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ce wrinkling in chiral liquid
crystals and plant-based plywoods

Pardis Rofouie,a Damiano Pasinib and Alejandro D. Rey*a

We present theoretical scaling and computational analysis of nanostructured free surfaces formed in chiral

liquid crystals (LC) and plant-based twisted plywoods. A nemato-capillary model is used to derive a

generalized equation that governs the shape of cholesteric free surfaces. It is shown that the shape

equation includes three distinct contributions to the capillary pressure: area dilation, area rotation, and

director curvature. To analyse the origin of periodic reliefs in plywood surfaces, these three pressure

contributions and corresponding surface energies are systematically investigated. It is found that for

weak homeotropic surface anchoring, the nano-wrinkling is driven by the director curvature pressure

mechanism. Consequently, the model predicts that for a planar surface with a uniform tangential helix

vector, no surface nano-scale wrinkling can be observed because the director curvature pressure is zero.

Scaling is used to derive the explicit relation between the wrinkling's amplitude to the wavelength ratio

as a function of the anisotropic surface tension, which is then validated with experimental values. These

new findings can be used to characterize plant-based twisted plywoods, as well as to inspire the design

of biomimetic chiro-optical devices.
1. Introduction

Biological liquid crystals (BLCs) are anisotropic viscoelastic
materials exhibiting long-range orientational and partial posi-
tional order.1 The liquid crystalline phase and topological
defects in biological analogues are generally those of chiral
nematics (cholesteric) phase, and hence are referred to as bio-
logical helicoidal plywoods,2,3 also known as Bouligand archi-
tecture.4 Helicoidal plywoods are found in many biological
materials, such as DNA in human cells,5 cellulose in plant cell
walls,6 chitin in arthropods cuticles,2 and collagen in human
compact bones.7 BLCs are functional materials that display
several unique properties,8 such as nanoscale surface wrinkling
observed in LC DNA,9 cellulose,10 and collagen.11 Cholesteric
lms of concentrated collagen solutions exhibit periodic
undulations at the free surface with an amplitude of the order of
150 nm, and a periodicity of the order of 3.5 mm.11 Undulations
of similar scales are also observed in silk gland ducts of the
golden orb-web spider Nephilaclavipes,12 the exoskeleton of the
beetle Chrysina gloriosa,13 and cellulosic materials.10 These
nano-scale structures that are spontaneously formed on the free
surface of BLC are responsible for their particular optical
responses resulting in structural colors, observed in beetles,13

mollusk shells,14 and few plants.15 The study of the formation of
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these surface undulations is fundamental in understanding
structural color in nature and can inspire the design of optical
devices with novel functionalities.16

Photonic structures in many oral plants are associated with
the shape and anatomy of plant surface topography. It has been
reported that certain oral plant species, such as Hibiscus tri-
onum and Tulipakaufmanniana petals, use ordered striation or
ridges to obtain iridescence with a striking metallic appear-
ance.17 Although the formation of these micro- and nano-
structures during the development of the petals is not yet well
understood, it is believed that cellulosic CLCs are responsible
for plant surface undulations and iridescent colors. In the
preparation of a lyotropic cholesteric mesophase, Werbowyi
and Gray discovered that concentrated aqueous solutions of
(hydroxypropyl) cellulose (HPC) displayed iridescent colors that
changed with concentration and viewing angle.18 Efforts have
been made to trap the CLC structure in solid lms to create
colored iridescent lms.19 Fernandes et al. fabricated iridescent
solid cellulosic lms with tunable mechanical and structural
color properties, which mimic the structures found at the
surface of the “Queen of the Night” tulip petals, which display
periodic striation of about 1.5 mm, responsible for petal irides-
cence.20 They indicated that the formation and periodicity of the
surface structure are governed by the CLC structure.

Although the chiral surface structures are extensively studied
by microscopy methods, including atomic force microscopy
(AFM),21 the complementary theoretical analysis of CLC surface
wrinkling is rarely studied. The formation of surface nano-
structures at CLC interfaces is a complex phenomenon
Soft Matter, 2015, 11, 1127–1139 | 1127
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Fig. 1 Schematic of a cholesteric liquid crystal (plywood architecture)
and surface structures. H is the helix unit vector, and P0 is the pitch. (a)
The surface director has an ideal cholesteric twist, and the surface is
flat. (b) Bend and splay orientation distortions with l+ disclination35 for
W < 0 create surface undulations. Adapted from ref. 23a. Note that the
director field is continuous everywhere, and l lines are non-singular
core.
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involving interfacial tension, surface anchoring energy, and LC
Frank elasticity8 that requires integrated multi-scale modelling
of bulk and surface.22 In a study of cholesteric liquid crystal free
surface, Meister et al. described the periodic relief of a chole-
steric liquid crystal interface by the minimisation of surface free
energy composed of the anchoring energy and the surface
tension.23 They found that for relatively strong and nite
anchoring, the surface deformation energy arises due to
director surface gradient and elastic constants.23a The director
distributions in the distorted region coupled with anchoring
energy create nano-scale undulations at the free surface.

The plant cell wall is a multifunctional viscoelastic structure
made of cellulose microbrills (CMFs) coated with hemi-
celluloses and embedded in a matrix of lignin/pectin.24 The
plant cell wall includes a primary cell wall (p) laid down during
growth on the outside and three secondary cell walls (S1, S2, S3),
which are formed when the cell has reached its nal size and
shape.25 Although the primary and secondary wall layers differ
in specic chemical composition (cellulose and hemicellulose
contents are greater in secondary walls compared to primary
walls) and structural organization (CMFs in primary layers are
organized in a loose interwoven texture, whereas they are well
oriented in secondary layers). Overall, CMFs in the poly-
saccharide matrix are oriented in strategic directions to form
twisted plywood architecture for optimal mechanical efficiency.
The proof that plant cell walls are formed through a liquid
crystalline self-assembly process is the presence of the micro-
structure, textures and defect patterns observed in the
secondary cell walls of some plant species.8,26 The plant cell wall
helicoidal plywoods can be characterized by the helical axis H,
the pitch length P0, which is the distance through which the
bers undergo a 2p rotation and handedness (sign of P0), and
the average ber orientation n, which is normal toH (see Fig. 1).

In a recent communication27 we briey presented the main
mechanism that operates in chiral capillarity using a plant-
based plywood as a model material system. In this paper, we
present a comprehensive analysis of the nanoscale structures
observed at the chiral surfaces in detail and predict the
response of the surface structure to chirality and anisotropic
tension changes. We restrict our attention to the case in which
the helical axis always remains parallel to the surface; other
complex structures arising when the helical axis is tilted are
beyond the scope of this paper. Focusing on the cellulosic CLCs
material model, we use the generalized shape equation for
anisotropic interfaces using the Cahn-Hoffman capillarity
vector developed for LCs28 and the well-known Rapini-Papoular
anchoring energy29 for the anisotropic part of the interfacial
tension to analyze periodic nano-wrinkling in plant-based
plywood free surfaces. The objective of this study is to identify
the key mechanisms that induce and resist nano-wrinkling in
CLCs and to formulate nano-wrinkling scaling laws of biomi-
metic utility for the design of optical gratings and as a tool to
characterize plant-based plywoods.

This study is presented in the following manner: Section 2
presents the governing nemato capillary shape equation
expressing the coupling mechanism between the surface
geometry and cellulose ber orientation for CLC/air interface in
1128 | Soft Matter, 2015, 11, 1127–1139
rectangular (x, y, z) coordinates. The capillary shape equation is
derived and described in terms of three capillary pressures.
Appendix A presents the details of the derivation of the Cahn–
Hoffman capillary vector thermodynamics for CLC interfaces.
Appendix B derives the generic conditions, under which the
director curvature pressure is zero. Appendix C formulates the
capillary shape equation for the splay-bend director eld rele-
vant to nano-wrinkling. Section 3 analyses the effect of model
parameters on the surface prole. The leading mechanism,
which controls chiral wrinkling, is determined and the generic
sufficient condition that results in at and non-at surfaces is
derived. Furthermore, the surface energies associated with the
CLC interface are presented and discussed. Finally, based on a
standard order of magnitude analysis, a scaling formula
expressing surface prole amplitude as a function of model
parameters is presented and validated with a number of
experimental biological CLC surface undulations and with
numerical results. Section 4 presents the conclusions.

2. Capillary shape equation

We assume that the surface undulations in plant cell walls are
formed through modulation in surface energy at the
This journal is © The Royal Society of Chemistry 2015
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anisotropic-air interface and are inuenced by the macroscopic
chirality of the cellulose bers. The coupling mechanism
between the surface geometry and cellulose ber orientation
can be demonstrated through the shape equation. In this
section, the capillarity shape equation using the capillary vector
x (ref. 30) is presented for the CLC/air interfaces in rectangular
(x, y, z) coordinates, and the resulting surface pressures are
formulated.

For isotropic interfaces, the capillary pressure, pc, based on
the well-known Young–Laplace equation, is proportional to the
surface tension g and vanishes for plane surfaces (Vs$k ¼ 0):31

�pc ¼ �Vs$kg (1)

where Vs ¼ Is$V is the surface gradient, Is ¼ I � kk is the 2 � 2
unit surface dyadic, and k is the surface unit normal. However,
for a cholesteric liquid crystal (CLC) surface, the anisotropic
surface tension contributes additional modes to the capillary
pressure. The interfacial surface tension g for anisotropic
surfaces is a function of the surface unit normal k and the
director n: g(k,n) and is given by Rapini and Papoular:29

g
�
n; k

�¼ g0 þganiso

�
n; k

�
; ganiso

�
n; k

�¼ W

2
ðn:kÞ2 (2)

where g0 is the isotropic contribution, ganiso is the anisotropic
anchoring energy contribution, and W is the anchoring energy
coefficient. The anisotropic surface tension appears as the
property that renormalizes the isotropic component of the
interfacial tension and promotes the rotation of the interface.
The anchoring energy contribution is associated with the
director deviations from its preferred orientation due to bulk
distortions or external elds. The preferred orientation or easy
axis corresponding to eqn (2) can be parallel to the unit normal
k (homeotropic) and perpendicular to the unit normal k
(planar). In the present study, we restrict the discussion to
homeotropic anchoring (W < 0) because for planar surface
anchoring (W > 0, n$k ¼ 0), the helicoidal structure, in which
the helical axis is perpendicular to the surface, will remain
undistorted as it is the most stable and lowest energy state;32 the
undistorted helix results in a at surface.23a

As the nematic director in CLCs continuously rotates along
the helical axis, the helix structures (helixes perpendicular (H$k
¼ 0) and parallel (H$k ¼ 1) to the surface) for strong homeo-
tropic anchoring (W < 0) are not fully compatible with any
uniform aligning surface.33 As a result, the average orientational
order is disrupted due the frustration that leads to sub-surface
defect nucleation, which can be resolved by changing the
interface shape. The appearance of inclusions and the forma-
tion of defects in the bulk can change the director orientation in
the CLC and results in a periodicity at the free surface whose
wavelength can vary from half-helical pitch P0/2 to P0 or even
greater.21b,34 Herein, we assume that the pitch of the distorted
region is equal to the bulk P0. The effect of n(x) on the surface
relief of the two CLC structures is shown in Fig. 1. The distorted
surface layer can be generated either by vertical or tangential
helixes in the bulk (note that only a horizontal helix alignment
H is presented in Fig. 1).
This journal is © The Royal Society of Chemistry 2015
The Cahn–Hoffman capillary vector x (ref. 30) is the funda-
mental quantity that provides a direct and clear method to
explain the role of anisotropy in capillary pressure and its role in
surface shape determination. The capillary vector x takes into
account the changes in surface energy due to surface dilation
(change in area) and surface rotation (change in unit normal k)
in one single vectorial quantity. In this section, the key formu-
lations of capillary vector thermodynamics are presented.
Appendix A gives the details of the derivation of the Cahn–
Hoffman capillary vector thermodynamics for anisotropic
interfaces.28 The capillary vector x for nematic surfaces and
interfaces has two components:

x
�
n; k

�¼ xt
�
n; k

�þ x||
�
n; k

�
xt

�
n; k

�¼ gk; x||
�
n; k

�¼ Is$
dg

dk

(3)

The normal component xt describes the increase in surface
energy through dilation, and the tangential component xk is the
change in surface energy through rotation of the unit normal.
For isotropic surfaces, xk ¼ 0 and no rotational effects appear
becauseW¼ 0. It is important to note that at the free surface, we
have two independent elds: the director n and the unit normal
k. A so surface describes the case in which its shape adapts to a
given director orientation, as considered in this paper.

The normal component of the interfacial stress boundary
conditions at the CLC/air interface is

�kk:(Ta � Tb) ¼ (Vs$Ts)$k, (4)

where Ta/b is the total stress tensor in the air and cholesteric
bulk phase, and Ts is the interface stress tensor. The air and
bulk stress tensors are expressed as

Ta ¼ �paI

and

Tb ¼ �ð pb � fbÞIþ TE;TE ¼ � vfb

vVn
$ðVnÞT; respectively;

(5)

where pa/b are the hydrostatic pressures, fb is the bulk Frank
energy density, and TE is the Ericksen stress tensor. The
projection of eqn (4) along k results in the shape equation�

pa � pb
�þ�

fb
�� kk :

�
vfb

vVn
:ðVnÞT

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bulk normal stress jump; SJ

¼ ðVs$TsÞ$k|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�capillary pressure; �pc

(6)

where SJ is the total normal stress jump, and pc is the capillary
pressure. The bulk free energy density of a cholesteric in the one
constant approximation reads

fb ¼ 1

2
K
�
ðV$nÞ2 þ ðn$V� n� q0Þ2 þ ðn� V� nÞ2

�
; (7)

where K is the Frank elasticity constant, and q0 is the
wave vector, which is equal to 2p/P0. The surface contribution
(Vs$Ts)$k is minus the divergence of the capillary vector natu-
rally decomposed as36
Soft Matter, 2015, 11, 1127–1139 | 1129
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�pc ¼ ðVs$TsÞ$k ¼ �Vs$x ¼ �Vs$
�
x|| þ xt

�
¼ � vxt

vk
: Vsk|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Pdilation

ðarea size changeÞ

� vx||

vk
: Vsk|fflfflfflfflffl{zfflfflfflfflffl}

Protation

ðarea rotationÞ

� vx||

vn
: Vsn|fflfflfflfflffl{zfflfflfflfflffl}

Pdirector

ðdirector curvatureÞ

;

(8)

where Pdilation is the contribution from the normal component
xt, which is the usual Laplace pressure, and Protation is the
contribution from the tangential component xk. This is the
anisotropic pressure due to preferred orientation and is known
as Herring's pressure. The additional contribution to the
capillary pressure, Pdirector appears from director curvature due
to orientation gradients. The capillary pressure in CLC-free
interfaces includes a number of novel interfacial effects: (i)
capillary pressure even for at surfaces, (ii) Laplace-type capil-
lary pressure due to director orientation curvature (i.e. gradi-
ents), and (iii) orientation-dependent renormalization of the
surface tension coefficients due to anchoring energy.28

For the case under consideration, in the absence of gravita-
tion, semi-innite media in the vertical direction and periodic
in the horizontal direction, we take pa � pb ¼ 0. The remaining
contribution to SJ, {fb + kk:T

E}, is known as the elastic correction
in the liquid crystal literature. Using eqn (6) and (7), the elastic
correction is

SJ ¼
n
fb þ kk : TE

o
¼ 1

2
K
�
ðV$nÞ2 þ ðn$V� n� q0Þ2 þ ðn� V� nÞ2

�
�Kðn$V� n� qÞðn$ðððk$VÞnÞ � kÞÞ
�Kððn$VnÞðn$kÞÞ$ððk$VÞnÞ � KðV$nÞððk$VÞnÞ$k (9)

This expression can be greatly simplied. Using the director
eld of ref. 23a, with n ¼ (nx(x,y), ny(x), nz(x,y)) and the inter-
facial torque balance equation, we nd that the Ericksen stress
projection is zero:

kk : TE ¼
���

I� nn
�
$
vg

vn

�
$ðVnÞT

�
$k ¼ 0 (10)

because vny/vy ¼ 0. The elastic correction SJ in the present case
is then only due to fb. Using eqn (6), (9) and (10) and n¼ (nx(x,y),
ny(x), nz(x,y)) we obtain37

Kq0
2

2

�
1þ ny

2
�
¼
�
g0 �

W

2
ðn$kÞ2 þWðn$tÞ2

�
k

�W
	
ðk$nÞ

�
t
dn

ds

�
þ kn :

�
t
dn

ds

�

(11)

where k¼ d4/ds is the surface curvature, 4 is the normal angle, s
is the arc-length (Appendix C, Fig. 10) and t is the tangential
surface unit vector. For signicant anchoring that unravels the
helix, we nd that the extrapolation length ‘ex scales as

‘ex ¼ K

W
¼ cPo (12)
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where c is the ratio of the extrapolation length K/W to the
cholesteric pitch P0. Thus, the order of magnitude of the
stress jump (elastic correction) written in relation to anchoring
(i.e. W/Po) gives

oðSJÞ¼ o

�
K

Po
2

�
¼ o

�
W

K

WPo
2

�
¼ o

�
W

‘ex

Po
2

�
¼ o

�
c
W

P0

�
(13)

For typical cholesteric liquid crystals, the internal length
K/g0 is usually in the range 1 nm (an order of magnitude esti-
mation of the elastic constant K, and the surface tension g0

gives Kz 10�11 J m�1 and g0z 10�2 J m�2). As the ratio ofW/g0

at the cholesteric-air interface with quite strong anchoring lies
in the range (B ¼ W/g0 ¼ 0.05), the extrapolation length scale
K/W is about

K

W
¼ K=g0

W=g0

e1 ½nm�
0:05

� 20
�
nm

�
(14)

With these values, for a biological cholesteric liquid crystal
with a typical pitch P0 � 1 mm, the value of c is in the order of
K=W
P0

¼ 20 ½nm�
1000 ½nm� ¼ 0:02: Hence, if c is of the order of 0.02, the

SJ contributes 2% to the shape equation, and the elastic
correction to the surface shape is not signicant and can be
neglected to describe nano-scale surface undulations. When Po
increases beyond 1 mm, the elastic correction essentially
vanishes. When the elastic correction is essentially negligible,
the shape eqn (11) reduces to a balance of dilation, rotation, and
director pressures when the director eld and geometry are as
shown in Fig. (1):�

1� B

2
ðn$kÞ2 þ Bðn$tÞ2

�
k|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

PdilationþProtation

�Bfðk$nÞðVs$nÞ þ kn : Vsng|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pdirector

¼ 0;

(15)

where B ¼ W/g0 is the scaled anchoring coefficient. This equa-
tion shows that the surface shape is the balance between
surface tension and anchoring. The anchoring term is the
driving force for surface undulations, and it originates from the
fact that this anisotropic surface energy is minimized when the
director n is aligned along the preferred “easy axis”. For a xed
cholesteric helical orientation, the only method to minimize
this energy is to deform the interface to avoid an energetically
costly mismatch between the director and the easy axis. Because
the director of a cholesteric is periodic, the surface undulations
are also periodic. When the director orientation deviates from
the easy axis and the deviation generates gradients in surface
tension, which are comparable to the characteristic kinetic
energy density, the orientational-driven Marangoni ow may
appear.38 In this paper, we neglect this Marangoni effect and
consider the shape instability as driven by elastic effects. One
mechanism that may eliminate or reduce viscous effects when
the helix is tangential to the surface is the high viscosity asso-
ciated with permeation ow.39
This journal is © The Royal Society of Chemistry 2015
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For at planar interfaces (k ¼ 0), the capillary pressure is
driven only by director curvature:

pc ¼ W((k$n)(Vs$n) + kn:Vsn) (16)

The director curvature pressure, Pdirector is zero when

(k$n)(Vs$n) + kn:Vsn) ¼ 0 / Vs$n ¼ 0 and kn:Vsn ¼ 0 (17)

In a rectangular (x, y, z) coordinate system, to satisfy the zero
director curvature pressure condition (17), we nd that the
director n must obey one of the following two conditions: (1) nx
¼ 0 and (ny ¼ 0 or 2) nxny ¼ constant (the generic conditions
under which the director curvature pressure is zero are derived
in Appendix B). We note that the surface director eld
describing a planar surface with a uniform tangential helix
vector is given by n(x) ¼ (0, cos qx, sin qx), and because nx ¼ 0,
the director curvature pressure is zero and no surface wrinkling
can be observed, as previously predicted using other
approaches.23a

To describe 1D surface undulation in a CLC, we use a rect-
angular coordinate frame (x, y, z), where x is the undulation
direction, and y the vertical axis (see Fig. 1). The amplitude of
the vertical undulation is h(x). For a 1D texture, the surface relief
is constant in the z direction. The arc-length measure of the
undulating surface is “s”.

d4

dx
¼

pc þ q0B sinð4Þ
	
sin2ð4� q0xÞ� cos2ð4� q0xÞ



sin

�
4
�	

1� B

2
cos2ð4� q0xÞ þ B sin2ð4� q0xÞ


 (18)

Setting pc ¼ 0 and using the previously specied splay-bend
director n(x) ¼ (cos qx, sin qx, 0) and surface unit normal k(x)
vectors gives the governing nonlinear rst-order ODE for the
normal angle 4(x,B,P0), where�2 < B < 0, 0 < P0 < 100 mm, 0 < x <
L, where L is the given system length in the x direction. This
nonlinear ODE with periodic coefficients is solved using the
well-known AUTO nonlinear soware.40 The surface relief

is then obtained from hðxÞ ¼
ðx
0
cot 4dx0. The boundary

condition at x ¼ 0, is 4|x¼0 ¼
p

2
; consistent with the adopted

sign of B.
3. Results and discussion

In this section, we (1) establish and quantify the effect of
anchoring (B) and chirality (P0) on the normal angle 4(x,B,P0)
and on the amplitude prole h(x,B,P0), (2) use a pressure-energy
analysis to characterize wrinkling, and (3) formulate and vali-
date scaling relations for hmax as a function of B and P0.
Fig. 2 The numerical solutions 4(x) and h(x) for P0 ¼ 1.2 mm and
different values of B ¼ �0.05, �0.1, and �0.2, showing the increase of
the normal angle 4 and the resultant surface amplitude h through an
increase in the anchoring constant B.
3.1. Free surface prole

The generic features of the amplitude prole h(x), its maximum
value hmax, and its periodicity h(x) ¼ h(x + l) are the three
relevant outputs of the model. The two signicant parameters
This journal is © The Royal Society of Chemistry 2015
inuencing h(x) are the scaled anchoring coefficient B and the
micron scale length of the pitch P0. For the nematic-isotropic
interface, the scaled anchoring coefficient B is of the order of
magnitude 0.01.41 The anchoring strength W at the nematic-air
interface is about several orders of magnitude larger compared
to the anchoring strength at the nematic-isotropic interface.
However, as the surface tension at the nematic-air interface is
higher than the surface tension at the nematic-isotropic inter-
face,23a,42 the scaled anchoring coefficient B¼W/g is taken to be
in the range �0.1 < B < �0.01.

The plots of the normal angle 4(x) and corresponding
surface reliefs h(x) as a function of the distance “x”, for different
B and P0 are shown in Fig. 2 and 3, respectively. As expected, in
the periodicity, l equals the pitch, and P0 and the amplitude are
in the nanometer range, which is consistent with experimental
ndings.21a,43 Increasing both the parameters of B and P0 results
in higher amplitudes.
3.2. Pressure–curvature relations

Because at the nematic-air interface, the anchoring strength (W
z 10�5 J m�2) is three orders of magnitude smaller than the
surface tension (g z 10�2 J m�2),30 it would seem that there is
no driving forces to deform the CLC-free interfaces and a at
interface would minimize the free surface energy. However, the
director pressure curvature is herein shown to be a driving force
that wrinkles the surface under weak anchoring (i.e. small B)
and typical values of chirality (i.e. P0 in the mm range). All
pressures are scaled with the isotropic tension g0 and have units
of mm�1. Due to the orientational order of CLC interface, the
Soft Matter, 2015, 11, 1127–1139 | 1131



Fig. 3 The numerical solutions 4(x) and h(x) for B ¼ �0.05 and
different values of P0 ¼ 0.5, 1 and 2 mm, showing the increase of the
normal angle 4 and the resultant surface amplitude h by an increase in
the helical pitch P0.
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capillary pressure contains three contributions: surface area
reduction, surface area rotation, and director curvature (eqn
(8)). The essential feature of chiral capillarity is the interaction
of anisotropy (director n of bers), micron-range chirality (P0),
helix direction (H) and free-surface topography. When the
cholesteric helix is parallel to a at surface, frustration caused
by the unavoidable (due to periodic n) presence of high surface
energy allows the surface uncoiling of the helix and the periodic
tilting of the interface. This is another example of pattern
Fig. 4 3-D representation of the surface curvature and associated press
�0.1; and (b) B¼�0.05, P0 ¼ 0.5, 1, and 5 mm, showing the increase in th
diameter corresponds to the zero-pressure director (Pdirector ¼ 0).
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formation by disturbance, which is ubiquitous in
mesophases.8,44

A unique feature of liquid crystal surfaces28 is the presence
of Laplace pressure (area dilation), Herring's pressure (area
rotation), and director orientation gradients pressure, as
revealed succinctly by the surface gradient of the capillary
vector x (eqn (15)). Herring's pressure forms the basis of
anisotropic crystal morphologies28 and is included here as
Protation. As the Herring's pressure depends on curvature, it is
only the orientation pressure Pdirector that wrinkles the
surface with a wavelength that reects the periodicity of the
director eld. Extracting the curvature in eqn (15) clearly
shows that it is the ratio of a wrinkling driving force
(�Pdirector) to a resistance to wrinkling (capillary tension
coefficients):

k ¼ driving force

resistance
¼ �Pdirector�

gþ v2g

vs2

� ¼ B
�ðk$nÞðVs$nÞ þ kn : Vsn

�
1� B

�
1

2
ðn$kÞ2 þ ðn$tÞ2

� ;

(19)

where the capillary tension coefficients are the usual Laplace
terms plus the Herring's coefficient28 given by the second

derivative
v2g

vk2 ¼ tt :
�
v

�
tt$

vg

vk

�
vk

�
; the last ratio is obtained

by scaling with g0. Clearly, as Pdirector ¼ 0 / k ¼ 0 (see also
Appendix C).

This is illustrated in Fig. 4 through 3-D representation of the
surface curvature, k, and associated pressure directors, Pdirector,
and normal angle, 4, for two anchoring coefficients and three
chirality values. Fig. 4 shows that for all values of the anchoring
coefficients and chiralities, the zero-pressure director results in
a at surface (zero curvature). The horizontal diameter corre-
sponds to the zero-pressure director (Pdirector ¼ 0). Using scaling
arguments, the Pdirector scales as

Pdirector ¼ order

�
B

P0

�
: (20)
ure directors Pdirector and normal angle 4. (a) P0 ¼ 0.5 mm, B ¼ �0.05,
e maximum curvature for higher values of B and lower values of P0. The

This journal is © The Royal Society of Chemistry 2015



Fig. 5 Pressure profiles for Pdilation, Protation and Pdirector as a function of distance “x”: (a) B¼�0.05 and P0 ¼ 0.5 mm and (b) B¼�0.1 and P0 ¼ 0.5
mm. The ellipsoid corresponds to the director orientation. The figures display that pressure extrema occur at planar and homeotropic orientation.
When the director angle is p/4 < q < p/2, dilation and rotation are in-phase and when 0 < q < p/4, rotation and director curvature are in-phase.
Dilation and director curvature pressures are always out-of-phase.
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Therefore, from eqn (19) and (20) we see that the maximum
curvature will increase with B and decrease with P0, in
agreement with the computations. This dependence is man-
ifested in the 3-D plots of the surface curvature for different
anchoring coefficients (B ¼ �0.05, and �0.1) and chirality (P0
¼ 0.5, 1, and 5 mm), as shown in Fig. 4a and b, respectively.

Fig. 5 shows the three scaled surface pressures as a
function of “x” for two anchoring coefficients and P0 ¼ 0.5
mm. The ellipsoids correspond to the director orientation.
Pressure extrema (and surface relief extrema as in Fig. 2
and 3) occur at planar and homeotropic orientation. The
Herring's pressure Protation is always positive and alternates
its phase along each cycle, such that when the director
angle is p/4 < q < p/2, dilation and rotation are in-phase and
when 0 < q < p/4, rotation and director curvature are in-
Fig. 6 Polar plots of the three scaled capillary pressures: (a) Pdilation (mm
�1

0.5 mm. The angular coordinate is the director field q. The fourfold sym
{�1,2,.} and that all pressures vanish at np/4; n ¼ {�1,3.}.

This journal is © The Royal Society of Chemistry 2015
phase. Note that dilation and director curvature pressures
are always out-of-phase. In addition, its amplitude also
oscillates. Increasing the anchoring strength increases the
magnitude of all pressures. The polar plots of the three
scaled capillary pressures as a function of anchoring B
and chirality P0, are shown in Fig. 6 and 7, respectively.
The angular coordinate is the director eld q. The
fourfold symmetry reects the facts that the pressure
extrema are at 0, np/2; n ¼ {�1,2,.} and that all
pressures vanish at np/4; n ¼ {�1,3.}. The gure shows
that pressure asymmetry is strongest for the chiral compo-
nent Protation, but is essentially zero for the other two. Fig. 7
shows polar plots of pressure as a function of P0.
Decreasing chirality decreases all pressures as the wave-
length of the undulation increases. Changing P0 does not
), (b) Protation (mm
�1), (c) Pdirector (mm

�1) for B¼�0.05 and�0.1, and P0¼
metry reflects the facts that the pressure extrema are at 0, np/2; n ¼

Soft Matter, 2015, 11, 1127–1139 | 1133



Fig. 7 Polar plots of the three scaled capillary pressures: (a) Pdilation (mm
�1), (b) Protation (mm

�1), (c) Pdirector (mm
�1) for P0¼ 0.5 & 1 mmand B¼�0.5.

The fourfold symmetry reflects the facts that the pressure extrema are at 0, np/2; n¼ {�1,2,.} and that all pressures vanish at np/4; n¼ {�1,3.}.

Fig. 8 (a) The total surface energy and (b) isotropic and anisotropic
contributions compared with flat surface energies for P0 ¼ 0.5 mm and
different values of B ¼ �0.5 to �0.05. The system reduces its free
energy by decreasing its anisotropic surface energy.
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affect the degree of asymmetry between the lobes of these
pressures.
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3.3. CLC surface energies

The total surface energy is dened by Fs ¼
Ð
gdA,45 and for an

initially at surface of area L2, the total scaled surface energy
3T/g0L

2 is

3T

g0L
2
¼ 1

L2

ðL
0

ðL
0

1

sin 4
dxdz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

isotropic surface tension

þ B

L2

ðL
0

ðL
0

ðn$kÞ2 1

sin 4
dxdz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

anchoring energy

: (21)

Fig. 8 shows the variations of the total surface energy with
the two surface energy contributions for various B in compar-
ison with the at surface energy contributions. Fig. 8a shows the
total scaled surface energy of the wrinkled and at surfaces as a
function of anchoring B. Increasing the magnitude of B
increases the energy difference between the at and undulating
surfaces. The gure demonstrates that the total energy mono-
tonically decreases by increasing the magnitude of B. Fig. 8b
shows the different contributions of the proles shown in
Fig. 8a. The undulation is driven by the anisotropic surface
energy despite the increase in the isotropic energy. In addition,
the decrease in anisotropic energy is signicantly augmented by
the undulations.

Fig. 9 shows the corresponding energy contributions and
behaviour as a function of chirality. The gure shows that the
isotropic surface tension energy and the anchoring energy for a
particular value of anchoring (B ¼ �0.05) are almost indepen-
dent of chirality. Although the undulating surface has a higher
isotropic energy, compared with the at surface, the lower
anisotropic energy yields the undulating surface with a lower
total surface energy, compared with the at surface reference
line (Fig. 9a).

3.4. Undulation scaling law and validation

Using a standard order of magnitude analysis based on eqn (8),
we nd a revealing close-form expression for the maximum
amplitude hmax as a function of B and P0:
This journal is © The Royal Society of Chemistry 2015



Fig. 9 (a) The total surface energy and (b) isotropic and anisotropic
contributions compared with flat surface energies for B ¼ �0.05 and
different values of P0 ¼ 0.5 mm to 10 mm, showing that the system free
energy is almost insensitive to the variations of helix pitch P0.

Table 1 Validation of the scaling law eqn (22) with experimentally
observed nano-scale surface undulations in CLCs and biological
plywoods

Experiments h (nm) l (mm) Btted

Chiral polymer21a 2.5 0.63 0.028
Collagen solution46 100 7.5 0.079
Liquid crystalline collagen11 150 8 0.110
Cellulosic cholesteric lm20 5 0.5 0.059
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hmax ¼ BP0

1þ dB
: (22)

The numerical results indicate that d ¼ 10.71B�1.02.
The prediction is that the ratio of amplitude/periodicity is
essentially a linear function of the scaled anchoring B:
hmax

P0
¼ 0:085B.

Because the value of B for the interface between the chiral
nematic and the isotropic phase/air is usually in the range �0.1
< B < �0.01, the estimated amplitude of surface undulation is
about one percent of the undulation wavelength. The theoret-
ical estimate, based on the shape equation, of the depth-to-
This journal is © The Royal Society of Chemistry 2015
period ratio is consistent with the nano-scale surface structures
that have been experimentally observed in a variety of polymeric
and biological CLC. Periodic surface structures with amplitude
of the order of hundreds of nanometers and a periodicity of the
order of a few micrometers that spontaneously appeared from
evaporating droplets of collagen solutions on glass substrates
were detected using atomic force microscopy (AFM).45 The
periodic surface relief found in this work is very similar to the
periodic undulations observed in a collagen lm with twisted
plywood architecture.11 In addition, the AFM images of sheared
nanocrystalline cellulose thin lms showed two periodic grat-
ings with different scales: the primary periodic structure
perpendicular to the shear direction and a smoother texture
characterized by a secondary periodic structure, which is very
similar to the surface modulation found in the Tulip “Queen of
the Night” petals.20 The estimated values of the parameter B for
several surface nano-undulations of CLC (ref. 11, 20, 21 and 46)
are shown in Table 1. The results show that the predicted values
of parameter B using the scaling law are consistent with the
anchoring energy coefficients for the CLC/air interface.
4. Conclusions

This paper has used a non-linear nemato-capillarity shape
equation to describe the main mechanisms driving nano-
scale surface undulations in chiral nematic liquid crystals as
shown in plant-based plywoods and various cholesteric
liquid crystals. The generalized Laplace equation based on
the Cahn–Hoffman capillarity vector formalism was formu-
lated and used as an efficient tool to analyse surface reliefs in
plant-based plywoods. The resulting chiral capillary equation
admits stable, spatially periodic solutions describing surface
wrinkling, in which the amplitude is in the order of few nms
and the wavelength is in the order of mms. The role of three
capillary pressure contributions (surface area change,
surface area rotation, and director curvature) have been
elucidated, and the inuence of chirality and surface
anchoring has been characterized. The director pressure has
been identied as the fundamental driving force that
generates the surface nano-scale undulations. The model
predictions show that the director pressure vanishes for a
planar surface with a uniform tangential helix vector and
results in a at surface. A scaling law for the chirality-driven
surface wrinkling shows that the ratio of amplitude-to-period
is a linear function of the ratio of anchoring strength to
isotropic surface tension (0.085 � W/g0). The scaling law is
validated with experimental values available in literature for
surface undulations observed in CLCs and biological
plywoods. Because the pitch P0 of cholesteric liquid crystals
and plywoods is sensitive to temperature, water content, pH,
and external elds, we expect new functional material
surfaces that operate through the chiral capillarity mecha-
nism described here. Further work is currently in progress to
characterize a water-based surface actuation mechanism
through the interaction of anisotropic interfacial tension and
chirality changes through hydration.
Soft Matter, 2015, 11, 1127–1139 | 1135
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Appendix A
Cahn–Hoffman capillarity vector thermodynamics for CLC
interfaces

The purpose of this Appendix is to derive the Cahn–Hoffman
capillarity vector formulations for CLC interfaces. The nematic
capillarity vector is dened by the gradient of the scalar eld
rg:36

x(n,k) ¼ V[rg(k)], (A1)

where r is the magnitude of surface position vector r: r ¼ rk.
Noting that d(rg) ¼ V(rg)dr, the gradient of rg yield:

xðn; kÞ ¼ V
�
rgðkÞ�¼ g

vr

vr
þ r

dg

dr
gkþ Is$

dg

dk
(A2)

Thus, the normal and tangential components of capillarity
vector for CLC interfaces are:

xtðn; kÞ ¼ gk

x||
�
n; k

�¼ Is$
dg

dk
¼ ðIs$nÞ dg

dðn$kÞ ¼ g0n||;
(A3)

where g0 ¼ dg
dðn$kÞ and n||¼ Is$n is the tangential component of

the surface director eld. Noticing that Is is the 2 � 2 unit
surface dyadic: Is ¼ I � kk, where I is the 3 � 3 volumetric unit
tensor, we have

x||
�
n; k

�¼ Is$
dg

dk
¼ �

I� kk
�
$
dg

dk
¼ I$

dg

dk
� kk$

dg

dk
(A4)

Using the Rapini–Papoular surface free energy

g ¼ g0 þ
W
2
ðn$kÞ2,29 we get

dg

dk
¼ W

�
n$k

�
n (A5)

Substituting eqn (A5), we obtain the tangential component of
the capillarity vector:

x||(n,k) ¼ W(n$k)n � W(n$k)2k ¼ W(n$k)(n � (n$k)k) (A6)

Hence, the total capillary pressure pc is dened by pc ¼ Vs$x,
the divergence of the capillary vector follows the rule28

pc ¼ Vs$x ¼ Vs$
�
x|| þ xt

�
¼ vxt

vk
: ðVskÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

area size change

þ vx||

vk
: ðVskÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

area rotation

þ vx||

vn
: Vsn|fflfflfflfflffl{zfflfflfflfflffl}

director curvature

(A7)

Using eqn (A3), the contribution from the normal compo-
nent xt, the area size change contribution becomes

vxt

vk
: Vsk ¼ gIs : Vsk ¼ �gk; (A8)

where Vsk ¼ �ktt. According to eqn (A6), the area rotation
contribution becomes
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vx||

vk
: ðVskÞ ¼ �W

�
ðn$tÞ2 � ðn$kÞ2

�
k: (A9)

The director curvature contribution is determined using eqn
(A6), to obtain:

vx||

vn
¼ v

vn

�
W

�
n$k

��
n� �

n$k
�
k
��

¼ Wkn� 2Wðk� nÞkkþW ðn$kÞI (A10a)

vx||

vn
: Vsn ¼ vx||

vn
: t

vn

vs
¼ W ðt$nÞ

�
k$

vn

vs

�
þWðn$kÞ

�
t$
vn

vs

�
(A10b)

Appendix B
Director curvature pressure

The purpose of this Appendix is (i) to derive a general
expression of the director curvature pressure pN, (ii) to deter-
mine generic sufficient conditions, under which pN ¼ 0, and
(iii) to use (i) and (ii) to show that for a planar surface with a
uniform tangential helix vector pN ¼ 0 and no surface wrin-
kling can be observed as predicted by ref. 23a, using other
approaches.

General expression for the director curvature pressure (pN).
Using eqn (8), the director curvature contribution to the capil-
lary pressure, pN appears due to orientation gradients:

pN ¼ vx||

vn
: Vsn (B1a)

pN ¼ W((k$n)(Vs$n) + kn:Vsn). (B1b)

To further analyse this expression, we need the covariant
surface gradient of the director eld Vsn (for details see ref. 47):

Vsn ¼ aan,a ¼ (nb;a � bbant)aaab + (nt,a + bban
b)aak

¼ (nb;aa
aab � ntb) + (Vsnt + b$n)k (B2)

where a semicolon denotes covariant differentiation, aa are the
two tangential base vectors, aa are the two reciprocal base
vectors, the director eld is n ¼ nba

b + ntk, and the curvature
tensor b is

b ¼ � vk

vR
¼ �Vsk; Vs

�
*
� ¼ Is$Vs

�
*
� ¼ vð*Þ

vR
¼ aa

vð*Þ
vua

(B3)

where R is the position vector given parametrically by R¼ R(ua),
a ¼ 1, 2 and ua are the surface coordinates. The average
curvature H and the Gaussian or total curvature k are

2H ¼ Is : b ¼ �Vs$k ¼ � aa
vk

vua
¼ ba

a ¼ ðc1 þ c2Þ (B4)

K ¼ � 1

2
3s :

�
b$3s$b

�
¼ 1

2
3ab3gdbagbbd ¼ ðc1c2Þ (B5)

where c1 and c2 are the radius of curvature, and 3s is the dyadic
surface unit alternator:
This journal is © The Royal Society of Chemistry 2015
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3s ¼ �k � Is ¼ �Is � k ¼ �k � I ¼ �I � k

¼ aaab3ab ¼ aaab3
ab (B6)

The surface director gradient Vsn can then be decomposed
into the 2 � 2 symmetric surface gradient tensor A, the 2 � 2
antisymmetric surface gradient tensor W, and the 2 � 1 surface
gradient tensor R:

Vsn ¼ A + W + R (B7a)

A ¼ Aaba
aab;

Aab ¼ Aba ¼ nðb;aÞ � ntbab; nðb;aÞ ¼ 1

2
ðnb;a þ na;bÞ

(B7b)

W ¼ Waba
aab;

Wab ¼ �Wba ¼ n½b;a�; n½b;a� ¼ 1

2
ðnb;a � na;bÞ

(B7c)

R ¼ Rana
ak;Ran ¼ nt,a + babn

b (B7d)

In addition, the surface divergence of the director is deter-
mined from eqn (B2) to be

Vsn ¼ aan,a ¼ (nb;a � bbant)aaab ¼ Is:A ¼ na;a � 2Hnt (B8)

Replacing eqn (B7a–B8) into eqn (B1b) we determine a
general and detailed expression for the director pressure in
terms of director component (na,na:a,nt,nk) and curvatures
(H,ba,b):

pN ¼ W((n$k)Is:A + n$R$k)

¼ W((n(a;a) � 2ntH)nt + (nt,a + babn
b)na) (B9)

Vanishing director curvature pressure (pN ¼ 0). Herein, we
analyse some likely cases of pN ¼ 0 for (a) 2D surfaces and then
(b) 1D planar lines.

(a) For at surfaces, eqn (B9), it simplies to

pN(b ¼ 0) ¼ W(n(a;a)nt + n$aant,a) (B10)

If the director eld is homeotropic, n(a;a) ¼ n$aa ¼ 0, and
pN ¼ 0. If the director is tangential, nt,a ¼ nt ¼ 0, and pN ¼ 0.

(a) For 1D planar lines, the director pressure is:

pN ¼ Wðt$nÞ
�
k$

vn

vs

�
þWðn$kÞ

�
t$
vn

vs

�
; (B11)
Fig. 10 Geometry of the free surface, unit normal k, normal angle 4,
unit tangent t, and the (x, y, z) coordinate system.
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where t is the unit tangent, k the unit normal, and s the arc-length.
For homeotropic and planar straight lines, we nd pN ¼ 0. For
straight lines with line gradients, using rectangular (x, y, z) coor-
dinates with unit vectors (dx¼ t, dy¼ k, dz) and a director-led n¼
nxdx + nydy + nzdz, the pressure equation (eqn (B11)) becomes

pN ¼ W(nynx,x + nxny,x), (B12)

which vanishes when nxny ¼ C ¼ constant. Hence, under planar
or homeotropic orientation, there is no director pressure. Using
the unit length of the director n$n ¼ 1, no director pressure is
generated for the director eld, satisfying

ny
4 + nz

2ny
2 � ny

2 + c2 ¼ 0. (B13)

Proof of zero director curvature pressure for planar surfaces
(H ¼ 0) with tangential cholesteric helix (h ¼ t). When the
cholesteric helix is tangential to the straight line then

s ¼ x; t ¼ dx ¼ constant; dx$n ¼ 0; dx$

�
dn
dx

�
¼ 0:

Using eqn (B10) we nd

pN ¼ W

(�
dy$n

� �
dx$

dn

dx

�
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼0

þðdx$nÞ|fflfflffl{zfflfflffl}
¼0

�
dy$

dn

dx

�)
¼ 0: (B14)

No director pressure is generated because the director
gradients and the director components have no projection on
the x-axis.
Appendix C
Derivation of shape and normal angle equations

The purpose of this Appendix is to formulate the capillary shape
equation for the splay-bend director.

The geometry of the free interface is characterized by a
cylindrical surface such that its curvature in the z-direction is
zero and focused on the projection x(s) in the x–y plane (Fig. 10).
The unit tangent t and the unit normalN to the surface are given
by

t
�
s
�¼ vxðsÞ

vs
;
vtðsÞ
vs

h
v2x

�
s
�

vs2
¼ kk

�
s
�
; (C1)

where k is the curvature, quantifying the deviation from
linearity.

Because t is a unit vector, it can be expressed with the normal
angle: t(x) ¼ (sin 4(x), �cos 4(x), 0). In the normal angle

parameterization, the curvature is: k ¼ d4
ds

. Using the deni-

tion:
dx
ds

¼ sin 4, the director curvature pressure is

dn
ds

¼ dn
dx

dx
ds

¼ dn
dx

sin 4, and k ¼ d4
dx

sin 4: By substituting k

and
dn
ds

in eqn (5), the shape equation becomes
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pc

go

¼
	�

1� B

2
ðn$kÞ2 þ Bðn$tÞ2

�
sin f



df

dx
�
	
Bðk$nÞ

�
dn

dx
$t

�
þ Bðn$tÞ

�
dn

dx
$k

�

sin f:

(C2)

Setting pc ¼ 0 and using the splay-bend director distribution
n(x): n(x) ¼ (cos qx, sin qx, 0) and surface unit normal k(x): k(x)
¼ (cos 4(x), sin 4(x), 0), gives the governing nonlinear rst-
order ODE for the normal angle 4(x, B, q):

d4

dx
¼

q0B sinð4Þ
	
sin2ð4� q0xÞ � cos2ð4� q0xÞ



sin

�
4
�	

1� B

2
cos2ð4� q0xÞ þ B sin2ð4� q0xÞ


 : (C3)
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