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1. Introduction

Designing a laminated composite material consists in selecting
the best arrangement of the constituent materials within the lam-
inate. Traditionally, this task is performed by finding a combination
of several straight-fiber layers with constant thicknesses such that
the combination provides the best mechanical properties for a gi-
ven application. However, allowing the fibres to follow curvilinear
paths within the plane of laminate constitutes an advanced tailor-
ing option that can lead to modification of load paths within the
laminate and result in a more favourable stress distribution and
an improved structural performance. We refer to the former ap-
proach as constant stiffness design while the latter is called variable
stiffness design. Superior structural performance of variable stiff-
ness design vs. constant stiffness design have been demonstrated
for different properties such as buckling capacity [38,91,1], elastic
behaviour [28], stiffness [89], compressive buckling and first-ply-
failure [63], maximum fundamental frequency [12] and postbuck-
ling progressive damage [62]. Variable stiffness design also pro-
vides flexibility for trade-off between different structural
properties [29].

Variable stiffness design of composite structures has attracted
far fewer researchers than constant stiffness design due to higher
design and manufacturing costs involved. The higher design cost
is due to the inordinately large number of design variables re-
quired to define variable orientations and thicknesses and addi-
tional constraints required for maintaining the continuity in the
structure, which implies a need for higher computational resources
compared to the constant stiffness design.

In the first part of this review, published in Composite Structures
[25], we examined the constant stiffness design optimization of
laminated composite materials. This paper, which completes the
previous review article, focuses on the variable stiffness design of
composite materials. First, the formulation of a variable stiffness
design problem is studied and then related optimization methods
are reviewed following this classification: (1) gradient-based
methods, (2) optimality criterion, (3) topology optimization, (4) di-
rect search methods, (5) multi-level optimization, and (6) hybrid
methods. In each section, the essence of the main optimization
algorithms is explained, followed by a discussion and comparison
of their advantages and shortcomings.

2. Problem formulation and structural continuity

In contrast to the constant stiffness design, the design of vari-
able stiffness composite structures requires a particular formula-
tion that spatially defines the arrangement of the constituent
materials (i.e. fibers and matrix) at each point of the structure.
Regardless of the optimization technique, efficiency (i.e. conver-
gence rate and accuracy) of the optimization algorithm is generally
reduced as the number of design variables increases. On the other
hand, independent design of these arrangements may result in an
(a) (b)
Fig. 1. A composite laminate divided into several overlapping (a) and non-
overlapping (b) patches.
impractical structure with structural discontinuities. Hence, part of
the effort in formulating a variable stiffness design problem is ded-
icated to minimizing the number of design variables in the prob-
lem formulation and to maintaining the continuity in the
structure. For this purpose, three approaches have been introduced
based on the use of (1) a patch design, (2) a set of blending rules,
and (3) a curvilinear definition of the variable properties.

2.1. Patch design

A ‘‘patch” defines a region within the structure where the lam-
ination sequence is uniform (see Fig. 1). The use of a patch allows
reduction of the number of design variables and the spatial varia-
tion of the lamination sequences; consequently, it eases consider-
ation of manufacturing limitations and maintains the compatibility
of the lamination sequences in adjacent regions. Both overlapping
patches [114,115] and non-overlapping patches [46] have been
used to formulate a variable stiffness design problem. Usually in
this formulation the patch geometry, which can strongly affect
the efficiency of the final design, is defined a priori by the user.

The sub-laminate concept introduced by Soremekun et al. [97]
can also be classified as a design with overlapping patches. A
sub-laminate refers to the common thickness zones across multi-
ple panels, and thus the identification of the sub-laminates is per-
formed at the end of the optimization process, as oppose to the
patch design where the patches are defined a priori. The similarity
between the two methods is that in both methods the patch iden-
tification is performed by the user and it can be trained to reach
either a high-performance design or a design with good blending
properties.

2.2. Blending rules

Enforcing continuity constraints that limit the variation of the
lamination sequences in adjacent elements is another method to
achieve a blended structure. These constraints are generally known
as blending rules. Examples of the blending rules are the ones used
by Zabinsky et al. [113]. To design a tapered structure, they pro-
posed blending rules stated as follows: ‘‘starting from the key re-
gion, the number of plies in adjacent regions may be dropped if
the required stiffness and strengths of these regions are satisfied.
Once a ply is dropped, it cannot be added back to the stacking se-
quence in later regions.” Kristinsdottir et al. [49] used the same
blending constraints in design of sandwich and hat-stiffened pan-
els. Liu and Haftka [58] developed a more sophisticated form of
these rules by using continuity measures that distinguished be-
tween composition continuity and stacking sequence continuity.
Although able to provide a required level of continuity in the struc-
ture, this method increases the number of constraints and makes
the optimization problem more complex. To reduce the complexity
of the design problem, it is possible to combine the blending rules
with the patch design approach which can significantly reduce the
number of design variables.

2.3. Curvilinear parameterization

The use of a curvilinear function to describe the fiber path and
the variation of the laminate thickness can also reduce the number
of design variables, without compromising structural continuity.
The curvilinear function is identified by a set a parameters in a
pre-defined mathematical expression [103] or by interpolating a
pre-defined function to prescribed key points [36]. For instance,
Parnas et al. [72] used Bezier splines to represent layer thicknesses
and fiber angles. Blom et al. [12] used trigonometric functions to
represent the fiber angles on a conical structure made by an ad-
vanced tow-placement machine. Nagendra et al. [70] expressed



H. Ghiasi et al. / Composite Structures 93 (2010) 1–13 3
the fiber path as a linear combination of certain pre-defined base
fiber paths. The design variables were the scalar multipliers of
the different base fiber paths. Each base fiber path was a non-
uniform rational B-spline curve passing through a fixed number
of control points. Alhajahmad et al. [6] compared two cases where
linear and non-linear functions were used to describe the variation
of the fiber-orientation angles in a two-dimensional plate, and
showed that the non-linear variations offered a better performance
than linear variation of fiber orientations. Using a curvilinear func-
tion to describe the fiber path significantly reduces the number of
design variables and guarantees the structural continuity; how-
ever, the quality of the final solution strongly depends on the
parameterization. Finding a parametric function that can accu-
rately model a complex structural geometry is difficult.

2.4. Other parameterizations

Besides the above-mentioned methods, there are other methods
for formulating a variable stiffness design problem, though it may
not take into account the continuity of the structure or it may be
limited to a narrow class of structures. For instance, for shape
and thickness optimization of laminated 2-D structures, Muc [68]
presented special types of continuous design variables that repre-
sent the locations of several key-points within the laminate and
the thickness of the laminate at these key-points. A continuous
profile was assumed for the thickness variations from one key
point to another. A similar approach was used by Surendranath
et al. [101] who used a gradient architecture to formulate the prob-
lem. In this method the thickness of the laminate at each point at a
given distance from the start of the gradient layer was continu-
ously described by a power law equation (see Fig. 2).

Discrete Material Optimization (DMO, [98] is a formulation that
merely deals with parameterization of the fiber orientations. In
this method, the mechanical properties of each layer in a compos-
ite laminate are computed as a weighted sum of the properties of a
finite number of candidate layers each with a different fiber orien-
tation. The design variables are the weighting factors for each can-
didate layer and the objective is to drive the influence of all but one
of these layers to zero at each point. The same concept is used in a
technique known as ply-orientation-identity variables [27,21].

Special care must be taken when using different parameteriza-
tions as problem convexity and precise definition of the feasible re-
gion is strictly connected to the definition of the design variables.
While some definition may ease application of continuity con-
straints, the others may reduce nonlinearity of the problem.

3. Gradient-based methods

This section reviews the application of the traditional gradient-
based optimization methods in variable stiffness design of com-
posite laminates. We examine both the algorithms dealing with
the objective function and those dealing with an approximate
l
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Fig. 2. Thickness of the laminate is described using a one-dimensional power law.
model of the objective and constraints. Although the methods
resorting to optimality criteria may also use a traditional gradi-
ent-based method, we decided here to include them under another
category described in Section 4.

3.1. Methods working with the original problem

The traditional optimization methods generally rely on the sen-
sitivity of the objective with respect to the design variables; thus,
they require calculation of the gradient of the objective function
and the constraints with respect to all design variables. The effort
to calculate the gradients exponentially increases with the number
of design variables, thus many authors considered only a limited
number of design variables or resorted to analytical methods to
calculate the gradients. For instance, Jorgensen [39] used material
orientation at each element of a cantilever plate as the only design
variables and used an analytical expression derived by Pedersen
and Seyranian [80] to calculate the gradients of the objective (i.e.
the flutter load) with respect to the design variables. The gradient
information was used to make a small change in each design var-
iable such that it causes an improvement in the objective. Cho
and Rowlands [14] also used this technique but a finite element
method was used to calculate the gradient and the method of fea-
sible directions was in charge of improving the objective. Hyer and
Charette [37] and Hyer and Lee [38] used a similar method but re-
duced the number of design variables by using the patch design.
The expected improvement in convergence rate was accompanied
by a low blending quality due to a large difference between the fi-
ber orientations in adjacent regions.

Wang and Costin [110] and Costin and Wang [17] introduced
ply drop-off constraints and used the method of feasible directions
to solve the optimization problem of a wing structure. They used a
laminate with four pre-defined fiber orientations and formulated
an optimization problem consisting of the percentage of each fiber
orientation as a design variable. Constraints were applied to the
rate of change in the ratio of the total thicknesses of the two adja-
cent elements (i.e. ply drop-off rate). To improve the manufactura-
bility of a composite aircraft wing, Gou [26] divided the entire
structure into four regions, namely: upper skin, lower skin, front
spar and rear spar. He used the method of Davidon–Fletcher–Pow-
ell (DFP) to maximize the flutter speed by tailoring only the fiber
orientations in these regions.

Even though these methods require the calculation of the gradi-
ents, considering their higher convergence rate, they generally re-
quire fewer number of iterations than an evolutionary method.
However, the nature of the solutions, which are local optima, and
the extensive computational time often involved in numerical cal-
culation of the gradients are major drawbacks preventing their
wider application in this field. The calculation of the gradients
can be particularly challenging when evaluation of the objectives
involves time-consuming finite element analyses or costly
experiments.

3.2. Approximation methods

Since closed-form expressions of the objectives and constraints
often do not exist in a composite design problem, the primary opti-
mization problem might be replaced by a sequence of explicit
approximate sub-problems generated through the first or the sec-
ond order Taylor series expansions of these functions in terms of
the design variables [13]. As a result, the sub-problems can be
solved by a traditional optimization technique. The optimization
method used in PASCO, a computer code developed by Anderson
and Stroud [7] and Stroud and Anderson [100], is one of the earliest
examples of using an approximation technique in the design of
composite laminates. The method was based on Taylor expansions
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of the objective function and the constraints. Derivatives were cal-
culated numerically by making separate small increments to each
design variable. An optimization method based on the feasible
direction algorithm was used to solve the approximate problem
at each step. The method was tested on simple test cases; however,
the extension to the case of a complex structure, which might have
a large number of design variables and require a finite element
analysis, can be problematic since the evaluation of the derivatives
with respect to all the design variables is required. The sequential
quadratic programming technique, which uses a quadratic model
to approximate the objective function and a linear model of the
constraint, is another example of approximation methods being
used in variable stiffness design of composite materials [72,12].

Instead of fiber angles and thicknesses, Setoodeh et al. [89,92]
used the lamination parameters as design variables. The problem
of minimum compliance design of a rectangular plate was solved
using a combination of sequential quadratic programming and
method of feasible directions. This method relies on the in-plane/
bending behaviour of thin, symmetric composite laminates which
can be fully modeled with only four lamination parameters. In an-
other attempt, Setoodeh et al. [91] used Taylor expansion for a spe-
cial case where the approximate function was separable and each
of its terms could be expressed only as a function of the fiber-ori-
entation angles at one point. The approximate objective was ob-
tained by expanding the objective function in terms of the
components of the compliance tensors. To obtain a smooth distri-
bution of the fiber orientations, the design variables were associ-
ated with the nodes rather than the elements.

For simple test cases, an approximation scheme can produce
feasible or nearly feasible solutions with a good accuracy; how-
ever, the extension of the method to laminates with complex
shapes – analysed by finite element method – should require the
evaluation of all the derivatives at each design point and may be
hard to deal with when the objective function is characterized by
steep ‘‘peak and valleys”, as it is often the case when the fiber an-
gles are assumed as design variables [16]. In addition, the maxi-
mum allowable change in the design variables must be defined
by the user at each step and it plays a major role in the trade-off
between the accuracy and the convergence.

The response surface method [69] is another means of generating
an approximate model of a computationally extensive function. In
this method, instead of creating a local approximate model based
on the value of the function and its gradients at a certain point, an
approximate model is generated using a set of sample points over
the entire design space. The model is improved by gradually reduc-
ing the design space and sampling new points in promising areas. An
example is the work by Vandervelde and Milani [107] who used the
adaptive response surface method by Wang and Dong [111] to opti-
mize a multi-zone composite wing structure for vibration. A qua-
dratic response surface model was used to find the optimum
laminate for each zone. The formulation of the response surface is
problem dependent and can strongly affect the accuracy of the
approximation. A response surface method can find the global opti-
mum of a multi-modal function, but it may miss the global optimum
if the overall shape of the function is convex or if the initial points
cause an inappropriate reduction of the design space [111].

4. Optimality criterion

The optimality criteria methods are based on the derivation of an
appropriate criterion for specialized design conditions and develop-
ing an iterative procedure to find the optimum design [86]. A short
history of optimality criteria methods can be found in Logo [59]. In
this section the application of these methods in design of composite
materials is reviewed, categorizing them into three groups based on
the criterion used for optimization.
4.1. Strain energy

Khot et al. [45] were among the first who used an optimality cri-
terion for the design of composite materials. Their optimality con-
dition was an extension of the optimality criterion for isotropic
materials [108,109] and was stated as follows: ‘‘the optimum de-
sign is the one in which the strain energy of each layer bears a con-
stant ratio to its energy capacity”. They optimized the thickness
distribution of four layers with fibers oriented at 0�, 90�, +45�
and �45�. An iterative procedure was proposed that included
two steps; the first step aimed at scaling the overall thickness to
size the laminate to the limit specified by either a stress or a dis-
placement constraint, the second step entailed the change of the
relative thickness of the layers to achieve an even distribution of
the strain energy among layers. The method can be incorporated
into a finite element approach to optimize practical structures;
however, indirect consideration of the fiber orientations can lead
to a problem with numerous design variables.

In contrast, Pedersen [74] focused his attention only on the
optimization of the fiber orientations. In his work, energy density
of a uniform strain field was considered as the optimality criterion
to be maximized (for maximum energy absorption) or minimized
(for maximum stiffness). The closed-form mathematical expres-
sion was developed using the angle between the principal strain
coordinate system and the material coordinate system as the only
design variable. The optimum material orientation was obtained
by performing a sensitivity analysis of the specific elastic energy
with respect to the selected design variable. The method was also
applied to the case of a variable strain field, where the strains were
calculated by a finite element method [75].

In order to minimize the compliance and the price of a compos-
ite structure, Duvaut et al. [20] introduced a combined criterion
consisted of the work done by the external forces and the material
cost (i.e. a function of the fiber volume fraction). Using the stress
field found by a finite element analysis, they calculated the strain
energy and the cost at each element. The infimum of this function
provided the fiber volume fraction and fiber orientations for the
next iteration. The method could quickly reach an optimum solu-
tion; however, the uniqueness and globality of the solution is un-
sure. Setoodeh et al. [90] also used the complementary work
done by the external loads for the design of a structure with min-
imum compliance. The optimality criteria were shown to reduce to
the minimization of the complementary strain energy at each point
in the domain. Lipton and Stuebner [56] used a similar criterion in
the method called inverse homogenization technique. Khosravi and
Sedaghati [44] also used the strain energy, but in a two-level opti-
mization technique. The first level aimed at finding the best fiber
orientation by minimizing the strain energy, while the second level
searched for the optimum thicknesses to achieve a uniform strain
energy through the thickness. The new thicknesses were then
scaled to satisfy the stress constraint in the form of a failure
criterion.

Optimizing a structure by finding the minimum or maximum
strain energy has also been formulated with respect to the lamina-
tion parameters. The goal is to change the parameterization and
obtain a convex design space which is easier to solve than the ori-
ginal problem. Hammer et al. [32] and Setoodeh et al. [89] used
this formulation and considered the minimum compliance energy
as optimality criteria. Abdalla and Gürdal [2] also selected the lam-
ination parameters to maximize the natural frequency of compos-
ite panels. They developed a discrete optimality criteria based on a
generalization of the reciprocal approximation. Generally, using
the lamination parameters requires knowing the feasible domain
of the lamination parameters which, so far, has been achieved only
for relatively simple laminates [64]. Determining the feasible re-
gions of all 12 lamination parameters for a general laminate may
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require solving several optimization problems [19] and thus it is
far more complicated than being incorporated into an optimization
problem. In addition, the inverse problem should be solved to find
the stacking sequence that corresponds to the optimum lamination
parameters found during the optimization process. These are
among the main reasons preventing this parameterization from
being applied to complex structures with general laminates.

4.2. Co-alignment of principal directions

An interesting observation reported by Pedersen [75] is that
with equal principal directions for material, stresses and strains, al-
ways extremum energy solutions are obtained. However, an addi-
tional non-trivial extremum solution often exists which may be the
global optimum solution. Even for this case, it was proved that the
directions of the principal stresses and strains are identical, but dif-
ferent from the material principal axes. For a general anisotropic
material, Pedersen [77] showed that the optimum material is
orthotropic and the co-alignment of the principal strains and stres-
ses still holds. Thomsen [104] and Landriani and Rovati [51], who
found the optimum laminate by minimizing the elastic energy,
found the same colinearity between stresses and strains in the
optimum design; however, they also observed that in some cases,
such as angle-ply composites, the colinearity between stress, strain
and material direction might be lost. Setoodeh et al. [90] summa-
rized the observations from the previous works as follows: ‘‘the fi-
ber orientation for shear-weak materials coincides with the
principal stress direction, while for shear-strong materials this
may not be valid”. For the definition of shear-weak and shear-
strong materials, the reader is referred to Pedersen [77].

To design a composite laminate with a given volume, Pedersen
[76,77] used the colinearity between the principal strain and mate-
rial directions to optimize the fiber orientations, while the thick-
ness distribution was optimized using uniform strain energy. An
optimality criterion was developed to update the angle between
the material orientation and the current principal strain direction
in each element. The thicknesses were updated at each iteration
by simply multiplying the thickness of each laminate by the ratio
of its energy density to the average energy density of the entire
structure. The mutual influence of neighbouring elements on the
energy density of the current element could also be considered
by calculating the corresponding sensitivities. This approach was
also applied to non-linear anisotropic materials classified as pow-
erlaw elasticity [78] and was shown that both optimality criteria
(i.e. uniform energy density and co-alignment of principal direc-
tions of material, strain and stress) are valid. Pedersen [79] showed
that the optimum design found by this method corresponds to the
largest stiffness and the strongest design only when there is a con-
straint applied on the total volume.

The colinearity between principal stress, strain and material
directions was partially used in the fiber steering technique, which
aims at aligning the fibers with the principal stress directions at
each point of the structure. It was first used by Hyer and Charette
[37] to design a plate with a hole uniformly loaded at its two ends.
They used a stacking arrangement denoted as [±45/h]s, where h
showed the only layer in the laminate with variable fiber orienta-
tion. The fibers were initially aligned with the principal stress
directions for an isotropic plate. At each iteration, the fibers were
realigned with the new principal stress directions. The laminate
found by this method showed an improved tensile strength; how-
ever, the buckling loads were generally less than the baseline qua-
si-isotropic design. The code called computer aided internal
optimization (CAIO) developed by Kriechbaum et al. [48] also used
the alignment of the fibers with the principal stress direction. Cro-
thers et al. [18] who used this code to design the local reinforce-
ment of a notched plate reported that this method do not yield
an optimum structure when the buckling loads are critical. There
are other examples where the fiber steering technique is used to
improve stiffness [106] and strength [54,55] of composite
structures.

Tosh and Kelly [105] showed that in some cases adding fibers in
the direction orthogonal to the first principal stress direction can
improve the strength; therefore they suggested to place a small
number of plies in the orthogonal direction besides those plies al-
ready aligned with the first principal stress direction. A decompo-
sition of combined loadings into the constituent single-loads was
also suggested with the goal of aligning the fiber orientations at
each point to the major principal stress directions obtained for
each single load case. Successful application of the superposition
technique was demonstrated only on a pin-loaded plate with ten-
sion applied at the two ends.

To achieve the maximum strength, Tosh and Kelly [105] sug-
gested steering the fibers to the direction of the load paths instead
of aligning them with the principal stress directions. The load
paths were defined as regions where the load in a selected direc-
tion remains constant from the point of application to the point
of reaction out of the structure. Kelly et al. [42,43] described a pro-
cedure for plotting load paths and load flow in structures using the
stresses found by a finite element analysis. The load paths and fiber
steering techniques, which was employed in the design of an open
hole tension plate, showed similar results, the major difference
was that no fiber was terminated on the boundary of the hole in
the load path configurations.

4.3. Other criteria

The well known Fully-Stressed-Design (FSD) is an optimality cri-
terion widely used in the design of isotropic materials. This crite-
rion states that every component in the optimal structure should
be on the verge of the failure for at least one of the applied loads
[15]. The optimality criterion is easy to implement for structures
made of isotropic materials by using a stress rationing algorithm;
however, its application to composite materials is more complex
as it requires optimization of the thickness and the fiber orienta-
tion. Kurland [50] used an educated trial and error to find the fiber
orientation and thicknesses for the next iteration of the FSD meth-
od. This combination of thickness and fiber orientation optimiza-
tion was developed into a computer code called Hybrid
Algorithm for Laminate Optimization (HALO) whose application
to several test cases was demonstrated by Fine and Springer [22].
The attempt by Leissa and Vagins [53], who designed a non-homo-
geneous material for yielding a known optimum internal stress
field (e.g. a uniform stress field), can also be categorized in this
group. It has been shown [24] that a structure optimized with
the FSD method may fail to be the lightest design. For composite
structures, the scenario becomes even more inefficient as either
several iterations are required or the method might never
converge.

Besides the criteria described above, there are other optimality
criteria developed for special cases. Examples are the momentless
criteria by Pao [71] and a combined criterion by Pedersen [73]. The
momentless criterion was derived for axisymmetrically loaded
pressure vessels with ellipsoidal bulkheads using the volumetric
ratio of the fibers at each point as design variables. The combined
criterion, which was a linear combination of the bending stiffness-
es was proposed for a special case of orthotropic laminates. It was
shown to be proportional to the inverse of the displacements, the
buckling load and the square of natural frequencies. The functional
was derived for a rectangular plate and was reported to be very
sensitive to the displacement pattern (i.e. vibration or buckling
modes). The optimum fiber orientation and thickness at each ele-
ment was found by simply setting the gradient of the optimality
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criterion to zero. Thus, being unconstrained and having a station-
ary point was a necessary condition for the optimization problem.
This assumption was found to be incorrect for many cases where
the thickness optimization was involved.

5. Topology optimization

Topology optimization finds the optimum distribution of mate-
rial within a prescribed design domain for a given set of loads and
boundary conditions. The optimal layout results from an iterative
process which involves the gradual removal of material in the re-
gions where the material is redundant and adding material in the
areas of the structure where it is required. When the objective is
a local state variable, the problem well suits an optimality criterion
method, such applications are getting a growing attention from
designers in different fields. On the other hand, when the objective
is a global state variable it can be solved by variety of other optimi-
zation methods but it requires the sensitivity analysis of the objec-
tive with respect to each design variable. Such applications have
not been found in the current literature. Generally, topology opti-
mization has been only recently applied to the design of composite
structures and further research is required to improve its perfor-
mance and increase its applications. This section briefly reviews
the development and application of topology optimization meth-
ods for design of composite structures.

Ignoring the fiber orientation simplifies the composite design
problem and enables classical topology methods to find the mate-
rial distribution. Since the advantages of the composite materials
cannot be fully put into practice without consideration of material
orientation, examples using only density as design variable are
rare. One of such applications is reported by Tapp et al. [102]
who designed a sandwich structure in which the fiber orientation
of the face sheets was kept constant for easy manufacturing. Topol-
ogy optimization of both the face sheets and the core was obtained
by adding or subtracting material from regions of high or low
stress, respectively. Stegmann and Lund [99] used a similar ap-
proach but resorted to Solid Isotropic Material Penalization (SIMP)
to generate a structure with only solid or void layers.

In contrast to the first group, there are methods dealing exclu-
sively with fiber orientations. Discrete material optimization
(DMO, [64] described in Section 2.4, is one of these methods in
which the shape and thickness of the structure are fixed and the
problem merely deals with parameterization of the fiber orienta-
tions. These methods are based on ideas from multiphase topology
optimization in the sense that the material stiffness (or density) is
computed as a weighted sum of stiffness (or density) of candidate
materials.

Simultaneous consideration of material distribution and orien-
tation is essential for designing an optimum composite structure.
One simple approach is to optimize the density using a classical
topology method, while the fiber orientation is aligned with the
first principal stress direction (fiber steering technique). Ma et al.
[65] used this technique, where the material distribution was opti-
mized using multi-domain topology optimization (MDTO) and the fi-
ber orientations were determined by using either the principal
stress directions or a proposed analytical equation which is up-
dated at each iteration. MDTO is an extended form of the classical
topology optimization called homogenization based topology optimi-
zation (HBTO, [11]). Fuchs et al. [23] also considered the alignment
of the fibers with the first principal stress direction, but the mate-
rial distribution was obtained by driving the densities to zero in
under-stressed regions and to one in the remaining ones.

Another method that accounts for both the density and fiber
orientation is the layerwise topology optimization suggested by
Hansel and Becker [33]. This method starts with a symmetric
laminate composed of four single layers with equal thickness and
with the fibers oriented at 0�, ±45�, and 90�. At each point, a single
layer whose fiber angle differs significantly from the principal
stress directions is removed. The next step updates the stress field
and removes the cells whose maximum principal stress is below a
user-defined threshold. In another work, Hansel et al. [34] used the
same formulation but a genetic algorithm was introduced to re-
move unnecessary layers and cells. To partially overcome the
numerous analyses required by a genetic algorithm, some addi-
tional criteria for removal and supplement of material was in-
cluded. In this case, the higher computational cost of the genetic
algorithm did not lead to a remarkable improvement of the results.

Similar to two previous works, Zhou and Li [118] also formulated
a topology optimization problem which used different criteria to
update the fiber orientations and densities. They built a truss-like
continua (see Prager and Rozvany [82] for definition of the truss-like
continuum) by finite element method. At each iteration, the fiber
orientations were updated by solving the problem of minimum
compliance, while fiber densities were updated by a resizing
scheme based on stress and strain energy. At the end of the process,
they transferred the truss-like continua to discrete structures. This
process is similar to forming streamline in a flow field. Errors might
emerge in this process, but Prager [81] and Zhou and Li [116]
showed that these errors would decrease rapidly as the number
of the members increases. Finally, the shape optimization of trusses
was performed by eliminating overly thin members. By the same
token, this method can be used to determine the fiber orientation
distribution within a composite structure [117].

The use of different optimality criteria to find the optimum den-
sity and fiber orientation generally simplifies the optimization
problem; however, such criteria may not be easy to find and, if
not properly defined, may misjudge the effect of each variable on
the final objective. Setoodeh et al. [90] used a single criterion for
optimizing fiber orientations and layer thicknesses by expressing
the strain energy density of the structure in terms of fiber orienta-
tions and fictitious densities. The minimum strain energy problem
was then converted to a minimization of the complementary strain
energy at each element. First, using the gradient information, the
fiber angle was updated to achieve a lower value of the strain en-
ergy. Then, using this fiber angle, the density was optimized to ob-
tain the minimum complementary strain energy. Solid Isotropic
Material Penalization (SIMP) was used to generate a black-and-white
design almost free of any gray areas (i.e. material or void only) and
the Cellular Automata was used to reduce the computational effort.

6. Direct search methods

Designing a composite structure with a variable stacking se-
quence often develops into a global optimization problem with a
mix of continuous and integer variables where usually the sensitiv-
ities are extremely difficult to compute. Direct search methods are
particularly useful for these problems, because they opt out the use
of any gradient information; however, they may present other
shortcomings, as discussed in this section. Here these methods
are classified into deterministic and stochastic methods.

6.1. Deterministic methods

A deterministic direct search method (e.g. pattern search, meth-
od of Hooke and Jeeves, Nelder–Mead method) may fail to obtain
the global solution when the corresponding optimization problem
has several local optima. In addition, these methods are generally
not efficient in solving problems with a large number of design
variables (e.g. more than ten variables). Such circumstances often
occur when the fiber orientations in a composite structure are
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selected as design variables. Therefore, deterministic methods are
not popular in variable stiffness design of composite laminates.
Examples of deterministic direct search methods being used for
variables stiffness design are Nelder–Mead (N–M) simplex method
[66] and Box’s complex method [47].

Manne and Tsai [66] resorted to the ply-drop and sub-laminate
concept to formulate the variable stiffness design problem. The de-
sign variables included the fiber angles of the plies in the reference
sub-laminate, the number of plies at the corresponding angle, and
the number of times the sub-laminate is repeated in each zone. The
stacking sequence of the reference sub-laminate was kept constant
for all the design zones, whereas the number of repetition of the
sub-laminate could vary from one zone to another. The objective
was minimum weight with constraints on stiffness, strength and
manufacturing cost. The problem was solved using N–M method
in conjunction with a finite element solution. Manne and Tsai com-
mented on shortcoming of the N–M method in getting trapped in
local optimum and confirmed that numerous local optima exist
in the considered design problem. Kim et al. [47] used the Box’s
complex method to optimize only the thickness distribution of a
composite structure manufactured by compression molding pro-
cess. This method finds a local optimum by iterative use of two
operators, ‘‘expansion” and ‘‘contraction”, acting on a simplex of
size 2N (as oppose to Nelder–Mead that uses ‘‘reflection”, ‘‘expan-
sion”, ‘‘contraction” and ‘‘shrink” and operates on a simplex of size
N + 1), where N is the number of design variables. The two methods
are similar in nature and highly sensitive to the number of design
variables.

6.2. Stochastic methods

Stochastic optimization algorithms, such as genetic algorithm,
evolutionary programming and simulated annealing, are popular
due to their capability to find a global optimum and their robust-
ness with respect to the deterministic approaches; however, they
are generally computationally intensive [113]. Among numerous
stochastic optimization algorithms, genetic algorithms are the
most commonly used in variable stiffness design of composite
laminates.

Legrand et al. [52] used a genetic algorithm to find the optimum
orientation of fibres at each element of a composite plate. The fibre
trajectories were then expressed through the Runge–Kutta algo-
rithm. The attempt was judged successful as it could interpret a
2D continuous field for the fiber path. This method requires a large
number of elements in order to represent the continuous changes
in the fiber angles and is applicable only to single-layer laminates.
For multi-layer laminates, Antonio [8] used a hierarchical genetic
algorithm and considered a single stacking sequence for each panel
of a stiffened structure. The stacking sequence of each panel and
the stiffener geometry were chosen as independent design vari-
ables during the optimization. Although easy to implement, an
independent design of the stacking sequences in adjacent panels
usually results in a non-blended structure, which may not only in-
crease the lay up cost, but also be structurally unsafe due to
discontinuities.

Kim et al. [46] are among the first who targeted the blending is-
sue in composite laminates designed with a genetic algorithm.
They applied a genetic algorithm to minimum weight design of a
composite structure divided into several patches. In their method,
the minimum number of layers at each patch was determined by
means of an artificial ply, a super-ply which has the best property
of a composite laminate in all directions. The artificial plies were
then replaced by real plies and the fiber orientations of the resulted
laminates were optimized with a genetic algorithm. In order to sat-
isfy the continuity of the fibers, the fiber orientation of all patches
were adjusted with the patch with the maximum number of layers.
A ply was added to any patch that did not satisfy the strength
requirement and the genetic algorithm was repeated to find the
optimum fiber orientations. A good level of blending can be
achieved with this method, but the optimality of the final solution
is questionable since the most critical patch determines the lami-
nation sequence of the entire structure.

To partially account for the contribution of the non-critical
points in determining the fiber orientations within the structure,
Soremekun et al. [97] introduced a two-step methodology based
on the sub-laminate concept. First, the individual panels in any
two-dimensional array of laminated composite panels were opti-
mized separately. Then sub-laminates with common thickness
zones across multiple panels were identified and re-optimized by
using blended stacking sequences. The identification of the sub-
laminates was performed by the user and could be trained to reach
a high-performance design or a design with better blending prop-
erties. A similar approach was adopted by Zehnder and Ermanni
[114], who modelled the structure as an assembly of several over-
lapping patches, where genetic algorithm was used to define the
material and the fiber orientation at each patch. Their method re-
lied on the user to define the patches’ geometry, which can be con-
sidered as a major drawback of this method. In another work,
Zehnder and Ermanni [115] studied the optimum shape and place-
ment of a single patch placed on a shell structure made of one base
material. The patch design introduced is far underdeveloped to be
efficiently used for breaking down even a simple structure to an
assembly of overlapping patches. In addition, the optimality of
the solution strongly depends on the quality of the pre-defined
assembly.

Blending constraints are also used to achieve better blending
properties in a design found by genetic algorithm. Liu and Haftka
[58] proposed to apply constraints on a measure of the material
composition continuity and the stacking sequence continuity be-
tween two adjacent panels. The continuity was measured by the
ratio of the number of continuous layers to the total number of lay-
ers. Their optimization method included two levels; at the global
level the material composition of each element was determined
and at the local level a genetic algorithm was used to find the
stacking sequence of the plies. The constraints could be adjusted
to provide solutions with different level of continuity. It was dem-
onstrated that a substantial improvement in continuity could be
achieved with a minor weight penalty when the method was ap-
plied to the design of a composite wing structure; however, in this
particular test case, the small number of allowable fiber angles ru-
led out the use of the stacking sequence continuity constraints. In a
more general problem, enforcing the continuity constraints may
create a highly constrained problem, which can be very difficult
to solve with a genetic algorithm.

Some authors suggested modifying the genetic algorithm itself
to achieve a continuous structure without any additional con-
straints. The multiple elitist genetic algorithm of Soremekun
et al. [96] has been considered by Adams et al. [3] as one of these
attempts that can help achieving a globally blended solution by
providing a large spectrum of alternative elite designs; however,
the work was originally developed for constant stiffness design
and neither aimed at nor could guarantee achieving a globally
blended design.

McMahon and Watson [67] proposed a parallel genetic algo-
rithm with migration where the populations representing each pa-
nel of a multi-panel structure evolve in parallel, and periodically
send migrant individuals to adjacent populations. The migrating
individuals transmit the information between the adjacent panels
and increase the similarity between the lamination sequences of
two adjacent panels. Adams et al. [3] slightly changed the migra-
tion procedure where the migrant individuals were stored and
were referred to as needed to assess the compatibility of the



8 H. Ghiasi et al. / Composite Structures 93 (2010) 1–13
current evolutionary trends with neighbouring populations. The
individuals that were evolving closely (the similarity was mea-
sured by a metric called edit distance) to those in the migrant pop-
ulation from adjacent panels were rewarded by an increase in their
fitness value. A limited success was achieved in designing a com-
pletely blended overall structure and the results were reported to
include structures with varying degree of blending property. Evo-
lutionary pressures were controlled through a user defined scaling
factor that modified the severity of the penalties imposed for
blending mismatches. These penalties, however, were found to
hinder the convergence to a global optimum by creating local op-
tima, which are artifacts of the algorithm itself, in the search space
[4]. Also, increasing the number of migrants had an adverse effect
and caused the GA to converge to locally non-optimal laminates
with sometimes severe mismatch between adjacent panels.

Rather than performing several parallel genetic algorithms,
which can be computationally cumbersome, Adams et al. [4] pro-
posed a guide-based genetic algorithm. This method assumes that
the lamination sequences of all the panels can be obtained from a
guide laminate by determining the number of the contiguous inner
or outer plies to be removed from the guide laminate. A GA was in
charge of generating a population of lamination sequences that
guided the overall design process. This formulation reduces the
dimensionality of the problem and eliminates the need for conti-
nuity constraints; however, the simplified definition of blending
used in this method entails the loss of flexibility to trade the degree
of blending against weight. It was reported that this method con-
sistently produced better solutions than the parallel GA [3]. Adams
et al. [4] assumed the individual panel loads to be constant during
the design process. This shortcoming was later targeted by Adams
et al. [5] and Seresta et al. [88], who expanded the method for the
case where the local loads for individual panels were determined
through a global-level analysis. The global/local analysis was iter-
ated until the convergence was achieved. The stacking sequence
continuity achieved by the guide-based genetic algorithm was re-
ported higher than the one achieved by using the continuity con-
straints [58].

Tatting and Gürdal [103] used a three parameter curvilinear fi-
bre path definition to model the fiber orientation in variable-stiff-
ness laminates. A genetic algorithm was used to optimize the fiber
path for maximum buckling load. A similar trend was used by
Huang and Haftka [36], who resorted to a piecewise bilinear inter-
polation function to represent the distribution of the fibers near a
hole in each layer of a multilayer composite laminate. The optimi-
zation process entailed a combination of conjugate gradient meth-
od and a genetic algorithm. The use of a parametric fiber path
significantly reduces the number of design variables as well as it
guarantees the continuity in the fiber path of each layer; however,
the quality of the final solution strongly depends on the selected
parametric function, whose definition is not a straightforward task
for a structure with a complex geometry.
7. Multi-level optimization

Solving an optimization problem that includes all the variables
describing a complex structure is impractical. Multilevel ap-
proaches are capable of breaking down the optimization problem
into several optimization problems that can be solved separately
in an iterative process. A hierarchical decomposition divides the
problem into a system level problem and a set of uncoupled com-
ponent level problems. Such hierarchical decomposition has been
used in the design of metallic and composite structures
[94,10,30]. There are also non-hierarchical decompositions that di-
vide the problem into several parallel problems. The most common
form of this decomposition applied to composite materials consists
of decoupling the optimization of the thicknesses from that of the
fiber orientations [35]. At one level, only the thickness is opti-
mized, leaving the search for the best fiber orientation for each
layer to the second level. Application of the two mentioned types
of decomposition in variable stiffness design of composite materi-
als is studied in this section.

7.1. Hierarchical substructuring

A hierarchical decomposition of the design problem has been
widely used for the design of complex systems made of traditional
metallic materials. Schmit and Mehrinfar [87] were the first who
extended and applied this method to the design of a hat-stiffened
composite panel. They divided the design variables into system le-
vel and component level variables. At the system level, the weight
of the structure was minimized subject to strength, deflection and
overall buckling constraints. At this level, the hat-stiffened struc-
ture was modelled with an equivalent laminate, where the thick-
ness of its four layers (i.e. with fibers at 0�, 90� and ±45�) were
the only design variables. At the component level, the detailed de-
sign variables were obtained by minimizing the change in the stiff-
ness of the skin panels subject to a set of local buckling constraints.
The optimization procedure employed for both system and compo-
nent levels was based on the quadratic extended interior penalty
function which led to a sequence of unconstrained minimization
problems, each solved with the modified Newton method. In their
work, the design variables were only the thickness of the lamina
with predetermined fiber angles. In order to weaken the coupling
between the two levels and to ensure convergence of the overall
design, an appropriate decomposition guided by insight into the
physics of the problem and a proper modeling approach are neces-
sary. For simple structural models, the integration of the two levels
can be handled well; however, for complex configurations, finding
an effective decomposition can be cumbersome and the resulting
solution may be suboptimal.

Liu et al. [57] minimized the weight of a wing structure using
continuous optimization of thicknesses of four plies with orienta-
tions of 0�, 90�, and ±45�, at the upper level. At the lower level,
the number of plies of each orientation (rounded off to an integer
number) was specified and a permutation genetic algorithm was
used to optimize the stacking sequence for buckling load maximi-
zation. A response surface trained by performing hundreds of panel
optimizations was used to estimate the optimal panel buckling
load during the upper-level optimization. The use of a response
surface method in multilevel approach is also reported by Ragon
et al. [83,84]. In their earlier work [84], the optimization was per-
formed with the same objective function (structural weight) at
both wing and panel level. Using the same objective at two levels
could yield situations where no feasible solution exists for the low-
er level problem. To solve this problem, Haftka et al. proposed
using a maximum margin formulation at the lower level. That is,
at the panel level the objective of minimizing weight was changed
to that of maximizing the constraint margin; if no feasible design
was available, then the algorithm could search the design with
the smallest constraint violation [31].

Another approximation scheme was suggested by Sobieszczan-
ski-Sobieski et al. [94] who proposed calculating the sensitivity of
the derivatives of the lower-level optima and using them during
the upper-level optimization. This method has not been used for
composite materials probably due to problem of working with
the functions which are highly non-linear with respect to the sys-
tem level design variables.

Hierarchical decomposition may also be used to break down the
system to several component-level optimization problem linked
together through a global-level analysis. In this case, no optimiza-
tion is performed at the system-level, but the system-level analysis
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is used only to update the information at the component level. For
instance, Duvaut et al. [20] proposed a decomposition where the
component-level optimization resorted to a stress field calculated
by a global-level analysis. The method by Adams et al. [5] also used
the local loads for each panel determined through a global-level
analysis. The method was claimed to converge quickly; however,
the uniqueness of the obtained solution and its optimality for
being a global or a local optimum cannot be proven.

7.2. Non-hierarchical decomposition

One of the earliest applications of a non-hierarchical decompo-
sition in design of composite material is reported by Watkins and
Morris [112]. In this method, at the upper level the optimization
was applied to the entire structure, where the layer thicknesses
were the only design variables. At the lower level, the fiber orien-
tation at each element was considered as design variables and the
problem was to minimize the weight while constraining the
change in stiffness of the element to a minimum. This ensured that
the stiffness, and hence the load paths, within the overall structure
do not change substantially, thus the continuity was preserved
when the solution returned to the upper-level optimization.

Kam and Lai [41] and Kam and Chang [40] used a similar
decomposition, where the upper level consisted of finding the fiber
orientation for each layer of a multi-layer laminate that maximizes
the material efficiency, such as stiffness, strength, natural fre-
quency or damping. While a quasi-Newton method was used at
the first level, the second level used an optimality criterion to scale
the thickness of each layer to the constraint surface. A similar
decomposition was used by Huang and Kroplin [35] to design a
laminate whose fiber orientation was specified by only one vari-
able, thus all the derivatives required for the first level were ana-
lytically calculated. All these works reported a good convergence
property and independency on the constraint’s nature (stress or
displacement). Soeiro et al. [95] and Antonio et al. [9] suggested
using a conjugate gradient method at the first level and calculating
only the maximum constraint sensitivity at each iteration. The pro-
posed method has a better computational efficiency and was ap-
plied to a multi-element structure. Khosravi and Sedaghati [44]
used this method to find the fiber angle and thickness at each ele-
ment of a complex structure analysed by a finite element method.

In addition to the common decomposition of the problem into
fiber angle optimization and thickness optimization, other types
of decompositions have been proposed for some particular test
cases. To design a balanced-angle-ply-symmetric laminates with
membrane loads Conti et al. [16] suggested finding some elastic
properties and the corresponding lamination sequence, separately.
They proposed to search the optimum value for A11 and A22 (the
first two diagonal elements in the stiffness matrix), assuming that
the feasible domain for a laminate with limited possible fiber ori-
entations and thicknesses is known. It was then shown that any
pair of elastic characteristics can be obtained with maximum three
orientations. Thus, the second level was formulated to choose the
angle triplets which can yield these engineering characteristics. A
graphical method, called space partitioning, was proposed to solve
this problem. Another decomposition is reported by Lopes et al.
[60,61] and is based on the observation that the impact footprint
on the alternative laminate is narrower than on the traditional de-
sign with fibers oriented only at 0�, 90�, ±45�. Their method en-
tailed two steps. First, it searched the traditional design that
provides the best stiffness properties. Second, redesigning the ob-
tained laminate to better withstand impact loads by dispersing
its stacking sequence while keeping similar stiffness properties.
Another example of possible decompositions is separating the
optimization of the number and the position of the layers within
a laminate subjected to in-plane loads.
There are two advantages in using decomposition techniques.
First, by employing a decomposition technique and a multilevel
algorithm the number of variables is reduced during the optimiza-
tion process, which can significantly reduce the computational ef-
fort required. Second, by performing the optimization at two
separate levels, one can choose an appropriate optimization meth-
od that is particularly efficient for each sub-problem and benefits
from advantages of two or more optimization methods. The imple-
mentation of decomposition technique also suffers from two main
shortcomings. First, decomposition approaches require physical in-
sight into the problem and needs establishing a close integration of
the tow levels, which has prevented their ready application with
the black-box codes often used in the aircraft industry [83]. Sec-
ond, the efficiency of the method (i.e. convergence) and the quality
of the solution (i.e. optimum or near-optimum) strongly relies on
the decomposition; for instance, it is recognized that a minimum
weight structure is not necessarily made up of a collection of min-
imum weight substructures [93]. Furthermore, difficulties may
arouse in convergence when the lower level problems are de-
scribed with highly non-linear functions in terms of design
variables.

8. Hybrid methods

A hybrid method refers to an optimization algorithm that uses
more than one optimization technique without decomposing the
original problem into sub-problems. A hybrid method usually iter-
atively switches between two or more optimization methods in or-
der to benefit from the advantages of each constituent method.
Although this type of optimization technique is found promising
for constant stiffness design of composite laminates [25], their
application in variables stiffness design is dominated by multi-le-
vel methods, which besides having the potential of gaining benefits
from more than one optimization technique, can also reduce the
size of the problem.

Huang and Haftka [36] combined the Conjugate Gradient (F–R)
and a genetic algorithm to avoid local optima in the design of the
fiber orientations near an open hole in a multilayer composite lam-
inate. The only design variable was the fiber angle in one layer of
the multi-layer laminate and was assumed to have a continuous
distribution represented by piecewise bilinear interpolation func-
tions. The algorithm consisted of optimizing the failure load using
conjugate gradient (a local optimum) and performing a genetic
algorithm on a population generated by random mutation of the
local optimum. The objective of the genetic algorithm was to move
the optimization to a better region, while the conjugate gradient
method was used to quickly find the local optimum in this region.
Rao [85] used a similar combination but used ant colony optimiza-
tion (ACO) for the global search, while a fast local search was per-
formed by a neighbourhood search algorithm built with tabu
search features.

For the particular case study of the in-plane/bending behaviour
of a thin symmetric composite laminate (which can be fully mod-
eled using only four lamination parameters regardless of the actual
number of layers) Setoodeh et al. [89,92] solved the minimum
compliance problem by combining the sequential quadratic pro-
gramming and the method of feasible directions. This mix of direc-
tions was adjusted to ensure feasibility while retaining fast local
convergence properties.
9. Comparison and discussion

Table 1 compares the optimization methods reviewed in this
paper. Three major features were considered in this comparison,
namely, convergence, robustness and simplicity. Convergence is



Table 1
Comparison of the optimization methods used in variables stiffness design of a composite structure.

Method Convergence Robustness Simplicity

Gradient-based Incremental move in gradient direction *** * *

Davidon–Fletcher–Powell (DFP)
Method of feasible directions
Linear approximation ** * **

Sequential quadratic programming
Response surface method ** * *

Optimality criterion Strain energy ** * **

Fiber steering (aligning the fibers with first principal stress direction or load path) * * **

Fully stressed design (FSD) ** * **

Combined criteria * * *

Topology Thickness-only optimization ** * *

Thickness and orientation optimization with a local objective ** * *

Direct search Nelder–Mead ** * ***

Box’s complex methods
Genetic algorithms * *** ***

Multi-level Hierarchical decomposition (system and component level) *** * *

Non-hierarchical decomposition (thickness and orientation)

Hybrid Conjugate gradient + genetic algorithm ** ** *

Sequential quadratic programming + method of feasible direction

* Poor.
** Moderate.

*** Good.
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related to the number of iterations required and the amount of
computation involved at each iteration. Robustness shows the
algorithm’s applicability to a wide range of optimization problems.
For instance, an algorithm that can be easily applied to a black-box
problem is more robust than the one that requires an insight into
the physics of the problem. This measure also shows the algo-
rithm’s ability in getting close to the real optimum and in finding
the global solution of a given multimodal problem. Simplicity in
application judges the ease of computer programming and not
requiring the interaction with the user. For instance an algorithm
that requires fewer user-defined parameters than another is a sim-
pler algorithm. A summary of the advantages and disadvantages of
each method is presented in Table 2.

This review revealed that two similar approaches, namely the
optimality criterion methods and topology optimization with a lo-
cal update rule, have attracted the most attention from the
researchers dealing with variable stiffness design of composite
materials. These methods break down the complex design problem
with numerous design variables into a set of simple local problems
with a simple updating rule. A major limitation of these methods is
the possibility of establishing a local criterion whose optimum cor-
responds to the optimum solution of the original design problem.
Minimum weight, maximum stiffness, maximum energy absorp-
tion and minimum material cost are the objectives that can be eas-
ily casted in this formulation; in contrast, problems involving
optimization of a global state variable, such as buckling, natural
frequencies, overall displacement and manufacturing cost are not
appropriate for these methods.

Multi-level optimizations are ranked next and well suit a vari-
able stiffness design problem because of decomposing the original
problem into several smaller problems. The decomposition, which
must efficiently maintain the interaction between the sub-prob-
lems, is the key to the optimality of the final solution. The other
advantage of these methods is the chance of taking advantage of
more than one optimization methods at each level.

Although most direct search methods are not favourable for
variable stiffness design due to their low tolerance to a growing
number of design variables; genetic algorithms have well proven
their ability to handle this type of problems. Despite their simplic-
ity, which is the key to their popularity, slow convergence and dif-
ficulties in maintaining the continuity of the structure are the main
drawbacks of these algorithms that withhold their wide applica-
tion for variable stiffness design of composites. Finally, gradient-
based methods and hybrid methods, which also usually derive
benefit from one of the gradient-based methods for a fast conver-
gence to a local solution, are found to be less favourable in variable
stiffness design mainly due to difficulties in evaluation of deriva-
tives with respect to numerous design variables.

10. Concluding remarks

This paper along with its first part, previously published in Com-
posite Structures [25] provides a thorough review of the optimiza-
tion methods used in the design of structures made of laminated
composite materials. This part of the review particularly focused
on variable stiffness design of composite laminates. The aim was
twofold; first, to provide a reference to composite designers willing
to select the optimization technique that can best solve a given
stacking sequence design problem, and second, to highlight prom-
ising areas that require further attention and deserve future
research.

In variable stiffness structures, the arrangement of the constit-
uent materials varies from one region within the structure to an-
other and thus numerous design variables are required to
represent the spatial variation in stacking sequence. Different for-
mulations used to achieve the continuity in the structure were re-
viewed, among which the patch design was found to be the most
commonly used technique due to simplicity in formulation; how-
ever, a proper definition of the patches, which must be done by
the user, is important and requires expertise and prior knowledge
about the problem.

After reviewing several optimization methods, the methods
used in variable stiffness design of composite materials are ranked
as follows:

(1) If applicable, the optimality criterion methods and topology
optimization with a local update rule are the best candidates
for variable stiffness designs. These methods break down the
complex design problem into a set of simple local problems
with a simple updating rule.



Table 2
Advantages and disadvantages of the optimization methods applied to the variables stiffness design of a composite structure.

Methods Advantages Disadvantages

Gradient-based Incremental move in gradient direction Converges fast Finds only a local optimum
Davidon–Fletcher–Powell (DFP) Requires evaluation of derivatives
Method of feasible directions Deals with continuous variables
Linear approximation Can quickly find an optimum or a near

optimum solution for simple problems
Finds only a local optimum

Sequential quadratic programming Can be solved by a classical optimization
method available as commercial computer
codes

Requires evaluation of derivatives

May converge to a non-optimum
solution for a highly non-linear
problem

Response surface method Requires no derivative Response surface function is problem
dependent

Can find the global optimum May miss the global optimum
The final solution may depend on the
initial points

Optimality criterion Strain energy Introduces a local criterion that can be
optimized at each point independently

Can optimize only the objectives
related to minimum or maximum
energy (e.g. weight, compliance,
stiffness, energy absorption)

Can optimize both material direction and
material distribution
Can be applied to multi-layer laminates

Fiber steering (aligning the fibers with
first principal stress direction or load
path)

Introduces a local criterion that can be
optimized at each point independently,
simple updating rule

Can find only the largest stiffness and
the strongest laminate

May yield a non-optimum solution
Can optimize only material direction

Fully stressed design (FSD) Introduces a local criterion that can be
optimized at each point independently

Can find only the lightest structure

Simple in concept May yield a non-optimal solution
Is difficult to simultaneously update
thickness and fiber orientation

Combined criteria Introduces a local criterion that can be
optimized at each point independently,

Problem dependent

Can optimize more than one objective Requires defining appropriate criteria
for each problem and objective

Topology Thickness-only optimization Simple formulation Does not take advantage of the fiber
orientation

Simple updating rule
Thickness and orientation optimization
with a local objective

Introduces a simple independent
optimization problem at each point of the
structure

Optimality criterion and updating
rule are highly problem dependent,

Can find only a local optimum
Only for single-layer laminates

Direct search Nelder–Mead Does not require gradient information, Finds only a local optimum
Box’s complex methods Relatively fast in convergence (faster than

evolutionary but slower than gradient-based
methods)

Limited to small number of design
variables (approx. 10 variables)

Difficult to maintain continuity of the
structure

Genetic algorithms Does not require gradient information, Slow convergence
Can find the global optimum, Difficult to maintain continuity of the

structure
Can optimized large number of design
variables,
Can be applied to a black-box problem with
any type of objective

Multi-level Hierarchical decomposition (system and
component level)

Breaks down the problem into simpler
problems

Its performance highly depends on
decomposition,

Non-hierarchical decomposition
(thickness and orientation)

Can benefit from more than one optimization
method

May fail to reach optimum

Fast convergence

Hybrid Conjugate gradient + genetic algorithm Can benefit from advantages of more than
one optimization method,

Slow convergence (faster than a pure
evolutionary method but can be
slower than almost all other
methods)

Sequential quadratic
programming + method of feasible
direction

Can find the global optimum,

Can be faster and/or more robust than the
constituent methods
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(2) When such optimality criteria cannot be easily established,
multi-level optimization methods are the best candidate.
These methods decompose the original problem into several
sub-problems, each with a smaller number of design vari-
ables. The possibility of such decomposition is the major
concern in using these methods; however, composite design
problems have been demonstrated to provide a good possi-
bility for such decompositions in different situations.

(3) In problems where neither an optimality criterion nor a
multi-level method can be used, depending on availability
of the gradients a genetic algorithm or a gradient-based
method or a combination of these two methods is
recommended.
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