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Optimum Design of a Compliant
Uniaxial Accelerometer
This work focuses on the multi-objective optimization of a compliant-mechanism accel-
erometer. The design objective is to maximize the sensitivity of the accelerometer in its
sensing direction, while minimizing its sensitivity in all other directions. In addition, this
work proposes a novel compliant hinge intended to reduce the stress concentration in
compliant mechanisms. The paper starts with a brief description of the new compliant
hinge, the Lamé-shaped hinge, followed by the formulation of the aposteriori multi-
objective optimization of the compliant accelerometer. By using the normalized con-
strained method, an even distribution of the Pareto frontier is found. The paper also
provides several optimum solutions on a Pareto plot, as well as the CAD model of the
selected solution. �DOI: 10.1115/1.4001002�
Introduction
Accelerometers are inertial sensors, which provide an output

roportional to acceleration. These sensors can be extensively ap-
lied in industries. In addition to the technical test measurement
nd modal analysis, accelerometers are now commonly used in
any fields such as the automotive industry, aero- and astronau-

ical industries, military industry, robotic systems, medical instru-
ents, video cameras, free-space pointers, and so on �1�. For ex-

mple, accelerometers are used in automobile crash tests or
uidance systems. Guidance systems made of accelerometers are
alled inertial navigation system �INS�.

The vast majority of accelerometers function on the principle of
he mass-spring system. The mass, which is referred to as the
roof-mass or seismic mass, is elastically suspended on the accel-
rometer frame. The elastic suspension is realized by means of
exible beams or compliant hinges. Regarding uniaxial acceler-
meters, the resulting compliant mechanism is designed to allow
he proof-mass to translate exclusively along one direction. This is
eferred to as the sensitive direction. Figure 1 represents the mass-
pring system of a uniaxial accelerometer whose sensitive direc-
ion is that of the x-axis. The resulting proof-mass displacement
ields a signal that is linearly related to the acceleration compo-
ent in the sensitive direction. It is common practice to refer to the
ensitive direction as the sensitive axis.

The bias errors of inertial measurements come from the off-axis
ensitivity of the mechanism �2�. From a mechanical viewpoint,
ff-axis sensitivity corresponds to the parasitic motion emerging
hen the accelerometer is subjected to angular acceleration, or
hen acceleration is not parallel to the sensitive axis. Therefore,

n order to reduce the bias errors, the off-axis stiffness of the
roof-mass suspension must be increased. The frequency range of
ccelerometers is quite broad, extending from a few Hertz to sev-
ral kiloHertz. The high-frequency response is limited by the reso-
ance of the seismic mass of the accelerometer mass-spring sys-
em. Resonance produces a high peak in response to the natural
requency �n, which is usually somewhere near 1000 Hz for low-
requency accelerometers �Fig. 2�. Accelerometers are ordinarily
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usable up to about 1/3 of their natural frequency �2�. Data above
this frequency will be affected by the resonant response, but may
be used if the effect is factored in properly. Since the usable fre-
quency of low-frequency accelerometers ranges from 0 Hz to 600
Hz, the natural frequency should not exceed 1800 Hz.

Low-frequency accelerometers often have the advantage of be-
ing highly sensitive �3,4�. Their mechanical structure is fragile and
displays high off-axis sensitivity. Consequently, commonly used
low frequency accelerometers have a limited range of accelera-
tion, and an off-axis sensitivity of approximately 5%. To override
the low off-axis stiffness of serial architectures, researchers have
developed parallel architectures offering superior properties com-
pared to a simple cantilever beam.

In this paper, we build on the compliant realization of the sim-
plicial uniaxial accelerometer �SUA� proposed by Cardou et al.
�5�. According to Lobontiu �6�, a compliant mechanism is “a
mechanism that is composed of at least one flexible component
that is sensibly deformable compared to other rigid links.” There-
fore, compliant mechanisms generate work by using the deflection
of their flexible components instead of using conventional joints.
From a fabrication perspective, compliant mechanisms can be
classified into two categories. The first category, micromachined
mechanisms, is limited to planar mechanisms due to the unidirec-
tional nature of the etching process used in micromachining �2�.
The second category comprises the compliant realization of
millimeter-scale three-dimensional mechanisms.

We can cite two main advantages of a compliant realization for
the design of accelerometers. First, there is a reduction in cost as
a result of element reduction. Second, compliant accelerometers
provide upgraded performance, due to reduced wear, maintenance,
and weight �7�. However, compliant mechanisms have four main
drawbacks that can affect the performance of the mechanism,
some appearing also in accelerometers at large, as follows: limited
sensitivity, off-axis sensitivity, axis drift, and stress concentration
�8�. The output of the accelerometer is a signal proportional to the
relative displacement of the proof-mass with respect to the object
on which the accelerometer is mounted. Therefore, the sensitivity
of the accelerometer is limited by the joint stiffness, as the joint
restrains the proof-mass displacement when subjected to an accel-
eration parallel to the sensitive axis. On the other hand, the off-
axis sensitivity resulting from the parasitic off-axis bending of the
compliant joint should be minimized if the accelerometer is to be

insensitive to parasitic off-axis acceleration. The axis drift is gov-
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rned by the motion precision of the proof-mass. In a device sub-
ect to axis drift, the proof-mass may undesirably move out of its
xis of motion. Finally, stress concentration affects the life and
ange of motion of the device.

The range of motion can be measured by the “mechanical ad-
antage,” which is dimensionless and defined as �6,9�

m . a . =
�uout�
�uin�

�1�

here uin and uout are the input and output displacements. Since
he readout of the accelerometer is a relative displacement, we
dapted the foregoing concept to our needs, and produced the
echanical sensitivity of a compliant accelerometer, to be defined

n Eq. �12�.
Several optimization techniques are used in the design of com-

liant mechanisms. A popular strategy is topology optimization,
hich can find the distribution of a given amount of material that
aximizes the stiffness of the structure �9–13�. In the compliant

esign, the technique was first used to generate the architecture of
ptimum planar mechanisms. The problem with the resulting
echanism, however, is that it does not consider the sensitivity to

ut-of-plane forces. Furthermore, this optimization technique can-
ot be used to find the optimum shape of a desired layout, since it
enerates its own layout.

The design technique introduced in this work does not generate
ptimum layouts, but optimizes the dimensions of a given layout.
hus, the designer is free to optimize any preselected three-
imensional compliant mechanism layout. Moreover, the tech-
ique minimizes the parasitic compliance in all off-axis directions.
o do so, aposteriori multi-objective optimization is used to find

he best trade-off between conflicting objective criteria of the
ompliant mechanism. Among the multi-objective optimization
echniques, we have chosen the normalized normal constraint

ethod �NNCM� to obtain an evenly distributed Pareto frontier
14�.

Before applying multi-objective optimization to the uniaxial ac-
elerometer, we start with a structural optimization of the compli-
nt realization of the accelerometer. As stated in Refs. �8,15�, one
f the main drawbacks of a compliant hinge is the high stress
oncentration leading to low fatigue strength. The stress concen-

Fig. 1 Mass-spring system of an accelerometer
Fig. 2 Frequency response
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tration depends on the stress distribution, which is controlled by
the change in curvature of the beam. In this paper, we propose the
Lamé curves to improve the curvature distribution of the original
compliant hinge profile. The same method is then applied to an
evolved realization of the uniaxial accelerometer proposed in Ref.
�16�.

2 Architecture of the Accelerometer
The simplicial architecture for a multi-axial accelerometer, as

proposed in Ref. �16� refers to isotropic mechanism architectures
proper of parallel-kinematics machines �PKMs�, allowing the
measurement of one, two, or three acceleration components. Here,
Cardou and Angeles �16� characterized the architecture as simpli-
cial since the proof-mass is suspended by n+1 legs, where n is the
number of acceleration components measured by the accelerom-
eter, with n=1,2 ,3. The set of n+1 legs form the vertices of a
simplex1 created by the leg attachment points of the
n-dimensional accelerometer. The simplexes corresponding to
one, two, and three dimensions are the line, the triangle, and the
tetrahedron. If the triangle and the tetrahedron are equilateral, then
the accelerometer is equally sensitive in all the sensitive direc-
tions, thereby making the accelerometer isotropic. Furthermore,
the accelerometers always have one more leg than their dimension
requires, thereby providing redundancy, which considerably adds
robustness against measurement error.

The SUA at hand is intended to measure point-acceleration
along one direction �16�. To constrain the mass to move along a
single axis, we use a ��-leg architecture, where a � joint is a
parallelogram linkage, as described in detail in Ref. �18�, thereby
obtaining a novel realization of the well-known Sarrus mecha-
nism. A planar translation mechanism can be obtained by coupling
two �-joints together. The intersection of the two leg-planes
forms the new one-dimensional motion line of the mechanism.
Therefore, suspending the proof-mass to each leg on both vertices
�Fig. 3� allows the one-dimensional motion of the proof-mass.

2.1 Compliant Realization of a Uniaxial Accelerometer. In
this work, we propose a new compliant realization of a uniaxial
accelerometer by replacing the articulated �-joints of the SUA
legs by compliant �-joints. In a common compliant approxima-
tion of the �-joint, two identical straight flexible beams cast at
both ends lie parallel to each other to create a parallel-guiding

1In mathematical programming, a simplex is a polyhedron with the minimum
n

Fig. 3 The simplicial 2 �� uniaxial accelerometer: „a… top
view; „b… front view
number of vertices embedded in R �17�.
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echanism, or parallelogram �19�. Indeed, the flexible mechanism
as the shape of a parallelogram and allows only for translation in
ne direction. The new layout of the mechanism, as shown in Fig.
, is not only a compact form of the uniaxial accelerometer, but
lso offers an excellent ratio of off-axis stiffness to sensitive-axis
tiffness. Figure 5 illustrates the behavior of the new mechanism
ayout subjected to acceleration along the sensitive-axis direction.
he mechanism works on the principle of large-displacement
ompliant joints developed by Moon et al. �8�.

2.2 Material Selection. An important issue of compliant de-
ign is the material selection. Since accelerometers are designed to
e high-precision instruments, we need to consider the predict-
bility of the material properties. Metals are known to have pre-
ictable material properties, low susceptibility to creep, and pre-
ictable fatigue life. On the contrary, plastics and composites have
large variability in their mechanical properties, making them

ess predictable than metals. They are also sensitive to creep and
tress relaxation, which could bring about problems in the pres-
nce of constant acceleration such as gravity. Therefore, titanium
lloy was selected to build the accelerometer.

Not every fabrication process can produce titanium alloy struc-
ures. To cope with the issue of titanium manufacturing, the ac-
elerometer will be built with the EOSINT M 270 machine tool
or direct metal laser-sintering �DMLS�. This machine can manu-
acture complex three-dimensional geometries in multiple types of
etal, such as stainless steel, tool steel, or for the case of the

ccelerometers, TiAl6V4, a titanium alloy. The machine also has
n excellent detail resolution of �=100 �m, with � being the
ocus diameter of the laser. The precision of the DMLS machine
llows the fabrication of a compact monolithic titanium acceler-
meter.

Fig. 4 Cross-configuration mechanism
Fig. 5 Deformation alon

ournal of Mechanical Design
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2.3 Lamé-Shaped Hinges. Straight flexible beams used for
compliant mechanisms are integrated within a monolithic struc-
ture by adding a fillet at the interface between the beam and the
rigid link. Thus, the resulting flexible beam is said to be a corner-
filleted hinge. However, the circular profile of the fillets, which is
the most common shape found in the literature �20,21�, is not
optimal with respect to the stress concentration because circular
fillets give rise to G2-discontinuities, i.e. discontinuities in the
curvature of a geometric curve. It is known that curvature discon-
tinuities in the structure profile generate stress concentrations
�22–24�. The stress concentration resulting from the discontinui-
ties of the corner-filleted hinge profile depicted in Fig. 6 can ac-
celerate fatigue failure and reduce the life of the compliant mecha-
nism �25�. What is proposed in this work is to optimize the fillet
profile of the flexible beam by designing its shape with Lamé
curves. By controlling the curvature of the fillet, the von Mises
stress distribution becomes more even �26�.

De Bona and Munteanu �15� proposed an optimum compliant
hinge using a cubic-spline curve to find the best profile, which
will maximize the flexibility of a compliant revolute joint. In this
paper, we choose Lamé curves as opposed to other families of
curves, e.g. splines, because of their simplicity.

2.3.1 Lamé Curves. Lamé curves are �-order curves defined
by the equation

� x

a
��

+ � y

b
��

= 1 �2�

where � can be any rational number. There are nine different
types of Lamé curves based on the form of the exponent � �27�.
For our study, we resort to ��2. From Eq. �2�, it is apparent that
Lamé curves are analytic everywhere; even-integer-powered
curves are closed and doubly symmetric. For �=2, the curve re-
sults in a circle and, as � tends to infinity, the curve approaches a
square. In the case of odd-integer-powered, as depicted in Fig. 7,
the Lamé curves are open and extend infinitely toward an asymp-
tote, crossing the second and fourth quadrants and passing through

Fig. 6 Corner-filleted hinge
g the sensitive axis
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he origin. Fractional-powered Lamé curves are also open and
nalytic in the first quadrant, but in the other quadrants, Eq. �2�
eads to complex coordinates.

In order to obtain a closed curve for any rational power �, Eq.
2� is modified to read

� x

a
��

+ � y

b
��

= 1 �3�

igure 8 shows the curves obtained using Eq. �3� for �=2, 3.5, 5,
, and 30. Absolute-value bars are essential for all the rational-
owered curves, but can be deleted for their even-integer-powered
ounterparts. Absolute values, however, introduce discontinuities
n the curvature because the absolute-value function is not differ-
ntiable at the origin.

As the curves shown in Fig. 8 have double symmetry, it is
ufficient to study only the first quadrant of the curves for the
eneration of the fillets. Therefore, the curves that generate the
llets take the form

f�x,y� = � x

bx
��

+ � y

by
��

− 1 = 0 �4�

or 2���Q ,x ,y�R+, where Q is the set of rational numbers,

Fig. 7 Lamé curves for �=3
Fig. 8 Lamé curves of Eq. „3…

41011-4 / Vol. 132, APRIL 2010
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and bx and by being the scaling parameters.
With regard to Eq. �4�, the curve can be defined in terms of a

parameter � as

x��� =
1

�1 + tan ���1/� , y��� =
tan �

�1 + tan ���1/� �5�

where the angle �� �0,	 /2� is the polar coordinate of one point
of the curve, measured with respect to the x-coordinate axis, and
is defined positive counterclockwise. To generate the shape of the
fillets, affine transformations are used to scale the coordinates x1
and y1 by means of parameters bx and by, namely

x1��� =
bx

�1 + tan ���1/� , y1��� =
by tan �

�1 + tan ���1/� �6�

By using the new fillet to merge the flexible beams to the rigid
links, a new type of compliant joint is created, which we call the
Lamé-shaped hinge.

2.3.2 Curvature of the Lamé Curves. The advantage of this
family of curves is that, for ��2, their curvature vanishes at the
intersections with the coordinate axes. The curvature 
�s� is de-
fined as


�s� 	
d�

ds
�7�

where � is the angle made by the tangent with a fixed line and s
is the curve length, as shown in Fig. 9. From its definition, cur-
vature has units of inverse length. If the Lamé curve is given by
the parametric form of Eq. �5�, then the curvature 
��� takes the
form


��� =
x����y���� − y����x����

�x����2 + y����2�3/2 �8�

Notice that for ��2, 
��� becomes undefined at �=0 and 	 /2,
but the continuity of the curvature at points �1,0� and �0,1� can be
shown to be preserved by computing the limit of 
��� as � ap-
proaches 0 or 	 /2, i.e.

lim
�→0
��2


��� = lim
�→	/2

��2


��� = 0 �9�

The curvature can be expressed in a more robust form, namely,
implicit �28�, as appearing in Eq. �4�; whence


�x,y� =
2fxyfxfy − fxxfy

2 − fyyfx
2

�fx
2 + fy

2�3/2 �10�

where standard notation for partial derivatives has been used. For

Fig. 9 Lamé curves polar coordinate for �=4
the curve f�x ,y� of Eq. �4� the curvature takes the form �29�
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�x,y� =
�� − 1��xy��−2�x� + y��

�x2�−2 + y2�−2�3/2 �11�

hence, apparently, the curvature of the rational-powered Lamé
urves vanishes at the intersections with the coordinate axes.
hus, Lamé-shaped fillets as alternatives to the original circular
llets might be worthwhile because the new design improves the
tress distribution around the fillets by providing G2-continuity
long the hinge profile.

Optimum Design
Once the layouts of the accelerometer and the compliant joint

rofile has been defined, we need to find the architecture that
ptimizes the accelerometer behavior.

3.1 The Optimization Methodology. This section describes
he method used to find an optimum accelerometer architecture
hat minimizes the error of the measured acceleration. This error
an be minimized by optimizing the sensitivity and natural fre-
uencies of the compliant mechanism. The mechanical sensitivity
valuates the input-to-output amplification. In the field of compli-
nt mechanisms, the input-to-output amplification ratio is called
he “mechanical advantage,” as recalled in Eq. �1�, where uin and
out are the input and output displacements. Regarding accelerom-
ters, the output displacement is not generated by an input dis-
lacement but by an input acceleration �ain�. Hence, we define
ere the mechanical sensitivity of a compliant accelerometer as

��x� =
�uout�x��

�ain�
�12�

n the other hand, a minimum parasitic compliance in the plane
ormal to the sensitive axis, which is inversely proportional to the
econd natural frequency �s, can be obtained by minimizing the
atio between the first and second natural frequencies. In other
ords, the ratio tells how rigid the structure is in the direction
ormal to the sensitive axis. Finally, the axis drift needs to be
aken into account only when the stiffness of the plane orthogonal
o the sensitive axis is not isotropic. In the case of anisotropic
tiffness, the resulting inertia forces acting on the system will not
e balanced and will make the proof-mass deflect outside its trans-
ation trajectory. Designers need to ensure elastic isotropy in the
ormal plane2 by suitably specifying the layout of the accelerom-
ter. Thus, the optimization problem can be described as

f�x� 	 
 1/���x��
�l�x�/�s�x� � → min

x
�13�

ubject to boundary constraints

xj
l 
 xj 
 xj

h �14�

nd the design constraints

g1�x� 
 0, g2�x� 
 0 �15�

here g1�x� and g2�x� need to be defined presently, and x�Rn,
here �l�x� and �s�x� are the first and second natural frequencies,

espectively.
The boundary constraints �Eq. �14�� limit the geometric vari-

bles to acceptable values defined by the manufacturing process.
n the other hand, the design constraints deal with the maximum
esign space and strength requirement of the mechanism. The first
onstraint of Eq. �15� is a limit to the volume L2H defined by the
ength and width of the mechanism. The second constraint therein

2Elastic isotropy in a plane means that the stiffness matrix of the structure at hand
as two identical eigenvalues, as this matrix is symmetric. This means, in turn, that
ny vector in the same plane is an eigenvector of the stiffness matrix of the structure

n all directions of the plane.
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restricts the stress in the flexible element of the accelerometer to
fall in a range of �1000 g of the measurable acceleration. Within
this range, the mechanism strain is prevented from plastic
deformation.

To compute for the objective functions �Eq. �13�� at every op-
timization iteration, a finite element solver was coupled with the
optimization algorithm. To generate the finite element �FE� model
at each iteration according to inputs of the multi-objective algo-
rithm, a MATLAB procedure was implemented, using ANSYS as the
simulation toolbox. This is feasible, since MATLAB can execute
any program without interrupting its processing. Hence, ANSYS is
integrated in the optimization loop.

3.2 Problem Formulation. To optimize the accelerometer ar-
chitecture, seven parameters are introduced, which play the role of
design variables, and arrayed in the design vector x:

x = �w e t l bx by � �T �16�

which represent the width and length of the proof-mass, the thick-
ness and length of the compliant joint, and the height, length, and
degree of the Lamé curve describing the fillet of the compliant
hinges, respectively.

The symmetric configuration of the accelerometer rules out the
axis drift of the compliant mechanism. Therefore, we have a bi-
objective optimization, the objective functions being the sensitive-
and off-axis stiffnesses. The optimization problem is defined as in
Eq. �13�, subject to the boundary constraints

0 
 x1, �4by + 2t� 
 x2 �17a�

� 
 x3, 0 
 x4 �17b�

0 
 x5 
 l/2 �17c�

2� 
 x6, 2 � x7 �17d�

and the design constraints

g1�x� =
�2l + w�2e

L2H
− 1 
 0 �18a�

g2�x� = max
�

��vM��� − �adm� 
 0 �18b�

where �, �vM and �adm are, respectively, the node of the finite
element model �FEM�, the von Mises stress, and the admissible
stress for the maximum acceleration of 1000 g.

The optimization problem is subjected to the boundary con-
straints imposed by the physical dimensions of the compliant
mechanism, except for x3 and x6, which are limited by the DMLS
machine tool resolution. Indeed, the joint thickness t cannot be
smaller than the smallest focus diameter �=100 �m. On the other
hand, g1�x� describes the compactness, which is subject to an
inequality constraint to limit the design space. This limit is iden-
tified by a box with a volume L2H=103 mm3. Finally, to compute
for the stress constraint g2�x� and the natural frequencies of the
device, a MATLAB routine was implemented to call the FEA solver
at each iteration. In the case of the stress constraint g2�x�, we use
a different mesh, which considers the symmetries of the acceler-
ometer. Since the compliant joints are all equally loaded, we com-
pute for the stress in only one hinge. The structural model can be
simplified even more with a symmetric analysis of the compliant
joint. Figure 10 shows the model used for the structural analysis
and the plane subjected to an antisymmetry condition.3 The dis-
placements of the flexible beam left-end were set to zero, while, at
the other end, the rotations and displacement in the neutral-axis
direction were set to zero in order to respect the layout of the

3Recall that an antisymmetry condition applies when the geometry and load are

symmetric and antisymmetric, respectively, with respect to an axis.
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ccelerometer. The load case is also depicted in Fig. 10, where the
ending load is set to be

F = ain
mp

n
=

1000gw2e�

8
�19�

here ain, mp, n, g, and � are the maximum acceleration input,
ass of the proof-mass, number of compliant links, gravity con-

tant, and density of the titanium alloy, respectively.
To generate the FE model at each iteration according to inputs

f the optimization algorithm, a MATLAB procedure was imple-
ented, using ANSYS as the simulation toolbox. Hence, ANSYS can

e completely implemented in the optimization loop. Further-
ore, ANSYS automatically generates the mesh of the hinge at

ach iteration.

3.3 Multi-Objective Formulation. In general, the ith natural
requency of a structure is not an analytic function of the design
arameters, which prevents us from using gradient-based methods
f optimization. To overcome this issue, we use a direct method.
n the field of optimization, the Nelder–Mead simplex algorithm
30� is a well-known effective method for direct-search optimiza-
ion. The Nelder–Mead algorithm is modified and integrated in the
ntelligent moving object optimization algorithm �INTEMOB�
31� to handle nondifferentiable, discontinuous, and nonanalytic
unctions, as well as to deal with design constraints. For this rea-
on, we used INTEMOB in this work.

Bearing in mind that the Nelder–Mead method is able to oper-
te only on one objective function for minimization, we resort to
ulti-objective optimization, which is the process of simulta-

eously optimizing two or more conflicting objectives subject to
he same constraints. As we have a bi-objective case, the feasible
egion of the design space is represented in a plot where the co-
rdinate axes are the two objective functions, as depicted in Fig.
1. Multi-objective problems are known to have not one but many
olutions, which form the Pareto optimal set or Pareto frontier. A
areto solution is one where any improvement in one objective
an only occur by worsening one or several objectives.

We selected the NNCM, as proposed by Messac et al. �14�
ecause it generates a set of evenly spaced solutions on a normal-
zed Pareto frontier. The method for the bi-objective case com-
rises seven steps, as follows:

Step 1: Anchor points. To normalize the two-dimensional
areto frontier, we first need to find the two anchor points �1� and
2�, which are the solutions minimizing both objectives indepen-

Fig. 10 Structural model
Fig. 11 Pareto frontier
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dently. The line joining the two anchor points is called the Utopia
line. The anchor points are obtained by solving problems PU1 and
PU2 defined below, with the INTEMOB algorithm:

Problem PUi �i=1,2�

f i�x� → min
x

�20�

subject to the boundary constraints

xlj 
 xj 
 xuj �j = 1,2, . . . ,N� �21�
and the design constraints

g1�x� 
 0, g2�x� 
 0 �22�

with f1�x� and f2�x� defined as the first and second objective
functions of Eq. �13�, respectively.

Step 2: Objective mapping. To avoid scaling deficiencies, the
optimization takes place in the normalized design objective space.
The Utopia point �u in Fig. 11 is defined as

�u = �f1�x1�� f2�x2��
 �23�

and the distances l1 and l2 in Fig. 11 as

l1 = f1�x2�� − f1�x1�� l2 = f2�x1�� − f2�x2�� �24�

If f̄ is the normalized form of f, the normalized design space
displayed in Fig. 12 can be evaluated as

f̄�x� = 
 f1�x� − f1�x1��
l1

,
f2�x� − f2�x2��

l2
�T

�25�

Step 3: Utopia line vector. Define n̄u as the vector directed from

f�x1�� to f̄�x2��, yielding

n̄u = f̄�x2�� − f̄�x1�� �26�
Step 4: Normalized increments. Compute for a normalized in-

crement � along the direction n̄u for a prescribed number of solu-
tions m1 as

� =
1

m1 − 1
�27�

Step 5: Generate Utopia line points. Evaluate a set of vectors
xpk, which define Xpk as the set of evenly distributed points on the
Utopia line �Fig. 12�, namely

x̄pk = �1kf̄�x1�� + �2kf̄�x2�� �28�
where

�1k + �2k = 1 0 
 �1k 
 1 �29�

Note that �ik is incremented by � between 0 and 1 for k
� �1,2 , . . . ,m1
.

Step 6: Pareto point generation. Based on the new normaliza-
tion we find the other m1−2 Pareto solutions using the set of

Fig. 12 Normalized Pareto frontier
evenly distributed points on the Utopia line. For each point gen-
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rated on the Utopia line, we solve for the following:
Problem Pk �for k=2,3 ,4 , . . . ,m1−1�

f2�x� → min
x

�30�

ubject to the boundary constraints

xlj 
 xj 
 xuj j = 1,2, . . . ,N �31�
he design constraints

g1�x� 
 0, g2�x� 
 0 �32�
nd the new multi-objective constraint

n̄u
T�f̄�x� − x̄pk� 
 0 �33�

Step 7: Pareto design. Finally, the design solution that corre-
ponds to each Pareto point can be evaluated in the design space
y the relation

f�xk� = �l1 f̄1�xk� + f1�x1�� l2 f̄2�xk� + f2�x2���T �34�

Results
To define the normalized Pareto optimal set, the two anchor

oints �1� and �2� were obtained by solving problems PU1 and
U2 described below, with the INTEMOB algorithm. At the op-

imum points x1�= �2.7 2.3 0.1 9.2 0.2 80 /9�T and x2�

�4.5 5.9 0.1 4.5 0.2 43 /9�T, we found the two anchor points
1�= �2.50�107 0.1378� and �2�= �9.17�107 0.0452�. Thus,

he Utopia point results are �u= �2.50�107 0.0452�.

Problem PU1: f1�x� → min
x

�35�

Problem PU2: f2�x� → min
x

�36�

ubject to Eqs. �17� and �18�.
In addition to the anchor points, we need to find five additional

olutions of the Pareto frontier to determine a total of seven
oints. Consequently, the interval distance on the Utopia line is
qual to �=0.1666. The Pareto optimum solutions are listed in
able 1; Fig. 13 depicts the corresponding Pareto frontier.
The Pareto frontier gives us freedom to select a design archi-

ecture to meet specific conditions of the accelerometer. At one
xtreme, i.e., point 1, of the Pareto frontier, the fundamental fre-
uency is the lowest and corresponds to the most sensitive accel-
rometer. At the other extreme, i.e., point 7, the frequency ratio
l�x� /�s�x� is the minimum. The structural parameters that corre-
pond to this point are the most appropriate for low parasitic-
ensitivity accelerometers.

All the other points are intermediate optimum solutions. The
even Pareto solutions correspond to optimum accelerometers
ith different specifications. They are selected with respect to the
eight factor related to the application of the accelerometer. As

tated in Sec. 1, we aim at a general case where the accelerometer
hould have a natural frequency slightly higher than 1000 Hz and

Table 1 Pa

k
�

�nm/g�
�l�x�
�s�x�

w
�mm�

e
�mm�

1 40.12 0.1378 2.71 2.31
2 35.61 0.1056 4.57 2.62
3 27.92 0.0840 5.62 2.75
4 21.94 0.0713 5.51 3.21
5 16.72 0.0623 5.23 4.11
6 13.25 0.0540 4.91 4.92
7 10.97 0.0424 4.49 5.87
ratio lower than 1/10. We select solution 4 in Fig. 13 as it is the

ournal of Mechanical Design
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first point that meets the two conditions. The fundamental fre-
quency and the frequency ratio correspond to 1145 Hz and
0.0713, respectively. Figures 14 and 15 depict the stress distribu-
tion of solution 4 and the optimum accelerometer, respectively.

5 Discussion
The NNCM algorithm can generate a good approximation of

the Pareto frontier with a small number of optimum solutions; this
is a considerable advantage for mechanical systems with high
computational complexity, such as those involving FEA calcula-
tions. In the problem at hand, only seven solutions were obtained
to approximate well the Pareto frontier. The solutions are equally
distributed along the Utopia line, as opposed to a priori multi-
objective optimization methods, which need a larger number of
points to represent the Pareto frontier.

The Pareto frontier helps the designer to select the best com-
promise among a set of optimum designs. In our case, we choose
solution 4 as the resulting accelerometer meets the general char-
acteristics of a low-frequency accelerometer with a usable fre-
quency range that lies between 0 Hz and 600 Hz. Low-frequency
accelerometers have the advantage of high sensitivity and good
compactness; however, they have the disadvantages of very frag-
ile mechanical structure and high off-axis sensitivity. Thus, com-

o solutions

t
�mm�

l
�mm�

bx
�mm�

by
�mm� �

0.10 9.12 4.12 0.20 80/9
0.10 7.45 3.37 0.20 7
0.10 6.70 3.01 0.20 67/11
0.10 6.01 2.71 0.20 23/4
0.10 5.18 2.32 0.20 16/3
0.10 4.82 2.19 0.20 5
0.10 4.51 2.02 0.20 43/9

Fig. 13 Pareto frontier
ret
Fig. 14 von Mises stress distribution
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Downlo
only used low-frequency accelerometers have a limited range of
cceleration between 1 g and 50 g and high off-axis sensitivity of
round 5%. To overcome these problems, the accelerometer archi-
ecture was optimized by considering these four characteristics.
he first objective of the multi-objective optimization is to maxi-
ize the mechanical sensitivity ��� of the accelerometer. How-

ver, by minimizing 1 /� and the frequency ratio � f /�s, the opti-
ization also affects the accelerometer usable frequency range,
hich cannot exceed 1/3 of its fundamental frequency. Since the
ptimum accelerometer has a fundamental frequency of 1145 Hz,
ts usable frequency ranges from 0 Hz to 381 Hz. Moreover, the
roposed compliant mechanism exhibits a low mechanical off-
xis sensitivity through the minimization of the second objective.
he resulting compliant mechanism is at least 1000 times more
ensitive in its sensitive axis than in the other directions, which is

significant improvement. Finally, the optimization constraints
llow the mechanism to fit in a box of 17.5�17.5�3.2 mm3, and
revent failure of the compliant mechanism under �1000 g.

Conclusions
The normalized normal constraint method was applied in the

ork reported here for the accelerometer design. Although only
wo objective functions were considered, the method can readily
e extended to multiple objective functions. Since the objective
unctions are not analytic functions of the design parameters, the
ntelligent moving object algorithm, which is a direct optimization

ethod, was integrated into the normalized normal constraint
ethod. The method is intended to optimize a given layout, as

pposed to topology optimization, which is used to generate the
ptimum layout. The method was applied to optimize the cross-
onfiguration layout of a uniaxial accelerometer. However, the

Fig. 15 Optimum accelerometer
ethod can also be used to optimize triaxial accelerometers.
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