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Designing an optimized composite laminate requires finding the minimum number of layers, and the best
fiber orientation and thickness for each layer. To date, several optimization methods have been intro-
duced to solve this challenging problem, which is often non-linear, non-convex, multimodal, and multi-
dimensional, and might be expressed by both discrete and continuous variables. These optimization
techniques can be studied in two parts: constant stiffness design and variable stiffness designs. This
paper concentrates on the first part, which deals with composite laminates with uniform stacking
sequence through their entire structure. The main optimization methods in this class are described, their
characteristic features are contrasted, and the potential areas requiring more investigation are
highlighted.
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1. Introduction

The advantage of composite materials is that they provide
excellent mechanical properties. However, using this advantage re-
quires the optimization of shape and size and the proper place-
ment of fibers within the material, which gives a good
opportunity to tailor the material properties; however, it increases
the complexity of the design problem. This complexity exists, not
only because of numerous design variables, but also because of
having a multimodal and variable-dimensional optimization prob-
lem with unattainable or costly derivatives.

This paper classifies and compares optimization techniques
used for optimal lay-up selection of laminated composite materi-
als. The aim of the review is to provide a reference for the selection
of the technique that is most appropriate to solve a given problem.
More details about the algorithms are found in Haftka and Gurdal
[1], Gurdal et al. [2], and other references provided in the following
sections.

In the literature, different classifications for optimization of
composite laminate have been suggested. For example, Fang and
Springer [3] identified four categories for the optimization meth-
ods, namely: (1) analytical procedures, (2) enumeration methods,
(3) heuristic schemes, and (4) non-linear programming. Abrate
[4], on the other hand, decided to classify optimization problems
with respect to their objective functions that can be either one or
a combination of in-plane properties, flexural rigidity, buckling
load, natural frequency, and thermal effects. Venkataraman and
Haftka [5] suggested another classification for composite panels,
which categorized the design methods into two groups: (1) single
laminate design, and (2) stiffened plate design.

We follow the classification provided by Setoodeh et al. [6], in
which there are two scenarios for the design of a composite
structure:

(I) Constant stiffness, in which the composite part is considered
as a single element with the same stacking sequence all over
the domain. The design goal is to find an optimal stacking
sequence that is uniform for the entire structure.

(II) Variable stiffness, in which the structure consists of multiple
elements, each of them with a different stacking sequence.
Here, material distribution and fiber orientation might
change over the structural domain.

For the first scenario, which is the focus of this paper, we exam-
ine the following optimization methods:

1. Gradient-based. These methods utilize gradient information
of the objective(s) and the constraint(s) to find the direction
and size of the step towards the optimum solution.

2. Direct Search and Heuristic. In contrast to the previous
group, these methods do not need any gradient information;
rather they require only the values of the objective function.
Heuristic and Enumeration methods are also included
here.

3. Specialized techniques. These methods are developed for
solving a lay-up design problem, in which some properties
of composite laminates are used to simplify the problem;
thus, they cannot be applied to a general optimization
problem.
4. Hybrid methods. In this class fall methods that combine two
or more optimization techniques to benefit from the
strength of all constituent techniques.

In this paper, we review optimization techniques used for con-
stant stiffness design of composite laminates. The scenario of var-
iable stiffness design will be the focus of a future paper, which will
also analyze other issues, such as multi-objective optimization,
discretization techniques, design for manufacturing, sensitivity
analysis, and design for uncertainty. The following sections de-
scribe the main optimization methods for constant stiffness design
with respect to the four classes given above. This design scenario is
simpler than that for the variable stiffness design, since generally
there are fewer design variables involved.

2. Gradient-based methods

These algorithms are based on the gradient of the objective and
the constraints, whose functions, when their mathematical closed-
form expression is not available, can be approximated, although it
may be computationally expensive. The solutions obtained with
gradient-based methods are only local optima, but the advantage
of these methods is the faster convergence rate as opposed to that
achieved by direct and heuristic methods.

2.1. Vanishing the function’s first gradient

Setting the first gradient of the objective function to zero is the
simplest and the most common method to find a stationary point
of a mathematical function. Sandhu [7] used this approach to find
the fiber orientation for a single-layer composite laminate. The
problem involved the formulation of the Tsai’s failure criterion
with respect to the fiber angle, and the solution was expressed in
terms of the angle between the fibers and the stress principal
directions. This method is very fast and returns all stationary
points of the objective function just in one run; however, it
works only for single-variable, unconstrained problems with a
closed form expression for the objective function. Obstacles may
emerge in the formulation of a closed form failure criterion for a
general multi-layer laminate, which is the main challenge prevent-
ing this method from being extensively used in composite lay-up
design.

2.2. Steepest descent (SD)

Steepest descent (SD) is a minimization technique that per-
forms, at each step, a line-search in the opposite direction of the
gradient of the objective function. To simplify the problem, SD of-
ten resorts to techniques that find an approximation of the ideal
step size, which is the one that makes the gradients of the two con-
secutive successive iterations mutually orthogonal. For laminate
stacking sequence design of composite laminates, SD was used in
the past either alone [8] or in combination with other optimization
techniques [9]. At the onset, it can achieve large variations in the
objective function, but as the minimum of the objective function
is reached, the convergence rate may become very slow. Besides
this limitation, the necessity of working with continuous variables
and the drawback of entrapping in local optima are other disad-
vantages that limit its use for composite lay-up design.
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2.3. Conjugate gradient (CG)

Conjugate gradient (CG) methods improve the convergence rate
of the steepest descent by choosing conjugate descent directions
that are depending on both the gradient of the objective at the
current step and the descent directions in the previous iteration.
There are different algorithms to perform a conjugate gradient
search; among them, Powell’s Conjugate Gradient is used by Hir-
ano [10] for buckling load maximization of laminated composite
plate under axial compression. The advantage of this method is
that no gradient information is required; however, unimodality
of the objective function is necessary. For multimodal functions,
it is possible to compensate the effect of multi-modality by
performing several trials from different starting points [10]. For
simple problems where the objective function can be expressed
in closed-form, alternative CG methods, such as Powell’s Conjugate
Directions, may also be used [11]; however, when only an approx-
imation of the gradient is available, techniques such as Fletcher–
Reeves or Polak–Ribiere may perform better [12].

2.4. Quasi-Newton method

Due to the requirement of the second-order gradient informa-
tion, Newton (or Newton–Raphson) methods are rarely used for
composite laminate design; however, in their place, the Quasi-
Newton (QN) methods are often used, for they allow determining
the Hessian without using second-order derivatives.

The QN method by Davidon, Fletcher, and Powell (DFP) [13] is
one of the most popular QN techniques used for composite lay-
up design. Waddoups et al. [14] and Kicher and Chao [15] used
the original form of DFP proposed by Fletcher and Powell [16] to
optimize a composite cylindrical shell. A quadratic interpolation
of the objective function, which included strength and buckling
failure, was used in the one-dimensional minimization process.
Kim and Lee [17] also used DFP for optimization of a curved actu-
ator with piezoelectric fibers.

Quasi-Newton methods generally have a higher convergence
rate than CG methods, although their performance is problem-
dependent and may change from one case to another.

2.5. Method of feasible directions

Method of feasible directions (MFD) is created to solve optimi-
zation problems with inequality constraints. Starting from a feasi-
ble initial point, MFD tries to find a move to a better point without
violating any of the constraints. Since a composite lay-up design
problem usually includes several inequality constraints, MFD has
been a good candidate for solving these problems [18]. However,
like other gradient-based methods, MFD is not always able to find
the global optimum.

More recently, with the presence and popularity of finite ele-
ment methods, MFD has been adapted to be used in combination
with finite element analyses [19,20]. In this case, the derivatives
are calculated by approximation or direct sensitivity analysis.

MFD may generate non-feasible solutions in the presence of
highly non-linear constraints. In order to avoid this problem, Spal-
lino et al. [21] introduced a drive-away factor into the feasibility
requirement, by which the search direction was deviated from
the constraint boundaries towards the feasible region. Another
modification was proposed by Topal and Uzman [22], who took
into account not only the gradients of the objective function and
the retained active and/or violated constraints, but also the search
direction in the former iteration. This modified method, which
aims to increase the convergence rate, was used by author
researchers to optimize the buckling loads and the fundamental
frequencies of a composite part.
2.6. Approximation schemes

An approximation scheme replaces the primary optimization
problem with a sequence of explicit approximate sub-problems,
each expressed by a first or second-order Taylor series expansion
of the corresponding structural function [23]. The benefit is that
the sub-problems are solved faster than the original one, while
finding the solution of a set of approximate sub-problems should
ideally yield to the same solution of the original problem.

Linear approximation is the simplest approximation and was
used by Schmit and Farshi [24] to minimize the weight of a sym-
metric fibre-composite laminate. Here the non-linear program-
ming problem could be transformed into a sequence of linear
programs because the stiffness matrix was a monotonous function
of the design variables (i.e. thickness of the layers with pre-as-
signed fiber orientations).

For non-monotonous functions, a mixed approximation was
used by Fleury and Braibant [25]. This method, called Conlin’s
method, consisted of a combination of linear approximation when
the corresponding first derivatives were positive and inverse
approximation when the first derivatives were negative. A more
robust form of Conlin’s approximation was developed by Svanberg
[26,27] called Method of Moving Asymptotes (MMA), in which the
approximate function was obtained by a linearization of the corre-
sponding function with respect to variables of the type 1/(xi � Li) or
1/(Ui � xi), depending on the sign of the derivatives of the function.
In this transformation, xi is a design variable, and Ui and Li repre-
sent the corresponding upper and lower limits for this variable
and are called ‘‘moving asymptotes” because they normally chan-
ged between iterations. This method was used by Bendsoe et al.
[28] to maximize the buckling load factor of composite laminates.
In order to achieve a better approximation for a general non-linear
function, Svanberg [29] included an additional non-monotonic
parameter into MMA formulation, which was updated at each step.
The modified method, called Globally Convergence MMA
(GCMMA), was recommended to be used when the fiber orienta-
tions are considered as design variables.

Bletzinger [30] and Svanberg [29] used the second-order deriv-
ative to achieve a MMA approximation that better matches the
curvature of the original function. Using a combination of method
of diagonal quadratic approximation (DQA) and a MMA by Zhang
et al. [31] is another attempt to exploit the benefits of a second-or-
der approximation. The use of second-order derivatives has the
advantage of improving the reliability and the efficiency of the
optimization process, but it has the drawback of being computa-
tionally expensive, especially for large scale problems. To avoid
calculating expensive second-order derivatives, Bruyneel and Fle-
ury [32] used the gradient information of the two successive iter-
ations. The modified method called Generalized MMA (GMMA)
was employed for the optimization of composite structures where
both ply thicknesses and fiber orientations were considered as de-
sign variables.

Harte et al. [33] compared the performance of Conlin’s method,
GCMMA and MDQA in optimizing the layer thicknesses and the
winding angle of a glass-reinforced epoxy pipeline. When the vari-
ables were limited to only the thicknesses, Conlin’s method and
MDQA were found to perform equally. Conlin’s method required
more iterations for convergence, but MDQA was computationally
more expensive. When the winding angle was added as a design
variable, the only algorithm capable of solving the problem was
the GCMMA, although the solutions required a careful examination
since they might not be optimal solutions.

Sequential quadratic programming (SQP) methods can also be
included in this section. SQP methods handle non-linear problems
by constructing and solving a local quadratic program, which con-
sists of a quadratic model of the objective and a linear model of the
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constraints. SQP has been used for composite laminate design in
several applications [34–36].

In comparison to other sequential programming techniques,
Wang and Karihaloo [34] reported that SQP produced the most
precise results with fewer gradient calculations, but it requires a
larger number of functional evaluations compared to SLP (sequen-
tial linear programming) and SCP (sequential convex program-
ming). The comparative study was performed on minimizing the
stress intensity at a crack tip, and the results cannot be generalized
because the accuracy of the approximation depends on the shape
of the objective function.

The structural response function of a composite design problem
is usually highly non-linear with several local optima, thus an
approximation technique can be inaccurate, particularly when
the fiber angles are used as design variables. If the accuracy of
the approximation is poor, inappropriate results will be obtained.
A higher reliability can be achieved by adopting higher order poly-
nomials, which unfortunately are mathematically cumbersome to
handle.
3. Direct search methods

While the analytical methods are known for a fast convergence
rate, direct search methods have the advantage of requiring no gra-
dient information of the objective functions and the constraints.
This feature is a significant advantage because in composite lami-
nate design derivative calculations or their approximations are of-
ten costly or impossible to obtain. Direct search methods
systematically approach the optimum solution only by using func-
tion values from the preceding steps. As a result, several of these
techniques have been revealed to be a significant tool for compos-
ite lay-up design, as described in the following sections.

3.1. Partitioning methods

A partitioning method, such as Dichotomous search, interval-
halving, Fibonacci and Golden section search, is a line search strat-
egy that can handle a single-variable optimization problem. Since
composite lay-up design generally copes with several design vari-
ables, resorting only to a partitioning method to optimize a com-
posite design is rare. A sporadic example of a single variable
problem cited here is the work by Walker et al. [37], who merely
exploit the golden section method to determine the fiber angle that
best maximizes buckling resistance of a laminated cylindrical shell.
Although these methods are rarely used alone, they are effectively
used for a line search inside other optimization methods, such as
conjugate gradient method and method of feasible directions [12].

3.2. Enumeration search

One of the first attempts in optimum design of laminated com-
posite materials is Enumeration Search, consisted of trying all pos-
sible combinations of design variables and simply selecting the
best combination. Although cumbersome, this technique was used
to find the lightest composite laminate during the 1970s [38,39].

Within this group, we include also selection chart techniques,
which aim at visualizing the impact of the variables throughout
the whole design space. For instance, Park [40] plotted the change
of the optimum fiber angle for a particular class of laminates (e.g.
[�h/�h]s, [�h/90/�h]s) under all possible normalized loading con-
ditions. Weaver [41] also created selection charts, in which each
class of laminates was displayed within an elliptical contour. Use-
ful at the early stage of the design, these charts can be used to iden-
tify a small subset of potential laminates which might be
investigated in more details. Although selection charts can map
the whole design space and give insight on the variables that most
impact the performance, their use is limited to design problems
governed by a small number of variables and to simple loading
conditions.

3.3. Simplex method

The simplex method uses the concept of a simplex, which is a
set of (n + 1) points in an n-dimensional design space. A simplex,
for example, might be a line segment in one dimension, or a
triangle in two dimensions. This algorithm starts with an initial
simplex, which is generally improved by moving its vertices to-
ward better positions. As described by Nelder and Mead (NM)
[42], the improvement is achieved by reflecting the least favour-
able point of the current simplex with respect to the other points,
expand the move if it is favourable, or contract it if it is not favour-
able. The simplex is scaled down (shrunk) towards the most
favourable point if no improvement is achieved. This process is ter-
minated when the simplex becomes smaller than a user-defined
size.

NM method was employed by Tsau et al. [43] for optimal stack-
ing sequence design of a laminated composite loaded with tensile
forces, while the evaluation of stresses was performed by a finite
element method. It has been reported by Tsau and Liu [44] that
the NM method is faster and more accurate than a Quasi-Newton
method when it is used for lay-up selection of laminates with small
number of layers (i.e. less than 4). The error in the simplex method
was reported to increase with the number of design variables, as
opposed to Quasi-Newton methods that have an almost constant
error. Regardless of the number of design variables, NM was
found to be faster than a Quasi-Newton method in computational
time.

NM method is found to be practical for problems with a small
number of design variables (e.g. less than 10), but the convergence
rate decreases exponentially with an increase of the number of
variables [45]. Other limitations of this method include: being a lo-
cal and unconstrained optimization method; dependency of the fi-
nal solution on the initial simplex; and dependency of the
convergence rate on the coefficients of expansion, contraction,
and shrink. Despite these drawbacks, NM has been widely and effi-
ciently used in several composite laminate problems either sepa-
rately or in combination with a global method, as discussed later
in another section.

3.4. Random and greedy search

A random search evaluates a number of randomly selected
points in the design space of a given optimization problem and
simply selects the best sampled point, while a track of previously
sampled points may be kept by the program to avoid recycling.
In contrast to the arbitrary move used in random search, a greedy
search evaluates a set of points around the current solution and
moves one step in the direction of the best point, the last move
is retained until there is no more improvement achieved, then
the whole procedure is repeated from the new point.

Foye [46] was the first who used a random search to find the
optimum ply orientation angles of a laminated composite plate.
Graesser et al. [47] also used a random search, called improving
hit and run (IHR), to find a laminate with minimum number of
plies that safely sustain a given loading condition. This technique
started with either a given or an arbitrary point and sought a
new point by randomly changing one or all design variables. Once
an improving direction was found, a one-dimensional line search
was performed, and the search was continued from the new point.
This concept is similar to the one in the Monte Carlo method used
by Fang and Springer [3], in which the only difference was retain-
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ing the last successful change instead of performing a line search. A
more systematic form of this technique is a greedy search method
used by Sargent et al. [48].

The advantage of a random search method is its ease of pro-
gramming and the freedom of selecting a priori the number of iter-
ations. However, the chance of success is strongly dependent on
the smoothness of the objective function and on the relative pro-
portions of satisfactory and deficient solutions. In addition, the
computational cost to obtain the global optimum exponentially in-
creases with increase of the number of discrete variables [49]. A
greedy search is short-sighted and may never reach a better solu-
tion if it has to go through a worse solution. Therefore, the success
of a greedy search requires a relatively smooth design space and
the proper selection of the step size. To overcome partially the lim-
itation of being trapped in local optima, a GRASP (greedy random-
ized adaptive search procedure), was proposed; however, it has not
been used for lay-up design yet.

3.5. Simulated annealing (SA)

Simulated annealing (SA), which mimics the annealing process
in metallurgy, globalizes the greedy search by permitting unfa-
vourable solutions to be accepted with a probability related to a
parameter called ‘‘temperature”. The temperature is initially as-
signed a higher value, which corresponds to more probability of
accepting a bad move and is gradually reduced by a user-defined
cooling schedule. Retaining the best solution is recommended in
order to preserve the good solution [50]. This method is the most
popular method after genetic algorithms (GA) for stacking se-
quence optimization of laminated composite materials [48,51–53].

Generation of a sequence of points that converges to a non-
optimal solution is one of the problems in SA. To overcome this
shortcoming, modifications of SA have been proposed such as
increasing the probability of sampling points far from the current
point by Romeijn et al. [54] or using a set of points at a time instead
of only one by Erdal and Sonmez [50].

To increase the convergence rate, Genovese et al. [55] proposed a
two-level SA including a ‘‘global annealing” where all design vari-
ables were perturbed simultaneously and a ‘‘local annealing” where
only one design variable was perturbed at a time. The local anneal-
ing was performed after each iteration of the global annealing in or-
der to locally improve the trial point. Its convergence speed was
reported higher than a one-level SA and comparable to a gradi-
ent-based optimization method implementing a SLP method.

In order to prevent re-sampling of the solutions, Rao and Arvind
[56] embedded a Tabu search in SA obtaining a method called Tabu
embedded simulated annealing (TSA). The stacking sequence opti-
mization of laminated composites was solved by TSA, while the
constraints were handled using a correction strategy. TSA was fas-
ter than classical SAs with the penalty of requiring more memory
and computation time per iteration.

Simulated annealing is a good choice for the general case of
optimal lay-up selection; however, it cannot be programmed to
take advantage of the particular properties of a given problem;
GA is more flexible in this respect, although it is often computa-
tionally more time consuming [48,52,57]. It is not easy to general-
ize the conclusion because there are some other researches, such as
the one by Rao and Shyju [58], claiming that SA outperformed GA
both in computational performance and in finding the global opti-
mum for other combinatorial problems.

3.6. Genetic algorithm (GA)

A genetic algorithm (GA) is an evolutionary optimization tech-
nique using Darwin’s principal of ‘‘survival of the fittest” to
improve a population of solutions. If the population size is suitably
large, GA is not at the risk of being stuck in a local optimum. How-
ever, finding a global solution is not necessarily guaranteed to be
successful unless an infinite number of iterations are performed.
Despite the high computational cost, GA has been the most popular
method for optimizing the stacking sequence of a laminated com-
posite [5]. Its simple coding, which escapes gradient calculations,
and its flexibility of being applied to a large variety of problems
with different types of variables and objective functions make GA
particularly useful for problems with multimodal functions, dis-
crete variables, and functions with costly derivatives.

Callahan and Weeks [59], Nagendra et al. [60], Le Riche and
Haftka [61], Ball et al. [62] are among the first who adopted and
used GA for stacking sequence design of laminated composite
materials. GA has been used for several objective functions, such
as strength [61,63], buckling loads [61,64–70], dimensional stabil-
ity [71], strain energy absorption [72], weight (either as a con-
straint or as an objective to be minimized) [73,52,74–77],
bending/twisting coupling [67], stiffness [72,78], fundamental fre-
quencies [1,70,74,79], deflection [76] or finding the target lamina-
tion parameters [80].

GA has been applied to the design of a variety of composite
structures ranging from simple rectangular plates to complex
geometries such as sandwich plates [81], stiffened plates [82,83],
bolted composite lap joints [84], laminated cylindrical panels
[170]. GA can be often combined with finite element packages that
analyze the stress and strain response of the composite structure
[85,76,86].

One of the main problems associated with GAs is the high com-
putational intensity and the premature convergence, which may
happen if the initial population is not appropriately selected. To in-
crease convergence rate, reduce the risk of premature convergence,
and decrease the function evaluation time, several modifications
have been proposed. Some of these attempts are summarized here:

– use of parallel computing [87–89];
– multi-level optimization (coarse level and fine level coding)

[87];
– introduction of problem-dependent operators [90], such as

layer addition or deletion, permutation, interlaminate swap
[83], generalized elitist [67], laminate thickness/material/
fiber angle mutation [86];

– recovery of previously evaluated solutions [65,75,91];
– use of approximation methods for function evaluation

[92,75,69], or training an artificial neural network (ANN)
[70,79];

– proposing a consanguineous initial population [66], or a
hierarchical structure with aging [93].

Sometimes a combination of these methods are used; for in-
stance, Park et al. [91] used a memory approach combined with
the permutation operator with local learning/random shuffling to
reduce the number of function evaluation and to improve the con-
vergence rate. They also categorized the design criteria into two
groups of layer combination dependent criteria and layer sequence
dependent criteria, which recycled some of previously evaluated
candidates. However, almost exclusively all these methods are re-
ported to provide an improvement in the GA’s numerical efficiency,
a comprehensive comparison among them is impossible because
GA is a probabilistic method and its performance is strongly
dependent on the problem.

GA is originally developed for unconstrained optimization,
whereas composite design problems are usually constrained by
limitations in material’s strength, weight, cost or other criteria.
Among several methods used to incorporate constraints, using a
penalty function strategy is the most popular one. A penalty func-
tion is introduced to convert a constrained problem into an
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unconstrained problem by assigning a penalty term to the infeasi-
ble solutions. The penalty assigned to each solution depends on
number and intensity of violated constraints. Another method to
handle the constraints is the repair strategy [80], which transforms
infeasible solutions into a feasible solution located in a close
proximity.

Sargent et al. [48] compared GA with some greedy algorithms
(i.e. random search, greedy search, and simulated annealing) and
observed that GA produced better solutions than the greedy
searches, which in some instances were unable to find a solution.
Although more demanding in terms of computation time, GA re-
vealed to be a more robust algorithm. Sivakumar et al. [94] com-
pared DFP and GA, both applied to minimize the weight of a
laminated composite constrained by its fundamental frequencies.
It was reported that DFP converged in smaller number of iterations
when the number of constraints was small; however, finding a fea-
sible point was a difficult task when number of constraints
increased. Also considering that the DFP could not handle discrete
variables, they concluded ‘‘GA seems to be the best tool to optimize
composite laminates”.

Although GA has been widely used for stacking sequence opti-
mization, one major shortcoming is its low convergence rate. GA
is a population-based evolutionary algorithm, and might require
several generations before converging to a solution [58]. Each gen-
eration consists a large number of function evaluations, thus it can
be computationally time consuming and expensive.

3.7. Other heuristic optimization methods

Although GA and SA are the most popular heuristic methods
used to optimize the stacking sequence of composite laminates,
other heuristic methods have been also used. This section summa-
rizes the main ones.

3.7.1. Tabu search
Tabu search (TS) is a local search method that starts from an ini-

tial point and progresses by changing the design variables, one at a
time. The entire or a part of the neighbourhood is evaluated before
accepting the best solution as a starting point for the next move. TS
keeps, in a short term memory, the potential solutions that have
already been visited and marks them as ‘‘Tabu”. This strategy pre-
vents solution re-sampling. TS was implemented by Pai et al. [95]
for discrete optimization of the stacking sequence of a composite
laminate subjected to buckling and strength requirements as well
as for matrix cracking. The results were compared with a GA,
which showed a comparable solution, but the computational time
was case dependent.

3.7.2. Scatter search
Scattered search (SS) is a strategy that generates a reference set

from a population of randomly selected solutions. From this refer-
ence set, a subset of solutions is selected and enhanced by using an
improvement procedure (e.g. a greedy search). The improved solu-
tions are then used to update the reference set, and the process is
continued with a new subset. Rao and Arvid [96] used a scatter
search for lay-up sequence optimization including thermal buck-
ling, weight, cost, fundamental frequency and buckling consider-
ations. Lay-up results and computational efficiency were similar
to those obtained with GA.

3.7.3. Particle swarm
Like GA and SS, particle swarm optimization (PSO) is also a pop-

ulation-based, stochastic optimization method inspired by the
flocking behaviour of birds. In this method, each solution in the
search space is called a ‘‘particle” and resembles a bird among
others, which adjusts its position in the search space according
to its own flying experience (best solution in its individual history)
and the flying experience of the other particles (the best solution
among all particles). As such, PSO has a good potential to benefit
from parallel computing.

PSO was used by Suresh et al. [97] for the optimal design of a
composite box-beam of a helicopter rotor blade. It was reported
that the solutions provided by PSO were closer to the optimum val-
ues than those given by the GA. The computational time, on the
other hand, was comparable. Kathiravan et al. [98] compared PSO
to a gradient-based method for the maximization of the failure
strength of a thin walled composite box-beam, whose design vari-
ables were the ply orientation angles. The PSO was found to give
results superior or equivalent to the gradient-based method. Fur-
thermore, it did not need to start from different initial points.

Chen et al. [99] introduced two improvements to PSO. First, a
random coefficient was added that increased the individual influ-
ence and the swarm variety and improved the search ability. Sec-
ond, an interference method was proposed to overcome the lack
of local exploration at later stages of the search, particularly when
the objective function has multiple local optima. This modification
was applied only if the results remained unchanged during a cer-
tain number of consecutive iterations. The improved method,
which was tested on lay-up stacking sequence design, was re-
ported to converge faster and to be more stable than the original
PSO.

3.7.4. Ant colony
Ant colony optimization (ACO) is another heuristic search

method, which is inspired by the behaviour of the ants and their
ability in finding the shortest paths between their nest and the
food source. Aymerich and Serra [100] illustrated the application
of this technique to the lay-up design of laminated panels for max-
imizing the buckling load. The average performance of the ACO, as
measured by practical reliability and normalized price, was evalu-
ated ‘‘comparable or even superior” to GA or TS techniques.
4. Specialized algorithms

In this category, fall methods developed explicitly for optimiz-
ing laminated composite materials. These strategies exploit a num-
ber of properties of the composite laminates to simplify the
optimization process. Often developed for a particular application,
these methods generally simplify the problem by restricting the
design space in terms of allowable lay-up, loading condition,
and/or the objective function. Since these methods are tailored to
a specific design problem, they lose robustness when applied to a
general optimization problem. However, if used for the particular
case they are designed for they can be much faster than other
techniques.

4.1. Design with lamination parameters

Using lamination parameters [101,102], which are integrated
trigonometric functions through the thickness of a laminate, in-
stead of lay-up variables has the big advantage of reducing the
number of parameters required to express a laminate properties
to maximum of 12, regardless of number of layers [2]. Avoiding
troublesome optimization over periodic functions of the rotation
angles and discrete number of plies is the other advantage of using
lamination parameters. The convexity of the set of lamination
parameters together with the linear dependence of the stiffness
on these parameters implies further simplification with respect
to the basic mathematical structure of the problem [103].

Beside the promising advantage of using lamination parame-
ters, the challenge in working with these parameters is that they
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are not independent and cannot be arbitrarily prescribed. The
admissible range of lamination parameters are given by solving
the geometric relations. Several authors, such as Fukunaga and
Vanderplaats [104] and Grenestedt and Gudmundson [105], have
suggested necessary conditions for different combinations of lam-
ination parameters, but the complete set of sufficient conditions
for all twelve parameters is still unknown [103].

The lamination parameters strategy requires solving the inverse
problem to obtain the corresponding number of plies, thicknesses
and fiber orientations, which are suitable for manufacturing. Solv-
ing the inverse problem is not easy and the solution is not unique.
Miki [106] proposed a method to visualize the admissible range of
lamination parameters and their corresponding lay-up parameters.
The method is fast and handy, although it can be applied only to
the laminates with prescribed in-plane stiffness properties and
balanced-angle-ply laminates of type [±h1/±h2/ . . . /±hi]S. Just as
for the in-plane lamination diagram, the flexural lamination dia-
grams were also developed [107]. Fukunaga and Chou [108] used
a similar graphical technique for laminated cylindrical pressure
vessels. Lipton [109] has developed an analytical method to find
the laminate configuration of a three-ply laminate under in-plane
loading conditions. Autio [110], Kameyama and Fukunaga [111],
Enrique et al. [112], and some other researchers used GA to solve
the inverse problem.

In general, optimization methods based on the lamination
parameters are restricted to global structural responses, such as
stiffness, and do not include local strength constraints at the ply
level. Optimal design studies are limited to particular structural
responses and to specific laminate configurations. Inverse problem
must be solved in order to get the corresponding number of plies,
thicknesses and fiber orientations, which is the most challenging
part of working with lamination parameters.

4.2. Layerwise optimization

A layerwise optimization method optimizes the overall perfor-
mance of a composite laminate by sequentially optimizing one or
some of the layers within a laminate. This method works with
one layer or a subset of layers in the laminate and requires first
the selection of the best initial laminate and then the addition of
the layer that best improves the laminate performance, which is
usually achieved by an enumeration search [113,114].

Lansing et al. [9] determined the initial laminate by assuming
the layers at 0, 90, and ±45� carrying all the longitudinal, trans-
verse, and shear stresses, respectively. Massard [115] started with
a one-layer laminate and found the best fiber orientation for the
single-ply laminate. Todoroki et al. [116] proposed two other ap-
proaches to find the initial laminate. They first used quasi-isotropic
plies to estimate the initial number of layers; the second deter-
mined the lower bond for the number of layers by using a super-
ply. A super-ply is a virtual layer that had the best material
properties in all directions.

An important issue in layerwise optimization strategy is the im-
pact of the newly added layer on the stress distribution of the lam-
inate. The addition of a new layer changes the stress field in the
laminate, because there is a change in the position of the layers
in the laminate and in the portion of load each layer can sustain.
Therefore, layers inserted in previous steps are no longer optimal.
Narita [117] and Narita et al. [118] tried to solve this problem by
starting with a laminate with hypothetical layers with no rigidity.
From the outermost layer, all layers were sequentially replaced by
an orthotropic layer and the optimum fibre orientation angle was
determined by enumeration. The first solution was then used as
an initial approximation for the next cycle. Farshi and Rabiei
[119] proposed a method for minimum thickness design consisting
of two steps. The first aimed at introducing new layers to the lam-
inate. The second examined the probability of replacing the higher
quality layers with weaker materials. Ghiasi et al. [120] used layer
separation technique to keep the location of different layers un-
changed when a layer is added. A new layer was added to the lam-
inate by dividing one of the current layers into two layers. Then a
scaling procedure was used to change the thicknesses.

These methods are very fast compared to other optimization
techniques, because they are working only with a small portion
of all the design variables in each step; however, they may not
reach a local optimum. This problem can be partially solved by
revising the fiber orientations and thicknesses every time a new
layer is introduced to the laminate. Nevertheless, the additional
computational time and cost induced by this approach might be
excessive and of limited value since it will only assure achieving
a local optimum.
4.3. Problem partitioning

Composite lay-up design is governed by variables of different
nature (e.g. thickness and fiber angle), which increase the com-
plexity of the design problem. To simplify the design problem,
one possible approach is to split the problem into some dependent
sub-problems, each described with a small number of variables of
similar nature. This section gives an overview of these techniques.

Two-part methods are the most common form of problem par-
titioning, in which the first part finds the fiber direction that pro-
vides optimum property such as stiffness, displacement, natural
frequency, etc., and the second part, optimizes ply thicknesses for
minimum weight [121,122]. Le Riche and Gaudin [70,71] added
one more sub-problem to this technique, which includes minimi-
zation of the total number of layers in the laminate. Farshi et al.
[123] also used three sub-problems, but embedded with a layer-
wise optimization. In this method, a new layer was added to the
stack after optimization of fiber angles and then thicknesses, which
was repeated until the thickness of the recently added layer ap-
proached zero.

Partitioning the problem may also be used to improve the GA’s
performance, because when both real and discrete variables are
represented using a single string of GA the cost of the search is in-
creased. After partitioning, sub-problems with different type of
variables can be represented with different strings or can be solved
by different optimization methods [124,125]. In general problem
partition can significantly increase the convergence rate; however,
since the sub-problems are not independent, the final solution in
certain instance might be far from the global optimum.

4.4. Discrete material optimization (DMO)

Lund and Stegmann [126] used a method called discrete mate-
rial optimization (DMO) for optimum design of composite lami-
nates. In this method, which can be equally applied to constant
and variable stiffness design, the material stiffness is computed
as a weighted sum of some candidate materials (fiber orientations).
The discrete problem of choosing the best material (with the right
orientation) is converted to a continuous formulation where the
design variables are the weight functions on each candidate mate-
rial. For each ply, the goal is to drive the influence of all but one of
these weight functions to zero. A disadvantage of this method is
that it replaces each design variable (fiber angle) with several
weight factors, each corresponding to one permissible fiber angle.

4.5. Fractal branch-and-bound method

Fractal branch-and-bound (FBB) method, proposed by Todoroki
and Terada [127,128], and Hirano and Todoroki [129,130] is based
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on branch-and-bound method, whose computational cost is
reduced using a response surface to approximate the objective
function in terms of lamination parameters. This technique per-
forms an evaluation of the objective function to prune inefficient
branches (laminates) by utilizing the fractal patterns of feasible re-
gion of lamination parameters in symmetrical laminates. Later on,
FBB was expanded to unsymmetrical laminates by Matsuzaki and
Todoroki [131]. It has also been adopted for complicated structures
with multiple laminates such as hat stiffened panels [132].

4.6. Knowledge-based methods

Experimental or knowledge-based methods (KBM) aims at
bringing the expert’s knowledge into the computer design process
by performing a screening of the concepts ill-suited to the specific
requirements and focusing quickly on the most viable and attrac-
tive alternatives. To produce a short list of good layups, these
methods may use different tools, such as discrimination charts
and tables eliminating unsuitable arrangements [133] or a list of
rules and recommendations for good lay-ups [134,135]. A KBM
can be faster than a numerical method because it reduces the num-
ber of candidates at the onset, but it may not explore the entire
range of potential layups [134]. In addition, the process of develop-
Table 1
Properties of different optimization methods used for composite lay-up design.

Method name Method Global Continuous

Vanishing the function gradient D0 X
Steepest descent SD X

Conjugate gradient
Linear conjugate gradient LCG X
Powell’s method CG-P X
Fletcher–Reeves CG-FR X
Polak–Ribiere CG-PR X

Quasi-Newton
Broyden–Fletcher–Goldfarb–Shanno BFGS X
Davidon–Fletcher–Powell DFP X

Method of feasible directions MFD
Modified feasible direction (Topal) MFD X

Conlin’s approximation method Colin X

Method of moving asymptotes MMA X
Globally convergent MMA GCMMA X
Globally convergent MMA-2 GCMMA2 X
Generalized MMA GMMA X

Method of diagonal quadratic approximation MDQA X
Enumeration search ES X

Partitioning methods
Golden section GS X

Simplex method
Nelder–Mead simplex NM X

Random search RS X
Monte Carlo MC X
Improving hit and run IHR X X

Greedy search GRS X
Greedy randomized adaptive search procedure GRASP X X

Simulated annealing SA X X
Improved SA ISA X X

Genetic algorithm GA X
GA + local improvements GA+L X
GA + special operators GA+O X

Scatter search SS X X
Tabu search TS X
Particle swarm optimization PSO X X
Ant colony optimization ACO X X
Knowledge-based methods KBM X

* Having a better convergence rate.
** Having almost a similar convergence rate.
ing such knowledge-based systems is problem-dependent and
needs a great deal of experience.

5. Hybrid methods

A hybrid method combines two or more optimization methods
to benefit from the advantages of all of them in order to obtain a
better convergence rate, to achieve a global optimum, to have a
better accuracy, to make the optimization method more robust,
or for other reasons.

In order to handle both continuous and discrete design vari-
ables in a general multimodal non-linear problem, Seeley and
Chattopadhyay et al. [136] developed a combined simulated
annealing and sequential programming optimization techniques
(more specifically BFGS). The method was applied to the design
of a scaled airplane wing model, represented by a flat composite
plate, with piezoelectric actuation to improve the aeroelastic
response.

Incorporating a local optimization technique into GA [65,81] is
the most popular hybrid approach, in which a local search algo-
rithm is applied to some newly generated individuals to drive
them to a local optimum. These locally optimal solutions replace
the current individuals in the population to prepare the next gen-
Discrete Constrained Derivative Deterministic Relative convergence rate

2 X
1 X

1 X SD+*/in n steps
X SD+/in n steps

1 X Aprx. in n steps
1 X CG-FR+

1 X Super linear
1 X Super linear

X 1 X
X 1 X MFD+
X 1 X

X 1 X
X 1 X
X 2 X GCMMA+
X 1 X GCMMA+

X 2 X GCMMA+
X X X

X
X X

X

X X �ES**

X X RS+
X X �MC

X X X RS+
X X �GRS

X X �GRS
X 1 �SLP/SA+

X X
X X GA+
X X GA+

X X �GA
X X
X
X
X X X
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eration. This combination utilizes the advantage of GA in finding
the global optimum and the advantage of a local optimization
method in quickly arriving to an optimum solution. This hybrid
optimization technique needs less number of function evaluation
compared to pure GA.

Another common form of hybridization is to restart a local opti-
mization technique, several times. A good example is the global-
ized bounded Nelder–Mead (GBNM) by Luersen and Le Riche
[137]. This method was particularly adapted to tackle multimodal,
discontinuous optimization problems, for which it is uncertain that
a global optimization can be afforded. The algorithm consists of
several restarts of a local search, performed by the Nelder–Mead
simplex method, each initiated from a simplex likely far from pre-
viously sampled points. The proximity to previously sampled point
was controlled by a multi-dimensional probability function, which
has been later simplified to a one-dimensional function by Ghiasi
et al. [138] in order to reduce the computational time and improve
the convergence rate. The local-global search has been shown to
converge faster than an evolutionary method, such as GA when
the number of iterations is small; however the two methods per-
form similarly, when the number of iterations increases.

Oh and Lee [139] used the same technique, but replacing the
probability function with a domain elimination technique, which
consisted of making a set of eliminated regions, and terminating
the local search when the current search is adjacent to an elimi-
nated region.

Rao and Shyju [58] integrated SA and TS into an algorithm
called multiple start guided neighbourhood search (MSGNS). The
multi-start scheme helps overcome the sensitivity of SA on the
cooling schedule, while the Tabu search prevents recycling the pre-
vious solutions. For stacking sequence optimization of laminated
composites, MSGNS was found to be as effective as GA in obtaining
multiple near optimal solutions, and superior in terms of computa-
tional performance to algorithms like GA, SA, and SS.
6. Concluding remarks

The most popular methods for optimizing the stacking se-
quence of laminated composites with uniform stiffness have been
reviewed in this paper. The optimization techniques are classified
into four categories: gradient-based methods, direct search and
heuristic methods, specialized techniques, and hybrid methods. A
brief list of all these methods and their properties is shown in Table
1. The last column in this table shows the relative convergence rate
of each method compared to others, when such data are available
in literature.

Gradient-based methods are found to be generally faster than
other techniques and can find a local minimum in a small number
of iterations. These methods, however, are limited to problems
with continuous design variables and first or second derivatives
(either exact or approximate). Since they reach local optimum,
the final solution depends on the initial point. If the problem has
a small number of design variables and the objective function is
smooth, then gradient-based methods are the best choice, espe-
cially if several restarts from different initial points can be affor-
ded. These methods do not find large application to composite
lay-up design because gradient information is often either unavail-
able or very expensive to determine.

In contrast, direct search methods are very popular because no
derivatives need to be calculated. These methods can be divided
into deterministic and stochastic. Stochastic methods are more
appropriate for composite lay-up design, because of their capabil-
ities of handling a mixture of continuous and discrete variables,
finding the global optimum of a multi-modal objective function,
and working with a population of solutions. These methods usually
have low rate of convergence, which is also a problem dependent
factor. Consequently, comparing stochastic methods is unfeasible
because their heuristic nature make them strongly dependent on
the problem. Until now, Genetic Algorithm has been the most pop-
ular method with simulated annealing ranked the second.

The next group of methods called ‘‘specialized methods” in-
cludes a variety of techniques developed for the design of a specific
type of laminates, loading conditions, and/or objective. These
methods are usually fast, but are limited to certain types of prob-
lems and can find only a local minimum.

Finally, hybrid methods benefit from the advantages of all their
constituent methods. The review of the main hybrid methods in
this paper has highlighted their promising future.

Optimization methods for variable stiffness design will be the
focus of a second paper, which will review also other issues,
such as multi-objective optimization, discretization techniques,
design for manufacturing, sensitivity analysis, and design for
uncertainty.
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