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Performance indices for arbitrarily scaled rectangular
cross-sections in bending stiffness design

D Pasini*, S C Burgess and D J Smith

Department of Mechanical Engineering, University of Bristol, Queen’s Building, University Walk, Bristol BS8 1TR, UK

Abstract: Performance indices are presented for the selection of optimal rectangular beams in bending
stiffness design. Previous studies have developed performance indices for only three design cases:
proportional scaling of width and height, constrained height and constrained width. This paper extends
the methodology of the performance index to any arbitrary direction of scaling. The performance index has
the form E9/p, where ¢ is a function only of the scaling vector between two cross-sectional envelopes of
different materials. The paper also presents a graphical method for determining the performance of
rectangular beams in stiffness design. The performance index and the graphical method are applied to a

design case study.
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NOTATION

A cross-sectional area

b width (m)

¢, - constant for stiffness depending on boundary
conditions and load

D cross-sectional envelope dimensions (b, /)

E  Young’s modulus (GPa)

F functional requirements

h height (m)

[ second moment of area (m*)

k linear stiffness requirement (N/m)

L length (m)

m  mass (Mg)

M material parameters

r performance index

g  power of the performance index

F radius of gyration

h) shape of the cross-section

u linear multiplicator of the widths

v linear multiplicator of the heights

W load (N)

z - constant for the second moment of area

o deflection (m)
P material density (Mg/m"®)
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1 INTRODUCTION

1.1 Background

The minimization of mass for a given set of design require-
ments is often one of the most important goals in structural
design. Low mass can lead to lower material costs, reduced
environmental impact and improved technical performance
such as better vibration characteristics. Reduction in mass
is particularly critical in the aerospace and automotive
industries.

One obvious way to achieve low mass in bending stitfness
design is to select a material with a high ratio £/p. However,
various authors [1-3] have shown that E/p does not always
indicate which is the best material for a particular structure.
The correct performance index for a particular application
depends on the direction in which a section is scaled. In
addition, the direction in which a section is scaled often
depends on the geometric constraints on the design space
(height constraint, width constraint, etc.).

For example, the ratio E'/?/p [1-5] indicates the best
material when there is no space restriction and a section is
scaled proportionally (see the Appendix). This ratio gives
quite a different set of optimuim materials compared to those
provided by the ratio £/p. In addition, it has been shown
that, if the cross-section is restrained in height, optimum
materials are indicated by the ratio E/p [2, 4, 6], and if the
cross-section is restrained in width, optimum materials are
indicated by the ratio £'3/p [2, 4]. These ratios illustrate
that it is vitally important to understand how a cross-section
is scaled in order to determine the best material to achieve
low mass in bending stiffness design.
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Fig. 1 Geometric constraints and the direction of scaling on the cross-sections of the beam: (a) height
constraint; (b) width constraint; (c) slope constraint

The ratios £/p, E'?/p and E'/3/p are all performance
‘indices for low mass and given stiffness. However, these
indices only represent three directions of scaling. Tn reality a
section can be scaled in any direction.

This paper introduces the concept of the cross-sectional
envelope dimensions, D, as a design variable in order to
extend the method of performance indices to any arbitrary
direction of scaling. It is shown that there is a general
solution to the performance index E9/p, where ¢ is a
function only of the scaling vector between two cross-
sectional envelopes of different materials. A complete
range of solutions for £4/p is given. The paper presents a
graphical method for structure selection, which gives the
same results as the general solution of the performance
index. Finally, a design example is carried out using both
methods to show that geometrical constraints can have a
significant effect on material selection.

1.2 Geometric constraints and direction of scaling

Three examples of different geometric constraints to the
cross-section of a rectangular beam are shown in Fig. I
These constraints are common in all branches of engineer-
ing. For example, in the design of a floor structure, there is
often a height constraint as shown in Fig. la. In the design
of a structure within a wall, there is often a width constraint
as shown in Fig. 1b. In tightly constrained structures such as
those found in the automotive and aerospace industries, it is
not uncommon to have a constraint at an inclined angle as
shown in Fig. fc.

The influence of the geometrical constraints on the
direction of scaling can be seen in Fig. 1. For example,
where the height is constrained (Fig. 1a), it is only possible
to change the width when considering different materials.
Conversely, if the width is constrained (Fig. 1b), it is
only possible to change the height of the beam. In the case
of a geometric constraint at an inclined plane, as shown
in Fig. lc, both the height and width must change. There
may be other reasons for scaling in certain directions,
including availability of certain sizes and shapes or even a
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desire of the designer to keep a certain proportion to a
section.

Arbitrary scaling of the height and width of the cross-
section is shown in Fig. 2. Scaling of the cross-section can
be specified by two linear multiplicators, « and v, where u is
the relative change in width and v is the relative change
in height of the cross-sectional envelope. In constrained
height design, shown in Fig. 1a, v =1 and corresponds to
direction B in Fig. 2. In constrained width design, shown in
Fig. Ib, and for direction C in Fig. 2, u = 1. When there is
uniform proportional scaling of the cross-section, u = v.
This is direction A in Fig. 2.

In the next section, the overall design methodology is
described, together with a summary of different stiffness
design conditions.
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Fig. 2 Arbitrary direction of scaling of a beam cross-section:
A, 45° scaling, u = v; B, horizontal scaling, v = 1;
C, vertical scaling, ¥ = 1
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2 METHODOLOGY

2.1 Selection criteria

If the performance index, p, is measured by mass efficiency,
then the performance of a structure is a function f( ) of at
least four parameters:

p=f(F,D,S. M) (1)
where F are the functional requirements, D describes the
dimensions (width, b, and height, 4) of the cross-sectional
envelope, S is a description of the shape of the cross-section
and M describes the material properties.

Generally, F is the design input, and D, S and M are
generally the design variables. In the selection process, the
best solution often involves a compromise between these
three variables. In addition to the functional requirement F,
the design variables must be compatible with the design
constraints such as geometric constraints, material availa-
bility or shape availability. For example, the cross-sectional
envelope D must be compatible with the geometric cons-
traints as shown in Fig. L. :

Figure 3 illustrates a range of cases where different
cross-sections meet the functional requirement F* (the same
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siiffness). For example, Fig. 3a shows that, for a
given material and cross-sectional shape (in this case the
diamond family), the height and width of the cross-
sectional envelope are changed while meeting the same
stiffness, &, and consequently changes in the variable D
occur. Figure 3b illustrates that, for a given cross-sectional
shape, both the material, M, and the dimensions of the
envelope, D, can be varied to meet the stiffness require-
ment. Figure 3¢ indicates that, for a given material, changes
in the variable S usually cause a variation in the envelope.
Figures 3d and e display other possible changes in the
design variables.

2.2 Conditions for stiffness design

As Fig. 3 shows, it may be that in a particular design
application there is a restriction on which design parameters
D, S and M can be varied. Table | summarizes the different
permutations of what design parameter can be varied.
Whereas in each of the conditions the functional require-
ment remains the same, the other parameters D, S and M in
equation (1) can be fixed or varied. Therefore, the perfor-
mance index is a function of the free design variables. For
example, in selection condition | the structures differ only

1
!
A ' Di1# D2
(@) | M same
! S
] same
D1z D2
() Fi=Fs PN MM
e S same
—hr—
Di= D2
¢y Fi=F2 [jlr M same P1# P2
YR
—h— 2
EoF l / ] ATH D same
@ Fi=F2 2 / : M1 M2
T // T = S1# 82
by — —ty—
l L T D1 * D2
@y Fi1=F2 T T iR M1 = M2
I S1#8
b—ty— —H2— 1 ?

Fig. 3

Effect of variables on the performance of the structurcs meeting the same functional requircments (e.g.

stiffness): (a) cross-sectional envelope variations; (b) variations in material and envelope; (c) changes in
shape and envelope; (d) material and shape vary in the same envelope; (¢) all the variables change
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Table 1 Conditions for stiffness design

Cross-sectional geometry

Functional Cross-section envclope Performance index,

Selection condition requirement, F dimensions, D(h, b) Shape, § Material, M p=[(D,S, M)
1 Cross-sectional envelope Stiftess Variable Fixed Fixed p=f(D)
2 Cross-scctional envelope Stiffness Variable Fixed Variable p=f(D,M)

and material
3 Cross-sectional envelope Stiffness Variable Variable Fixed p=f(D,S)

and shape
4 Cross-sectional envelope Stiffness Variable Variable Variable p=f(D,5 M)

and shape and material

for the dimensions of the cross-sectional envelope S as one
material M and one shape S are available. In condition 2 the
selection occurs among structures of the same shape S but
for different material M and cross-sectional envelope dimen-
sions D. Conditions 3 and 4 consider further selection
criteria.

This paper will deal with the first two selection condi-
tions given in Table 1. In the next section a general
expression of the performance index E?/p will be derived
for selection condition 2, i.e. when the dimensions of the
cross-sectional envelope D (expressed by b and %) and
the material M are variable. In Section 4, both selection
conditions | and 2 will be examined using a graphical
method.

The analysis used in this paper is based on the following
assumptions:

1. Only bending stiffness design is examined.

2. Only homogeneous and isotropic materials are examined
that obey Hooke’s law and have a Young's modulus £
that is the same in tension and compression.

3. The effects of local and general buckling are neglected.

3 RELATIVE PERFORMANCE INDEX E?/p FOR
AN ARBITRARY SCALED CROSS-SECTIONAL
ENVELOPE OF DIFFERENT MATERTAL

3.1 Analysis

In bending stiffness design, the ratios E/p, E'?/p and
EY3/p lead to the selection of the best material for
constrained height, proportional scaling and constrained
width. From this it can be seen that the direction of scaling
affects the power to which F is raised.

As Table 1 shows, in selection condition 2 the perfor-
mance index, p = f(M, D) is a function of the free variables
M and D. However, if the direction of scaling has been set in
advance, such as in horizontal, proportional or vertical
scaling, the variable D appears as the power of the
Young’s modulus E. Therefore, the aim of the following
analysis is to find a general function ¢ = f(D) in order to
derive a general expression of the performance index for
arbitrary scaling.
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For a given material, cross-section and set of design
requirements, expressions for the mass, m, and the bending
stiffness, &, of a structure are

m

== pA @
73

‘FL = EI 3)
1

where ¢ is a constant depending on the boundary condi-
tions, p is the density, 4 is the cross-sectional area, L is the
length of all the structures and / is the second moment
of area.

Consider the rectangle as the shape family of two struc-
tures 1 and 2 of different material. The width and the height
of their cross-sectional envelopes D, which in this case
coincide with the dimensions of the cross-sectional shape,
are scaled by the two multipliers # and v, where

by
u-—b—l
hy
V——-h—l

4)

The ratio of the masses m; and m, of two generic structures
1 and 2 of the same length, L, is

my  p 4,
my Py A

(5)

As maximizing the performance index minimizes the mass,
combining equations (4) and (5), the ratio of the perfor-
mance indices for structures 1 and 2 is

Pzwml_—pl 1

(6)

Py my  pyuv

Expressions for « and v in terms of the design requirement
are now sought. For bending stiffiess design, both structures
are required to meet the same stiffness requirement, where

Ely, = LE, (7N
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and
£
E, I, ®)

The ratio of the second moments of area of the two
structures can also be stated in terms of multipliers 1 and
v, S0 that

2w ©)

When the height of the two structures is constrained, v = 1,
and u is

_h
o

u (10)

Alternatively, when the width is constrained, u = 1, and v is
given by

(1)

The performance indices for constrained height (v = 1) and
width (¢ = 1) follow from equations (6), (8), (10) and (11),
so ‘that:
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with v =1

ool _p B
P pyE

with . =1

173 13
ﬁ:&<ﬁ>/=&<§z)/
Py p\h P2 \E

105

(12)

(13)

For arbitrary scaling conditions # 7 1 and v # 1, a solution

is sought such that

Py P <E2)q
Py p2 \E

where ¢ is yet to be determined.
For these conditions

~<q <l —
2 e — — -——-————A-'-'-I g—-——_.—m<q<l]
| !
T lrefefen:ce secti?)g —— O<g <—;—
I ] >
. r T N
l a2 i
1oged B
3 2

Fig. 4 Solutions of the scaling parameter g for all directions of scaling: A, reference section; A/,

1/3<q<1/2; A", 0<qg<1/3
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(14)

(15)

(16a)
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Performance index
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Fig. 5 Performance of the three materials for a range of values of ¢

and
a+38=1 (16b)
From equation (15) the exponents o and p are

d = lg(’z//l) U = ]g(,,\,a) 14

f= lg(lz/l,) v=1g,5V 17)

The ratio of the perfdrmance indices P,/p, follows from
equation (6) using equations (15) to (17), so that

P _ by (’_1')”: o (E> (18)
P pp\L/) T pa \E

where

In uv

g=o+3f=1g,.uv= (19)

In

Equation (18) permits the performance indices for structures
of similar cross-sectional shape with arbitrary cross-
sectional envelopes to be compared. In particular, the
exponent ¢ represents a parameter that describes the scaling
of the dimensions of the cross-sectional envelopes of
structures using different materials. This is because each
material requires a different space to meet the functional
requirement k.

Figure 4 shows a plot of results for ¢ = f(u, v). These
results are consistent with the previous values of ¢ = 1/3,
g=1/2 and ¢ =1 for constrained width, proportional
scaling and constrained height respectively. The figure
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shows that, for two curves wv’ =1 and ww=1, ¢ is
unbounded (i.e. ¢ = +o0) and zero respectively. These
results give an indication of the relative importance of
Young’s modulus and density. When ¢ approaches zero,
the density is more important in comparison with Young’s
modulus. In contrast, when ¢ approaches infinity, Young’s
modulus is relatively important compared with the density.
This immediately shows that the direction of scaling has a
very important effect on material selection.

Furthermore, Fig. 4 shows examples of arbitrary scaled
rectangular sections of different materials. If a reference
structure 1, for instance, has a cross-section of unit dimen-
sions, and, according to the stiffness requirement, is rescaled
so that ¥ = 1.8 and v = 2.5, then point A moves to point A’
and 1/2 < ¢ < 1. Alternatively, if point A moves to point
A", then also 0 < g < 1/3. As well as regions defined by
1/2 <g <1 and 0 < ¢ < 1/3, distinct regions for other
ranges of ¢ are shown.

In the next section it is shown that materials with high
Young’s modulus, such as steel, perform relatively better for
high values of ¢. Furthermore, useful ¢ ranges are presented
where one material provides lower mass compared with
others,

Table 2 Properties of materials

Young’s modulus, Density,
Material E (GPa) 0 (Mg/m’z)
Steel 210 7.9
Aluminium 79 29
GFRP 30 1.8

LO2001 4% IMechs 2002
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0 05 1 15 2 75 3
—
o

Fig. 6 Limiting material regimes for steel, aluminium and GFRP

3.3 Limiting material regimes

The general solution to the performance index [equations
(18) and (19)] enables a comparison to be made between the
performance of different materials for any direction of
scaling. In stiffness design, the performance index p for
arbitrary scaling with the aim of minimizing mass is
expressed by

p=— _ (20)

where ¢ is a function of the multipliers » and v.

Examples of a full range of solutions for this performance
index for thiee materials [aluminium, steel and glass fibre
reinforced plastic (GFRP)] are shown in Fig. 5. The perfor-
mance index has been plotted as a function of the scaling
parameter ¢ using values of £ and p given in Table 2.

When the direction of scaling is known in a design task,
g can be calculated from equation (19) and the relative
performance of different materials can be immediately
determined from Fig. 5.

The intersection points of two curves in Fig. 5 represent
values of the scaling parameter ¢ where both materials
petform equally. Thus, when ¢, for example, is greater
than 1.025, steel cross-sections have a better performance
index than aluminium and also GFRP cross-sections. When
the scaling parameter ¢ is less than 0.49, all GFRP rectan-
gular cross-sections provide the best performance compared
with aluminium and steel.

102001 ¢, IMechE 2002

The parameter ¢ is the scaling parameter. Variations in v
from variation in u, for a given value of ¢, can be found by
inverting equation (19) so that

v = y1=9/CGg=1) 2n

Curves of special g values for" which two materials have
the same performance index can be plotted and then
limiting material regions mapped. These special values of
g, obtained from Fig. 5, are plotted in Fig. 6 using
equation (21).

Figure 6 shows regions where the performance of one
material is relatively better compared with the others.
For example, in bending stiffness design all the
‘rectangular cross-sections manufactured from aluminium
provide the best performance index in the region where
0.49 < g < 1.025. Alternatively, all cross-sections scaled so
that they lie in the GFRP region provide minimum mass
compared with steel and aluminium. A later section shows
an example of design application where the limiting material
regimes shown in Fig. 6 are used without the need of any
calculation.

4 GRAPHICAL METHOD FOR SELECTING
OPTIMAL STRUCTURES IN BENDING
STIFFNESS DESIGN

The performance index in the form of £9/p does not allow
the selection of structures of the same material. This is

Proc Tnstn Mech Engrs Vol 216 Pait L: ) Materials: Design and Applications
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because the parameters « and v in the expression for g are
multipliers of the dimensions of different material cross-
sectional envelopes. However, in bending stiffness design, a
simple selection can occur among structures of the same
material and same shape. This is the case of condition | of
Table 1. Consequently, a graphical procedure is presented in
the following sections for the selection condition 1, and this
is extended to condition 2 of Table 1.

4.1 Selection condition 1: the same cross-sectional
shape and material

For a given material, cross-section and set of design require-
ments, expressions for the mass, m, and the bending stiff-
ness, k, of a structure are expressed by equations (2) and (3).
By replacing the area, 4, in equation (2) and the second
moment of area, /, in equation (3) as functions of the width,
b, and depth, /4, of the cross-sectional envelope, the mass
and the stiffness of a rectangle are

o~ bhp (22)
I
1263,
c( = bWE (23)
13

Figure 7 illustrates curves obtained using equations (22) and
(23), where the only variables are the height and width of
the structure. Curves A and B represent all rectangular
cross-sections of equal mass and equal stiffness respectively.
Each curve corresponds to the mass and the stiffness of
rectangle 1. Rectangle 2 has the same stiffness and has lower
mass than rectangle 1. For a stiffness requirement £, the only
possible scaling of the cross-section is along curve B.
Consequently, simple horizontal scaling v =1, vertical

Curve of equal mass for tectangle 1

Feasible solutions for requirement k

31 A\
Height, b (n) ? /

Intersection area
—IREISRron area

v

Width, & (m)

Fig. 7 Curves for equal stiffness (B) and mass (A)
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scaling # = 1 and proportional scaling u/v = constant are
not feasible.

Compared with envelope 1, all the rectangles under curve
A have lower mass. Envelopes above curve B are stiffer. The
shaded area C in Fig. 7 represents solutions for all possible
rectangles that are both stiffer and lighter than rectangle 1.

In bending stiffness design, the performance index, p, of a
structure can be seen as the ratio of equations (3) and (2):

k El
p=—= azz (24)
m LtpA
Then
1 ¢ EN
et (@) (5 @
B e
M
where 1, is the radius of gyration of the section.

Equation (25} is divided into three groups: F collects the
common parameters of the structure and the stiffness
requirement, M the material properties and D with S the
cross-sectional envelope dimensions and the shape.
However, in stiftness design (unless some assumptions are
made about the dimensions of the cross-sectional shape), the
second moment of area, /, is not separable from the material
property. Young’s modulus determines the space that cross-
sections must occupy in order to meet the functional
requirement k.

For a given stiffness £, the performance of a rectangle is
assessed by equation (24) together with the stiffness require-
ment equation (23), so that

-6

where

1\ 173
B (1‘5) @7)

The performance index p [equation (26)] is a function of the
height of the rectangle. The height is also a function of both
b and E [equation (27)] (Only if there is a width constraint
can equation (27) be substituted into equation (26), and the
performance index take the known form £'/3/p.)

Figure 8 shows graphical solutions for equations (26) and
(27). The performance indices for rectangular sections 1 and
2 are p and p,. It is evident that, since p, is greater than p,,
rectangle 2 provides lower mass than rectangle 1. An
important feature of Fig. 8 is illustrated by referring to the
design space given by the triangle OXY. The intersection of
the line XY with curve B indicates that there are two
possible solutions, rectangles 1 and 2, that satisfy the
stiffness requirement. However, rectangle 2 provides a
lower mass than rectangle 1.
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A A
I 7 7
[ 6 6
I 5 51
Feasible solutions for requirement k

4 4 curve B

Height, 2 (m)
[ 3 31 Design space

Y
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7 5 p25 4 3 p1 1 0 0 1 2 3 4 X5 6 7

Performance index, p  (MPaMg m®)

Width, & (m)

Fig. 8 Combined performance graph for rectangular sections of the same material

4.2 Selection condition 2: the same cross-sectional

shape but different materials

When both D and M are variables, curve B in Figs 7 and 8
differs for each material. This is illustrated in Fig. 9, where
the functional requirement, i.e. stiffness, is the same for
aluminium and steel. Materials with high E, for exanmple
steel, provide a benefit in terms of space. The performance
of materials such as aluminium and steel can be assessed
through the combined performance graph.

In this selection condition of stiffness design, the direc-
tion of scaling can occur from all the points of each stiffness

curve; for example, horizontal (from point B to B’), vertical
(from C to C’) and proportional scaling (from A to A’) are
feasible.

It is evident that, in the case of the rectangles E and F in
Fig. 9, the performance index p, is greater than p,. There-
fore, the aluminium rectangular cross-section provides lower
mass than steel, even though the steel occupies less space.
Different cross-sections from E and F can provide opposite
results. This graphical approach is equivalent to the analysis
presented in Section 3.

The performance of materials depends on how the cross-
sectional envelopes are scaled. The next section shows a

4 Y Constrained width Proportional scaling
Performance index for steel, p. ib=consram il By fl
! S Ry by
Performance index for aluminium, p, ! S
) s
- [2 21 F //
\ /
I
< ;
E i
4
r1.5 15 il
rd
q ,v/
Height, b (m) S, a
,\/\_ Constrained height
rt 1 vii h=constant
B e
<~ C
I
e
// .
05 0.5 L k requirement for aluminium,
: X ,
M r // k requirement for steel
,
P 2. Ps ‘ »
600 450 300 160 8 0% 1 15 J
Performance index, p - (MPe/Mg m*) Width, b ()

Fig. 9 Combined performance graph for rectangular sections of the same material
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design application where geometrical constraints impose
different directions of scaling, which in turn affect the
choice of material.

5 DESIGN CASE STUDY

A design case study has been carried out using both
selection methods: the limiting material regimes chart and
the combined performance graph. The final results are the
same and arc confirmed by the numerical calculations
presented in Tables 4 and 5.

The example is a 4 m cantilever that must support an end
load of 1000N with an allowable end deflection, &, of
3.2 cm. This is illustrated in Fig. 10.

Steel and aluminium are the materials available in rectan-
gular shapes, and design data are summarized in Table 3.
Two design constraints are examined: a height constraint is
imposed, and then a sloped constraint with ¢ = 1.44. These
conditions are shown in Fig. 10.

5.1 Limiting material regimes graph

Figure 35 illustrated that, for steel and aluminium, when
g > 1.025, steel performed better than aluminium. The
limiting regimes for the two materials are again illustrated
in Figs 11 and 12. In the first case, there is height
constraint, ¢ = 1" and a steel rectangular cross-section,
providing the same stiffness, lies within the region where

=TT _ m——— _ :[8:32 cm
! L=4m !
Ly,
202
Hyy,
q K/é///
T
®

Fig. 10 Cantilever and its cross-sections in two different
constrained conditions: (a) height constraint (¢ = 1);
{(b) sloped constraint (g = 1.44)
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HORIZONTAL CONSTRAINT ¢=1

Fig. 11 Limiting material regimes graph for a horizontal
constraint (g = 1)

SLOPED CONSTRAINT ¢=1.44

Fig. 12 Limiting material regimes graph for a sloped

constraint (g = 1.44)

Table 3 Design data for case study

Young’s Stifthess Boundary condition
modulus, Density, _ Load, Deflection, requirement, Length, constant,
E (GPa) p (mg/m’) W (N) J (m) k (N/m) L (m) ¢y

Aluminium 79 29 1000 0.0324 30859 4 3

Steel 210 7.9 1000 0.0324 30859 4 3
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Fig. 13 Combined performance graph for a horizontal constraint

aluminium is better. Therefore, aluminium provides
lower mass.

In the second case there is a sloped constraint, (Fig. 12).
The same aluminium section 1 x I'm is compared with a
steel rectangular cross-section. The sloped constraint
dictates the direction of scaling. Figure 12 illustrates that
this constraint intersects the region where steel performs
better than aluminium. This is in contrast to the first case,

and the steel cross-section has lower mass than aluminium.

5.2 Combined performance graph

The combined performance graphs for the two constraints
¢ = 1 and 1.44 are illustrated in Figs 13 and 14 respectively.
For horizontal constraint the graphical solution shown in
Fig. 13 demonstrates that that the performance of the
aluminium cross-section is marginally better than that of
steel. The numerical results in Table 4 show that the mass
saving using aluminiom is just 2 per cenf. Prescribing a

t1.4 1.44 N\ k seqquirement for steel
k requirement for aluminium
=y + )
Performance index for steel, O 12 1.21 5 Constraint
Performance index for aluminium, o,
— f A \
0.8 0.81
Height, 1 (m) ——
o6 061
[0.4 0.41
1 1 102 0.2
N Ps 1P i ‘ . ' .
s 12 1 08 08 04 02 0 02 04 05 08 12 14

Performance index, p (MPa/Mg m®)

Width, b (m)

Fig. 14 Combined performance graph for a sloped constraint
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lable 4 Numerical results for height constraint (g =1)

Power of
Height Width performance Performance
Width, Height, multiplicator, multiplicator, index, Stiffness, index, Mass, Mass
b {m) h (m) u v q k (N/m) p=E/p m (Mg) saving (%)
Aluminium 1.00 1.00 1.00 30859 272 11.60 2
Stecl 0.376 1.00 0.376 1.00 1.00 30859 26.5 11.89
Table 5 Numerical resuits for sloped constraint (g = 1.44)
Power of
Width Height performance Performance
Width, Height, multiplicator, multiplicator, index, Stiffness, index, Mass, Mass
b () h (m) u ¥ q k (N/my) p=Ep m (Mg) saving (%)
Aluminium 1.00 1.00 1.44 30859 186.3 11.60
Steel 0.197 1.24 0.197 1.24 1.44 30859 279.6 7.731 33

sloped constraint leads the choice of steel to provide mini-
mum mass. Table 5 shows that a remarkable mass saving of
33 per cent is achieved.

This result demonstrates that geometric constraints can
have a very important influence on what is an optimal
material. Using the performance indices £/p, E'/?/p and
E'3 /p always indicates that aluminium is better than steel.
However, the design example shows that, when there is a
sloping height constraint, steel can be better than alumi-
nium. This case study demonstrates also the importance of
having a general solution of the performance index.

6 CONCLUDING REMARKS

Earlier work examined material performance indices for
proportional scaling, and for height and width constraint
alone. Geometric constraints on the design space will restrict
the direction in which a section can be scaled. It is therefore
important to consider arbitrary scaling of the dimensions of
the envelope of the cross-section. This paper began by
introducing the dimensions of the envelope, D, of the
cross-section and its shape, S, as design variables. Different
permutations “of the design parameters were considered.
This paper had focused on varying the envelope, D, and
material, M. A

Two alternative methods for selecting light structures in
bending stiffness design have been presented. The first
procedure extends the approach of the performance index
in the form of ratio £4/p for arbitrary scaled cross-sections
of the same shape but different material.

The second method is a graphical solution that considers
arbitrary scaling of the same material and arbitrary scaling
of diftferent materials.

The first method is used to provide a diagram illustrating
limiting material regions where one material performs better
than other materials. :

Both methods were then used to determine the best
performance (i.e. minimum mass) of a cantilever subjected
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to an end Joad. Contrary to conventional material perfor-
mance indices, it has been demonstrated that steel can
perform better than aluminium in providing minimum
mass for the same bending stiffness.
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APPENDIX

Derivation of the performance index E£'/?/p in bending
stiffness design

In bending stiffness design, a beam of the type shown in
Fig. 10 must meet a stiffness requirement of the form

k= = (28)

From elasticity theory, the stiffness of the beam is given by

El :
k=c 7 (29)
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where ¢ is a constant that depends on the details of the load
and boundary conditions.
The mass of the beam is given by

m = pdl (30)

To derive a performance index it is necessary to replace the
free variable 4 with the functional requirements. The area A
in equation (30) can be replaced by rearranging equation
(29) as a function of 4, assuming that

1:J y* d4 (31)
A

For a solid cross-sectional area with two symmetric axes, the
second motnent of area can be written as

= zbh* = zh*4 (32)

where z is a constant of the cross-sectional shape.

If the cross-sectional area is assumed to be an equiaxed
shape (circle, square, efc.), the second moment of area can
be expressed as a function only of the area. Therefore, the
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term A2 in equation (32) can be replaced by 4, and then /
takes the form

I =z4* (33)

N

Combining the previous equation (33) with equation (29)
after rearrangement, the mass of a beam that meets the
stiffness requirement, £, can be expressed as

5\ 1/2
C]kl' P

The selection of the best material occurs by the evaluation of
the following performance index:

p = (35)

Since equation (33) is based on the assumption that there is
proportional scaling of the section, the performance index
E'Y2/p is only valid for sections that are proportionally
scaled.

Proc Instn Mech Engrs Vol 216 Part L: J Materials: Design and Applications

s






