1/3
(15)

In equation (15), the material property group, E1/3/r, can be
divided from the shape property group, c1/3

I /cA. The ratio
E1/3/r is consistent with previous results for a width
constraint [8, 12, 13].

3.5 General solution of the performance index for
arbitrary scaling

Now we seek a general solution where u 6ˆ 1 and v 6ˆ 1. The
ratio of the performance indices can be written as

P
Po

ˆ ro

r
EcI

Eo

q 1
cA

(16)

where q is an expression that is yet to be determined, but
known to be q ˆ 1 for constrained height (section 3.3) and
q ˆ 1/3 for constrained width (section 3.4).

For generic u and v we write

u ˆ Eo

E
1
cI

a

v ˆ Eo

E
1
cI

b
(17)

and using the expressions (17) in equation (11) gives

uv3 ˆ Eo

E
1
cI

a‡3b

(18a)

with the condition

a ‡ 3b ˆ 1 (18b)

From equation (17), the exponents a and b are

a ˆ log((Eo=E)(1=cI ))
u ˆ log(uv3) u

b ˆ log((Eo=E)(1=cI ))
v ˆ log(uv3 ) v

(19)

The ratio of the performance indices P/Po follows from
equation (9) using equations (17) through to (19), so that

P
Po

ˆ ro

r
E
Eo

cI

q 1
cA

(20)

where

q ˆ a ‡ 3b ˆ log(uv3) uv ˆ ln uv

ln uv3
(21)

Equation (20) allows the relative performance index for
arbitrarily scaled cross-sections of different shapes and
materials to be compared. The material and shape properties
can be separated into distinct groups according to the
selection condition.

The exponent q represents a parameter that describes the
scaling of the dimensions of the cross-sectional envelopes
due to change of either shape or material or both. In
particular it is a function of u and v, which are the scaling
factors of the width and the height of the cross-section
envelopes. From equation (20) it is evident that, in bending
stiffness design, the general solution of the structural
performance index is a function of material, shape, and
envelope dimensions.

In a previous paper [12], we analysed conditions where
the shape was �xed and the variable was the material.
In the next section we will consider the selection where
the material is �xed.
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4 LIMITING SHAPE REGIMES

In this section, the general solution, equation (20), is used to
provide a performance map, which can help the designer in
the selection of light cross-sections for any scaling condi-
tion. This is similar to the chart of limiting material regimes
presented in our earlier paper [12].

In stiffness design, the performance index P for cross-
sections of the same material with arbitrary scaling of the
envelope is expressed by

P ˆ cq
I

cA
(22)

In Fig. 3, regions for the scaling parameter q ˆ f (u, v)
have been plotted. Values of q ˆ 1

3, q ˆ 1
2, q ˆ 1 are for

constrained width, proportional scaling, and constrained
height, respectively.

Shapes with values of cI near to 1, such as hollow
rectangles, perform relatively better for high values of q.
In contrast when q approaches zero the value of the area, cA,
is more important in comparison to the value of the second
moment of area, cI . This con�rms that the direction of
scaling has a very important effect not only on the material
selection but also on the shape selection.

While the performance index Eq/r gives the selection of
the best material properties for cross-sections with a
prescribed shape, cq

I /cA governs the selection of the best
shape properties for arbitrarily scaled cross-sections. This
analogy exists because shape properties and material proper-
ties in�uence the stiffness of a structural member together
with its dimensions. Therefore for a given stiffness require-
ment, section envelopes experience dimensional variations

in accordance to their values of cI and/or E. For solid cross-
sections, replacing the shape properties of a structure has an
analogous effect on the envelope sizes as replacing the
material properties.

Figure 3 shows two examples of arbitrarily scaled enve-
lopes. If the reference structure A, for instance, has a cross-
section of unit dimensions, and, according to the stiffness
requirement, is rescaled so that point A of the shape
envelope moves to point A0, then 1

3 q < 1
2: Distinct regions

for other ranges of q are shown.
Examples of a full range of solutions for equation (22) are

shown in Fig. 4 for two solid cross-sections: an ellipse and a
rectangle. The performance index has been plotted as a
function of the scaling parameter q using values of cI and
cA given in Table 2.

Since the rectangle is the envelope of any shape, the curve
for P as a function of the scaling parameter, q, in Fig. 4 is a
horizontal line with P ˆ 1 for all q. The intersection point of
the curves for the rectangle and the ellipse represents a value
of q where both shapes perform equally. For value of the
scaling parameter q less than 0.457, an elliptical cross-
section provides better performance. This is the reverse for
q greater than 0.457.

The scaling parameter for the shapes is q and variation in
v as a function of u and q can be found by inverting equation
(21) so that

v ˆ u(1¡q)=(3q¡1) (23)

Curves of special values of q and for which the two
shapes have the same performance index are plotted in
Fig. 5. In bending stiffness design whereas for q < 0:457
elliptical cross-sections are lighter than rectangular cross-
sections, the rectangle is lighter for q > 0:457.

In a later section we show an example of a design
application where the limiting shape regimes shown in
Fig. 5 are used to compare the rectangle with I-sections.

Fig. 3 How scaling affects the scaling parameter q (Cross-
section A0: 1

3 <q < 1
2 )

Fig. 4 Performance index as a function of the scaling
parameter q

Proc. Instn Mech. Engrs Vol. 217 Part L: J. Materials: Design and Applications L00802 # IMechE 2003

120 D PASINI, D J SMITH AND S C BURGESS

 at MCGILL UNIVERSITY LIBRARY on August 15, 2012pil.sagepub.comDownloaded from 

http://pil.sagepub.com/


5 GRAPHICAL METHOD OF SELECTION

This section presents a method of graphical selection which
complements the performance chart shown in Fig. 5. The
general solution for arbitrary scaling allows the relative
performance for cross-sections where either material or
shape or both are variable. However, it does not provide a
selection for the performance cross-sections where the only
variable is the size of the envelopes.

The aim of this section is to provide a method to evaluate
the ef�ciency of sections, which belong to the same class of

shapes. To provide a solution, we demonstrate a graphical
method that allows the selection of cross-sections where
only the envelope dimensions vary. We start by considering
solid cross-sections and then consider cases for hollow
cross-sections.

5.1 Solid cross-sections

In bending stiffness design, the mass and the stiffness of a
structural member are given by equations (7) and (8). Using
the shape transformers given by the expressions (1) in
equations (7) and (8) gives respectively the following
equations for the mass and the stiffness

m ˆ rcABHL (24)

k ˆ cl

12L3
EcI BH3 (25)

The performance criterion is given by the ratio of equations
(25) and (24) and takes the form

k
m

ˆ cl

12L4
|‚{z‚}

Const

E
r

|{z}

Material

cI

cA
|{z}

Shape

H2
|{z}

Envelope

(26)

Equation (24) is divided into four groups. The �rst collects
constant parameters, the second the material properties, the
third the properties of the shape described by the shape
transformers, and the fourth is the envelope contribution that
is a function H ˆ f (M , S) of material and shape.

Now we consider structural members of the same mate-
rial, length and subjected to the same boundary conditions.
Using the shape transformer given in Table 2, the curves of
performance P ˆ f (H ) given by equation (24) are illustrated
on the left of Fig. 6 for solid cross-sections with E ˆ 79 GPa

Fig. 5 Example of limiting shape regimes for elliptical and
rectangular cross-sections

Fig. 6 Performance curves P ˆ f (H) and stiffness curves H ˆ f (B) for solid cross-sections
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and r ˆ 2:9 Mg/m3. Also illustrated on the right are curves
of H ˆ g(B) with a constant stiffness k, for each solid cross-
section obtained using equation (25) and Table 2. For a
given stiffness requirement, the only possible scaling of the
cross-section is along the curve of each shape.

Amongst all the cross-sections, shown in Fig. 6, the
rectangle is the shape that occupies less space and therefore
it provides a spatial bene�t. No other shape can meet
the stiffness requirement for the same dimensions (width
and height) of the envelope. If the design goal is to minimize
space rather than mass, then the best shape is the rectangle.

The performance of cross-sections is generally dependent
on the geometric dimensions of the envelope. For two
different envelopes, shown in Fig. 6, one for a rectangle
and the other for an ellipse, the performance of the ellipse is
better than for the rectangle.

5.2 Hollow cross-sections

We now extend an earlier result for solid cross-sections to
consider a hollow rectangle and a hollow ellipse. As with
Fig. 6, Fig. 7 shows curves of H ˆ f (B) with a constant
stiffness (equation (7)) and curves of performance P ˆ f (H )
for both solid and hollow cross-sections (equation (24)) with
E ˆ 79 GPa and r ˆ 2:9 Mg/m3. With an increase of b/B
and h/H (0 < b/B < 1, 0 < h/H < 1), stiffness curves of
hollow cross-sections move from curves provided by their
respective solid shape (b/B ˆ 0, h/H ˆ 0) upwards to a
theoretical limit where h ˆ H and/or b ˆ B and the thick-
ness reduces to 0. In Fig. 7 we choose to plot a practical
limit of the stiffness curves where b/B ˆ 95%, h/H ˆ 95%.
Furthermore, all the performance index curves are in the

range de�ned by the limit values b/B ˆ 0, h/H ˆ 0 and
b/B ˆ 100%, h/H ˆ 100%.

The limiting curves, shown in Fig. 7, can help to assess
the performance of a hollow cross-section whose envelopes
are arbitrarily scaled.

6 EFFICIENCY LIMITS

Manufacturing constraints and mechanical buckling
instability impose limits on the ef�ciency of sections
[14,15]. In this section, we consider a limit given through
failure by buckling that occurs before the full plastic
moment is reached. This is particularly the case for
compression of a simple thin plate or �ange or part of the
web of a hollow section.

The material limits on the performance can be derived
from Euler’s formula. For a given length, L, the limit to the
performance of structures subjected to the same support
conditions is given by

r2
g ˆ I

A
ˆ sy

E
L
np

2

(27)

where sy is the yield stress and n is the end support
condition parameter.

Using the de�nitions (1) for the shape transformers with
AD ˆ BH and ID ˆ 1/12BH3 to replace I and A and rearran-
ging equation (27), gives

cI

cA

H 2

12
ˆ sy

E
L
np

2

(28)

Fig. 7 Performance curves P ˆ f (H) and stiffness curves H ˆ f (B) for solid and hollow cross-sections
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Deriving H in equation (28), gives the maximum height,
Hlim, of the envelopes of the cross-sections which will not
buckle

Hlim ˆ L
�����

12
p

np

sy

E

0:5 cA

cI

0:5

(29)

Figure 8 illustrates an example where the effect of buckling
limits the range of the selectable sections for aluminium
(sy ˆ 500 MPa, E ˆ 79 GPa, r ˆ 2:9 Mg/m3) and steel
(sy ˆ 1600MPa, E ˆ 210 GPa, r ˆ 7:9 Mg/m3) rectangular
cross-sections. The dashed part of the curves of P ˆ f (H) and
H ˆ g(B) represent structures that will buckle. Limiting
values of the height limit, Hlim, are shown in Fig. 8.

7 DESIGN CASE STUDY

In this section, the analysis presented in section 3 is used in
a case study of a cantilever beam subjected to an end load.
The example is a 4-m cantilever that must support an end

load of 1000N with an allowable end de�ection, d, of
3.2 cm. This is illustrated in Fig. 9.

We consider an aluminium solid rectangular cross-section
and an I-section since these are common cross-sectional
shapes. In the analysis Young’s Modulus, E, is 79 GPa and
the density, r, is 2:9 Mg/m3. We examine two constraints
which lie on the aluminium square section, which is
chosen as reference. First, where there is steep slope,

Fig. 8 The effect of buckling restricts the range of permitted cross-sections. Note that the dashed lines for
curves of P ˆ f (H) and H ˆ g(B) are for cross-sections that will buckle

Fig. 9 (a) Load case, (b) steep constraint on cross-sections (c)
shallow constraint on cross-sections

Fig. 10 Limiting regimes for different cross-sections and a
constraint line q ˆ ¡0:21 imposed. The performance
index PI1 for the I-section is 1.98 and PR1 for the
rectangular cross-sections is 1. To the right of the
constraint line no solutions are permitted
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this corresponds to a value of q ˆ ¡0:21. The second is a
shallow constraint where there is a severe restriction on
height but less restriction on width. Here q ˆ 4:81.

The limiting regimes for the two cross-sections and two
design constraints are illustrated in Figs 10 and 11, where all
regions in grey indicate that all I-sections provide the
lightest cross-sections, while in the narrow white region
only solid rectangle cross-sections give the lightest sections.

When there are narrow limits, that is, q ˆ ¡0:21 (steep
slope), Fig. 10 illustrates there are four solutions R1, R2, I1,
and I2, which lie on the constraint line, where the curves
for a prescribed stiffness intersect the constraint line. Points
I1 and I2 lie in the regions where the I-sections provide the
best performance compared to R1.

In the second constraint case, Fig. 11 shows four solu-
tions R1, R2, I1 and I2. Whereas point I1 lies in the region
where the I-sections are lighter, I2 is located where the
rectangle, R1, provides the best performance.

In Tables 3 and 4, numerical calculationsvalidate the results.

8 CONCLUDING REMARKS

Previous research on material-shape selection produced
solutions only for proportional scaling and constrained
height. This paper has extended the method of performance
indices by presenting a general solution for arbitrary scaling.
This general solution allows selection of material and cross-
sectional shape for a wide range of geometrical constraints.

We have presented two complimentary methods for
selecting light cross-sections in bending stiffness design.
The �rst procedure generalizes the approach of the
performance index for arbitrarily scaled cross-sections

Fig. 11 Limiting regimes for different cross-sections and a
constraint line q ˆ 4:81 imposed. The performance
index PI2 for the I-section is 0.85 and PR1 for
the rectangular cross-sections is 1, To the right of
the constraint line no solutions are permitted
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which differ in shape and material. A performance map
illustrating limiting regimes where one cross-sectional shape
performs better than another, has been developed. The
second method was a graphical solution that considers
arbitrary scaling of the same cross-section. This method
has also been used to investigate ef�ciency limits due to
buckling instability.

The method presented in this paper allows the systematic
comparison of the mass-ef�ciency of cross-sections with
different material and shape properties. The method also
provides a means of gaining insight in structural design.

An example of a cantilever subjected to an end load has
been presented. One important �nding is that space
constraints can have an important effect on what is the
most ef�cient cross-section. For example, for certain sloped
constraints, a rectangular section can be lighter than an
I-section.
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