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a b s t r a c t

This paper focuses on the structural design of the microscopic architecture of a lattice material with reg-
ular octet-truss cell topology and on the multiscale design of an axially loaded member manufactured of
this type of cellular solid. The rationale followed here hinges on the coincidence of the failure modes of a
stretching dominated lattice material, which experiences two types of microscopic failure modes,
namely, elastic buckling and plastic yielding. A lattice material that fails by the elastic buckling of its cell
elements without reaching the plastic yielding is far from optimum. To avoid this event and improve the
material strength, we first start to tailor the structural efficiencies of the cell elements. We show that by
shaping the cell element cross-sections, the lattice material buckling resistance can increase until it
equals the cell element yield strength, thereby exploiting fully the lattice material strength. The coinci-
dence of these two failure modes is the structural criterion used to develop selection charts for the micro-
structural design of the octet-truss lattice material. In the second part of the paper, we examine the
design of a structural column manufactured by regular octet-truss lattice material. We show that to max-
imize the structural failure resistance at both the structural and the material levels, the global buckling
and the yielding failure of the column must occur simultaneously with the microscopic failure modes of
the lattice material, namely the local buckling and the yielding of its microscopic cell elements. The paper
concludes by illustrating how the micro-truss geometry and the column cross-section can be simulta-
neously designed to fully exploit the strength of the material and the overall macrostructure.

Crown Copyright � 2010 Published by Elsevier Ltd. All rights reserved.
1. Introduction

A lattice material is a micro-structured material whose building
blocks are the material cells. It is generally classified into Stretch-
ing Dominated Lattice Materials (SDLM) and Bending Dominated
Lattice Materials (BDLM) (Ashby, 2005). Microscopic structural
analysis of the SDLM shows that its stiffness and strength scale
up with the densities ratio of the cellular material to the solid
material, �qL, while the stiffness and strength of the BDLM are gov-
erned, respectively, by �q2

L and �q3=2
L (Deshpande et al., 2001; Desh-

pande and Fleck, 2001). The different scaling laws have a strong
impact on the strength and stiffness of the material. For example,
at �q ¼ 0:01, the SDLM is 100 times stiffer and 10 times stronger
than the BDLM.

The cell elements of a SDLM are essentially loaded in axial ten-
sion or compression. An idealized representation of the SDLM is a
microscopic truss structure with pin-joints that allow rotations.
However, in practice these nodes are manufactured as rigid. As a re-
sult, secondary bending stresses develop in the cell elements but at
010 Published by Elsevier Ltd. All r
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a level almost negligible compared to that generated by the axial
stresses, which ultimately govern the SDLM failure. These modes
of failure include the plastic yielding in tension and the elastic
buckling and plastic yielding in compression. Characterization of
the SDLM shows that low density lattice materials always fail by
elastic bucking even when the macroscopic load is tension (Desh-
pande et al., 2001). A lattice material that fails by elastic buckling
is far from optimum, since the element becomes unstable without
fulfilling its potential yield resistance, where the element fails in
the elastic region at a loading lower than the load inducing its plas-
ticity. To improve this behavior, researchers found critical values of
the relative densities for different cell topologies at which the buck-
ling failure of the cell elements can be avoided (Fan et al., 2008).
Such strength improvement was achieved at the expense of the lat-
tice material density, which therefore had to be increased, as the
cell element’s slenderness ratio was decreased by either lowering
its length or by scaling up its radius of gyration. However, no atten-
tion to the potential of shaping the cross-section was considered. So
far, studies on lattice material have considered microscopic cell ele-
ments with circular solid cross-sections. A few studies have inves-
tigated experimentally, the behavior of lattice material with
cylindrical hollow cross-sections (Wadley, 2002). Due to recent
development in micro-manufacturing technologies, namely rapid
prototyping and rapid manufacturing (Kruth et al., 2005; Rochus
ights reserved.
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et al., 2007; Waterman and Dickens, 1994), shaping microscopic
structural elements in more efficient geometries has become feasi-
ble. Such progress on the manufacturing process encourages
exploiting the potential of shaping and sizing the cross-sections
of the cell elements to increase the lattice material strength.

This paper examines the impact of shaping the cell element
cross-sections of the lattice material on its structural performance.
We resort to recent studies that have investigated the effect of
cross-section geometry on the performance of macroscale struc-
tures under different loading (Pasini, 2007; Pasini et al., 2003,
2006). We first illustrate that enhancing the cell elements’ buckling
resistance by shaping their cross-sections allows the design of low
density lattice material that fail by plastic yielding rather than
buckling and, thus, fully exploit the material strength. Then, we
examine an axially loaded member manufactured of octet-truss
lattice material with the aim of fully exploiting its load carrying
capacity. For this purpose, the structural member is optimized by
imposing the coincidence between three failure modes, namely,
the local buckling (buckling of the microscopic cell elements), glo-
bal buckling (buckling of the macroscopic structure) and the plas-
tic yielding of the lattice material. Design charts are developed to
enable a multiscale design of a macroscale member subjected to
axial compression and manufactured of regular octet-truss lattice
material. The charts help compare and select simultaneously the
micro- and the macrostructural design.

2. Description of the regular octet-truss cell

This work focuses on a lattice material with regular octet-truss
cell topology. Fig. 1 shows the microscopic topology of a unit cell of
the lattice material examined here. The unit cell can be viewed as a
regular octahedron core that is surrounded by eight regular tetra-
hedrons distributed on its eight faces. The cell has a Face Centered
Cube (FCC) lattice structure with cubic symmetry generating a
material with an isotropic behavior (Renton, 2002); its nodes are
similarly situated with 12 cell elements connectivity at each node.

Determinacy analysis of the pin-jointed version of this micro-
scopic topology shows that this unit cell is statically and kinemat-
ically determinate. However, when the unit cell is tessellated to
generate the periodic material, the resulting microstructure be-
comes highly redundant and statically indeterminate, a feature
common to all stretching dominated cell topologies (Guest and
Hutchinson, 2003).

In the literature, works on the octet-truss lattice material con-
sider the geometry of each cell element as uniform along their
length and with circular solid cross-section. It has been demon-
strated that a lattice material that fully exploits the yield strength
Fig. 1. Structure of a unit cell of the regular octet-truss lattice material.
of the cell elements can be designed at the expenses of its relative
density (Fan et al., 2008). As a result, the lattice material density
must be increased to critical values, under which the cell elements
buckle. In this work, we circumvent this strategy. Rather than
increasing the material density, we chose to strengthen the buck-
ling resistance of each cell element by shaping its cross-sections
into a more efficient geometry.
3. Geometric variables

To model the effective properties of the regular octet-truss lat-
tice material, we define a range of modeling parameters. Fig. 2
shows the geometrical details of a macroscopic mechanical mem-
ber that is hierarchically parameterized and manufactured of a lat-
tice material. On the microscale, three parameters S, D and D0 are
defined for a cell element cross-section of an arbitrary shape and
size, where S, D and D0 are, respectively, the shape, the envelope,
and the envelope of a reference square. To model the efficiency
of a cross-section, dimensionless parameters, named as shape
transformers, can be defined to classify shapes into families and
classes as well as to describe their geometrical properties (Pasini,
2007).

For example, the shape transformers of the area and of the sec-
ond moment of area of a cross-section are defined as:

wA ¼
A

AD
ð1aÞ

wI ¼
I

ID
ð1bÞ

where wA and wI are, respectively, the area and the second moment
of area shape transformers; A and I are, respectively, the area and
the second moment of area of an arbitrary cross-section and AD

and ID are the area and the second moment of area of the cross-sec-
tion envelope, respectively.

Shape transformers can be used to define the cross-section effi-
ciencies of alternative shapes for given loading requirements. For
example, the cross-section geometric efficiency, k, controlling the
bending stiffness and the elastic buckling can be defined as:

k ¼ wI

wA
ð2Þ

On the other hand, the effect of scaling the cross-section size is gov-
erned by two dimensionless multipliers, u and v, where u and v
scale, respectively, the width B0 and the height H0 of the reference
square envelope, Do, to the required dimensions of the cross-sec-
tion. As a result, u and v can be expressed as:

u ¼ B
B0

ð3aÞ

v ¼ H
H0

ð3bÞ

where B and H are, respectively, the width and the height of the
cross-section envelope. Using Eqs. (1) and (3), the area and the sec-
ond moment of area of a cross-section can be expressed as:

A ¼ wAuvA0 ð4aÞ
I ¼ wIuv3I0 ð4bÞ

where A0 and I0 are, respectively, the area and the second moment
of area of the reference square. For the shape of the cross-section,
shown in Fig. 2, the shape transformers of the second moment of
area and that of the area, wI and wA, can be expressed as:

wI ¼ 1� cd3 ð5aÞ
wA ¼ 1� cd ð5bÞ
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Fig. 2. Multiscale geometrical details of macroscopic member manufactured of lattice material.
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where c = b/B and d = h/H and 0 6 c 6 1 and 0 6 d 6 1. By using Eq.
(5), the cross-section efficiency is expressed as:

k ¼ 1� cd3

1� cd
ð6Þ

A change of c and d in the interval of [0,1] results in values of wI and
wA in the range of [0,1] while k range is [1,3]. Similar formulation
can be expressed for different shape classes, e.g. ellipses and dia-
monds (Pasini, 2007; Pasini et al., 2003, 2006).

The limiting curves that show the variation of wI and wA with
the variation of the two parameters c and d is plotted in Fig. 3
for the three cross-section shapes considered in this study.

In Fig. 3, the bending efficiency necessary to assess the bending
and the buckling resistance of a cross-section can be evaluated by
computing the tangent of the angle formed by the line extending
from the origin of the graph to the point representing the shape
of each cross-section.

The buckling resistance of the microscopic cell element of the
lattice material is governed by the radius of gyration, rg, of the ele-
ment cross-section, besides by its length. The radius of gyration is
linked to the second moment of area by the expression:
Fig. 3. Variation of the shape transformers of the cross-section area
I ¼ Ar2
g ð7Þ

To express Eq. (7) in terms of the shape transformers, we substitute
Eqs. (4) and (5) into Eq. (7) and use Eq. (2) to obtain the following
expression (Pasini et al., 2003):

r2
g ¼ kv2r2

g0 ð8Þ

where rg0 is the radius of gyration of the reference cross-section.
In addition to modeling the cross-section geometry, we intro-

duce also another parameter, s, which models the length L of the
cell element with respect to the length L0 of a reference prismatic
element. Similar to u and v, this scaling multiplier is expressed as:

s ¼ L
L0

ð9Þ

Expressions (1)–(9) are used in this work to model the geometrical
properties at the micro- and macroscopic scales of the structure. To
distinguish between scale parameters, we use throughout the
whole paper the subscript ‘‘e” for the microscopic parameters and
‘‘G” for the macroscopic ones.
and second moment of area for different cross-section shapes.
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4. Modeling the effective properties of the octet-truss lattice
material

In this section, the effective properties of the regular octet-truss
lattice material are formulated as a function of the shape proper-
ties of the cell element cross-sections. Cross-sections with double
symmetry with respect to their principal axes are examined. The
properties considered include the material density, the elastic
and the strength properties and the material collapse surfaces.
For comparison, we report here also the formulations of the regular
octet-truss lattice material found in the literature (Deshpande
et al., 2001), where the cell element geometry of the lattice mate-
rial is assumed to be uniform with circular solid cross-section. The
properties of previous models are identified here with the suffix
‘‘a”; whereas the suffix ‘‘b” is used for our models, which are gov-
erned by the parameters presented in Section 3. It is assumed that
the solid material used in manufacturing the lattice material is
elastic-perfectly plastic and has an isotropic behavior with a Pois-
son’s ratio of t0 = 1/3.

4.1. Relative density

If we assume that the mass of the boundary elements of the unit
cell are divided equally among the neighboring cells, then the rel-
ative density of the regular octet-truss lattice material can be ex-
pressed as:

�qLa ¼
qLa

q0
¼ 6p

ffiffiffi
2
p� � ae

Le

� �2

ð10aÞ

�qLb ¼
qLb

q0
¼ 6

ffiffiffi
2
p� � Ae0

L2
e0

 !
weAueve

s2
e

� �
ð10bÞ

where ae is the radius of the cell element cross-section. �qL is the rel-
ative density of the lattice material, qL is the density of the lattice
material and q0 is the density of the solid material used to manufac-
ture the lattice material.

4.2. Elastic properties

The regular octet-truss cell geometry has a cubic symmetry,
which generates a material with isotropic properties (Renton,
2002). The compliance matrix of an isotropic material can be ex-
pressed as:

½C� ¼ 1
EL

1 �tL �tL 0 0 0
�tL 1 �tL 0 0 0
�tL �tL 1 0 0 0

0 0 0 2 1þ tLð Þ 0 0
0 0 0 0 2 1þ tLð Þ 0
0 0 0 0 0 2 1þ tLð Þ

2
666666664

3
777777775
ð11Þ

where tL and EL are, respectively, the lattice material Poisson’s ratio
and Young’s modulus.

By using the direct stiffness method, the relative Young’s mod-
ulus of the octet-truss lattice material can be expressed as:

ELa ¼
ELa

E0
¼ 2p

ffiffiffi
2
p

3
ae

Le

� �2

ð12aÞ

ELb ¼
ELb

E0
¼ 2

ffiffiffi
2
p

3
Ae0

L2
e0

 !
weAueve

s2
e

� �
ð12bÞ

where EL; EL and E0 are, respectively, the Young’s modulus of the
lattice material, the relative Young’s modulus of the lattice material
and the Young’s modulus of the solid material.
Combining Eq. (12a) to Eq. (10a) and Eq. (12b) to Eq. (10b)
results in:

EL ¼
EL

E0
¼ 1

9
�qL ð13Þ

The Poisson’s ratio of the regular octet-truss lattice material is
found to be tL = 1/3. Therefore, the full compliance matrix of the
regular octet-truss lattice material can be formulated as:

½C� ¼ 1
E0 �qL

9 �3 �3 0 0 0
�3 9 �3 0 0 0
�3 �3 9 0 0 0
0 0 0 24 0 0
0 0 0 0 24 0
0 0 0 0 0 24

2
666666664

3
777777775

ð14Þ

The relative shear modulus, GL, and the relative bulk modulus, �jL, of
the regular octet-truss lattice material can then be expressed as:

GL ¼
GL

G0
¼ EL

2 1þ tLð Þ

� ��
G0 ¼

�qL

9
ð15Þ

�jL ¼
jL

j0
¼ EL

3 1� 2tLð Þ

� ��
j0 ¼

�qL

9
ð16Þ

where G0 and j0 are, respectively, the shear and the bulk moduli of
the solid material.

Eqs. (13), (15) and (16) show that the elastic properties of the
regular octet-truss lattice material are independent of the geomet-
rical attributes of the cell elements. It can be realized that the ratio
of the relative elastic moduli to the relative density is ‘‘1/9”, a con-
stant that depends on the topology of the regular octet-truss cell.

4.3. Strength properties

4.3.1. Plastic yield strength
By using the direct stiffness method, axial and shear yield

strengths of the regular octet-truss lattice material can be formu-
lated as:

�ryLa ¼
ryLa

ry0
¼ p

ffiffiffi
2
p ae

Le

� �2

ð17aÞ

�syLa ¼
syLa

sy0
¼ pffiffiffi

2
p ae

Le

� �2

ð17bÞ

�ryLb ¼
ryLb

ry0
¼

ffiffiffi
2
p Ae0

L2
e0

 !
weAueve

s2
e

� �
ð18aÞ

�syLb ¼
syLb

sy0
¼

ffiffiffi
2
p Ae0

L2
e0

 !
weAueve

s2
e

� �
ð18bÞ

where ry0 and ryL are the direct yield strengths of the solid material
and the lattice material, respectively. sy0 and syL are the shear yield
strengths of the solid material and the lattice material, respectively.

Combining Eqs. (17a) and (18a) into Eq. (10a) as well as com-
bining Eqs. (17b) and (18b) into Eq. (10b) give:

�ryL ¼
1
6

�qL ð19aÞ

�syL ¼
1
6

�qL ð19bÞ

where syL ¼ 1
2 ryL and sy0 ¼ 1

2 ry0 are obtained from the Mohr’s circle
of an isotropic material in pure shear.

Eq. (19) shows that, also the yield strength properties of the reg-
ular octet-truss lattice material are independent of the cell ele-
ments geometry where the ratio of lattice material relative direct
and shear strengths to its relative density is a constant.
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4.3.2. Elastic buckling strength
The Euler critical buckling load of an axially loaded member in

compression is expressed as:

Pcr ¼ k2 p2EI

L2 ð20Þ

where E is the Young’s modulus of the material, I is the smallest sec-
ond moment of area of the member cross-section, L is the length of
the member and k is a factor that depends on the rotational stiffness
of the member end boundaries. For a pin-jointed element where
joint rotation is freely allowed, k = 1. If the rotation is fully con-
strained by fixed boundary conditions, then k = 2. In practice, the
value of the factor k of a SDLM is between 1 and 2. We idealize
the octet-truss lattice material as a pin-jointed micro-truss struc-
ture with k = 1, which is a safe design assumption.

Eqs. (8) and (9) along with Eq. (20) are used to express the crit-
ical buckling stress of the regular octet-truss lattice material as:

�rcr
ea ¼

rcr
ea

ry0
¼ 2p3

ffiffiffi
2
p

3

 !
E0

ry0

� �
ae

Le

� �4

ð21aÞ

�rcr
eb ¼

rcr
eb

ry0
¼ p2

ffiffiffi
2
p� � r2

eg0Ae0

L4
e0

 !
E0

ry0

� �
weIuev3

e

s4
e

� �
ð21bÞ

where �rcr
e and rcr

e are, respectively, the relative critical buckling
strength and the critical buckling strength of the regular octet-truss
lattice material.

By combining Eq. (21a) to (10a), and (21b) to (10b), Eq. (21) can
be modified as:

�rcr
ea ¼

rcr
ea

ry0
¼ p

54
ffiffiffi
2
p

� �
E0

ry0

� �
�q2

L ð22aÞ

�rcr
eb ¼

rcr
eb

ry0
¼ p2

36
ffiffiffi
2
p

� �
r2

eg0

Ae0

 !
E0

ry0

� �
ke

weA

� �
ve

ue

� �
�q2

L ð22bÞ

From Eq. (22a), it can be seen that the critical buckling strength of
the lattice material with uniform cell elements of a circular solid
cross-section is a function of the material relative density as well
as the solid material properties. On the other hand, Eq. (22b) shows
that, in lattice materials with shaped cell element cross-sections,
the critical buckling strength is also a function of the geometrical
attributes of the cell element cross-section.

To avoid failure by buckling, we impose the condition:

�rcr
e P �ryL ð23Þ

Substituting Eqs. (17a) and (22a) into inequality (23) gives:

�qLa P
6
ffiffiffi
2
p

p

 !
ry0

E0

� �
ð24Þ

The equality form of expression (24) is the critical relative density,
�q�La, of the regular octet-truss lattice material with circular solid cell
element cross-sections. As formulated, �q�La is only a function of the
solid material properties. The geometrical attributes of the cell ele-
ment are included together with the cell topology properties in the

constant 6
ffiffi
2
p

p

� �
.

To formulate the critical relative density, �q�Lb, as a function of
the geometrical properties of the cell element cross-section, we
combine Eqs. (18a) and (22b) with inequality (23), and write:

�q�Lb ¼
6
ffiffiffi
2
p

p2

 !
Ae0

r2
eg0

 !
ry0

E0

� �
ue

ve

� �
weA

ke

� �
ð25Þ

The contribution of the shape of the cell element cross-section can
be isolated by rearranging Eq. (25) as:
�q�Lb

6
ffiffi
2
p

p2

� �
Ae0
r2

eg0

� �
ry0
E0

� �
ue
ve

� � ¼ weA

ke

� �
ð26Þ

The effect of the cross-section efficiency and area shape transformer
on the lattice material critical relative density is shown in Fig. 4,
where Eq. (26) was plotted for the three shape families (rectangular,
elliptical and diamond) considered in this work. For a given area
shape transformer, weA, each family of cross-section shapes gener-
ates its own specific trend of critical relative density which provides
the minimum critical density that minimizes Eq. (26). From Fig. 4,
we gather that for the whole range of weA the family of the rectan-
gles has the potential to minimize weA

ke
better than the other shapes.
4.4. Collapse surfaces

A lattice material subjected to static loading encounters four
types of collapses, namely, plastic yielding (strength failure), elas-
tic buckling (instability failure), creep (deformation increase under
constant loading) and relaxation (load carrying capacity decrease
under constant deformation). In the following analysis, strength
and stability collapses are examined.
4.4.1. Yield collapse
The elements of a SDLM are always loaded axially, either in ten-

sion or compression. Unlike the collapse surfaces of solid materials
(Beer and Johnston, 1981) which, in the case of ductile materials,
can be derived by using a static failure criterion, such as the max-
imum shear stresses (Tresca) or the maximum distortion energy
(von Mises), the yield collapse of a SDLM is governed by the axial
yielding of the microscopic cell elements through a load transfor-
mation from the macroscopic stress field into the microscopic ele-
ments. If we assume that each microscopic element of the octet-
truss lattice material has a slenderness ratio that prevents buck-
ling, then all the cell members fail by plastic yielding. Following
the approach of Deshpande et al. (2001), we consider a load case
where the regular octet-truss cell is loaded by two forces in the x
and the z principal directions, as shown in Fig. 1. If the yield
strength, ry0, is the same in tension and compression, the elastic
yielding collapse surface in the x–z-plane can be formulated as:

rxxa

ry0

����
����þ rzza

ry0

����
���� 6 2p

ffiffiffi
2
p ae

Le

� �2

ð27aÞ

sxza

ry0

����
����þ rzza

2ry0

����
���� 6 p

ffiffiffi
2
p ae

Le

� �2

ð27bÞ

rxxb

ry0

����
����þ rzzb

ry0

����
���� 6 2

ffiffiffi
2
p Ae0

L2
e0

 !
weAueve

s2
e

� �
ð27cÞ

sxzb

ry0

����
����þ rzzb

2ry0

����
���� 6 ffiffiffi

2
p Ae0

L2
e0

 !
weAueve

s2
e

� �
ð27dÞ

Combining Eq. (10a) to (27a) and (27b) as well as Eq. (10b) to (27c)
and (27d) then, the plastic yielding collapse surfaces of the regular
octet-truss lattice material can be formulated as:

rxx

ry0

����
����þ rzz

ry0

����
���� 6 1

3
�qL ð28aÞ

sxz

ry0

����
����þ rzz

2ry0

����
���� 6 1

6
�qL ð28bÞ

From Eq. (28), it can be deduced that for the regular octet-truss lat-
tice material the ratios of the plastic collapse stresses to the relative
density are independent of the cell elements geometry.
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4.4.2. Buckling collapse surfaces
Assume that the regular octet-truss cell is loaded by two forces

in the x and z principal directions, as shown in Fig. 1, then, the crit-
ical buckling collapse surfaces in the x–z-plane can be formulated
as:
rcr
xxa

ry0

����
����þ rcr

zza

ry0

����
���� 6

ffiffiffi
2
p

p
54

 !
E0

ry0

� �
�q2

L ð29aÞ

scr
xza

ry0

����
����þ rcr

zza

2ry0

����
���� 6 p

54
ffiffiffi
2
p

� �
E0

ry0

� �
�q2

L ð29bÞ

rcr
xxb

ry0

����
����þ rcr

zzb

ry0

����
���� 6 p2

18
ffiffiffi
2
p

� �
r2

eg0

Ae0

 !
E0

ry0

� �
ke

weA

� �
ve

ue

� �
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By normalizing Eqs. (28a), (29a) and (29c) with respect to the rela-
tive density of the lattice material, we can express the collapse sur-
faces as:

Yield (for a circular and a generic cross-section)
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����
����
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����
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Buckling (for a circular cross-section)
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Buckling (for a generic cross-section)
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The relative direct stresses normalized with respect to the material
relative density are plotted in Fig. 5.

For octet-truss lattice material with cell elements of circular so-
lid cross-sections, the parameter ‘‘p”, which represents the relative
strength to the relative density ratio, is expressed as:

pa ¼
ffiffiffi
2
p

p
54

 !
E0

ry0

� �
�qL ð31aÞ

For a generic cell element cross-sections, the parameter p is ex-
pressed as:

pb ¼
p2

18
ffiffiffi
2
p

� �
r2

eg0

Ae0

 !
E0

ry0

� �
ke

weA

� �
ve

ue

� �
�qL ð31bÞ

The impact of shaping cell element cross-sections on the strength to
mass ratio of the lattice material is shown in the following
examples.



Fig. 5. Elastic and plastic collapse surfaces of the octet-truss lattice material evaluated for the relative direct stresses and normalized with respect to the material relative
density.
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5. Examples

5.1. Example 1

Consider an octet-truss lattice material with relative density of
�qL ¼ 0:0174 that is manufactured of steel AISI L2 (tempered at
205 �C) which has compressive yield strength of 1835 MPa, a
Young’s modulus of 210 GPa and a density of 7940 kg/m3. Starting
with a preliminary design, the structural performance of the lattice
material is compared in two scenarios:

(a) The lattice material has cell elements of circular solid cross-
sections of radius ae = 0.2557 mm and length Le = 10 mm. If
these values are substituted into Eq. (31a), we obtain
pa = 0.164.

(b) The lattice material has generic cell elements with geomet-
rical attributes that have the values of ue = 2.5, ve = se = 1,
Le0 = 10 mm, Ae0 = 0.4107 mm2, reg0 = 0.185 mm, and
weA = 0.2. Similarly, substituting these values into Eq. (31b)
gives pb = 0.129ke.

Assume that the generic cross-sections have efficiency ke = 1,
then, the lattice material in both cases (a) and (b) fails by elastic
buckling. However, as explained in the previous sections, an axially
loaded structure that fails by buckling is far from optimum since the
material fails before reaching its yielding strength, therefore, we
optimize our design by increasing the buckling resistance until it
coincides with the plastic yield strength. In the case of the circular
solid cross-sections, this strategy results in increasing the relative
density of the lattice material from 0.0174 to 0.035. On the other
hand, in the case of cell element with generic cross-sections, the rel-
ative density of the material can be left constant, while the shape of
the cross-section can be tuned to generate an efficiency of ke = 2.56.
This value can be provided by a cross-section of the rectangular
family with a geometry described, for example, by c = 1 and
d = 0.849. As a result, shaping the cell element cross-sections of
the regular octet-truss lattice material with ke = 2.56 increases the
stress carrying capacity of the material from r=ry0

	 
�
�qL ¼ 0:164

to r=ry0
	 
�

�qL ¼ 0:33 and reduces the structural weight of 50%.

5.2. Example 2

In this second example, the effect of changing the efficiency of
alternative cell element cross-sections on the collapses surfaces
is investigated. In particular, the cross-section efficiency of the cell
elements is optimized in order to increase the buckling resistance
until it reaches the material yielding.

Assume a solid material with yield strain ey0 = 0.05, and assume
that the cross-section geometry of the cell elements is described by
Ae0 = 4 lm2, ue = ve = 1, and has shape properties of weA = 0.6 and
element length Le = 1 cm. Using the derived expressions, from pre-
vious sections that characterize the lattice material properties,
those properties can be computed as:

Relative density:

�qL ¼
qL

q0
¼ 6

ffiffiffi
2
p wAAD0uv

L2
e

 !
¼ 0:203 ð32aÞ

Plastic collapse surface:

rxx

ry0

����
����þ rzz

ry0

����
���� 6 0:0676 ð32bÞ

Elastic buckling collapse surface:

rcr
xxb

ry0

����
����þ rcr

zzb

ry0

����
���� 6 0:0445ke ð32cÞ

As expected, Eq. (32c) depends on the cell element cross-section
efficiency, ke, of the lattice material. Resorting to the cross-section
selection chart, shown in Fig. 6, the efficiency of alternative cross-
section shapes can be determined.



Fig. 6. Efficiencies of different cross-section shapes at specified wA = 0.6.
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In Fig. 6, we constrained the area shape transformer
(weA = 0.6) which contributes to the lattice material density.
The condition weA = 0.6 is illustrated by the dashed vertical line
that intersects the limiting curves of the alternative cross-sec-
tion shapes available. The cross-section efficiency, ke, is simply
the slope of a segment connecting a point to the origin of the
chart.

If we determine the value of the efficiency, ke, of the cross-
section from Fig. 6 and substitute it into Eq. (32c), then, the
-0.05 
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-0.1 

-0.

0y

zz

σ
σ

Plastic collapse surface 

0.1=λ
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Fig. 7. Elastic and plastic collapse surfaces and the effect of
collapse surfaces can be obtained (Fig. 7) for the cross-sections
meeting the requirement weA = 0.6.

In Fig. 7, the plastic yielding collapse surfaces are superimposed
to the elastic buckling collapse surfaces of the lattice material under
the load case corresponding to two direct stresses in the x–z-plane.
Fig. 7 shows four failure modes corresponding to Mode I ¼
þ rcr
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ry0
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ry0

� �
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cross-section efficiency on the structural performance.
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The optimum lattice material is obtained when the elastic buck-
ling resistance is increased until it is equal to the yielding failure
strength (Ashby, 2005; Weaver and Ashby, 1997). In this example,
such a criterion is achieved for ke = 1.5, which can be satisfied, for
example, by a rectangular cross-section with c = 1 and d = 0.48.
Although higher efficiencies can be obtained, no increase in the
structural performance can be achieved, as for ke > 1.5 the plastic
yielding will dominate the failure mode.

Whereas prescribed in this example, the cell element length
will be considered as design variable in the next sections.

6. Design charts for the regular octet-truss lattice material

A design chart is developed here to help selecting the micro-
scopic attributes of the regular octet-truss lattice material that best
minimizes its relative density for a given strength requirement rL.
The cell element length multiplier, se, as well as the shape of a dou-
ble symmetry cross-section are considered as design variables.

For the purpose of developing such a chart, we formulate the
problem in optimization terms as follows:

Minimize �qL

With respect to se and weA

Subject to rcr
e ¼ ryL ¼ rL

and ue=ve P 1

ð33Þ

The equality constraint (33) is imposed to use the material strength
to its maximum extent.

Before plotting the chart, we rearrange in three steps the
expressions of the objective function �qL and the constraint
rcr

e ¼ ryL. The goal is to make them functions solely of the geomet-
ric variables of the cell element, which include the cell element
length multiplier, se, and the cross-section efficiency ke.

Step (1) se is reformulated by substituting Eqs. (18a) and (21b)
into Eq. (33), which results in the expression:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffis
se ¼ pð Þ reg0

Le0

� �
veð Þ

E0

ry0

� �
ke ð34Þ

In Eq. (34), the cell element length multiplier is controlled by the
cell element cross-section shape through

ffiffiffiffiffi
ke
p

. For convenience,
we redefine se with the following parameter Xe as:
ffiffiffiffiffiffiffis !

Xe :¼ Le0

reg0

� �
se

� ��
pve

E0

ry0
¼

ffiffiffiffiffi
ke

p
ð35Þ

Step (2) The octet-truss lattice material yield strength ryL is
expressed as a function of Xe and weA. Here, Eq. (35) is
used to reformulate se in terms of Xe and to substitute
the result into Eq. (18a), which is rewritten as:
ffiffiffip ! !� � !� �
�ryL ¼
ryL

ry0
¼ 2

p2

Ae0

r2
eg0

ry0

E0

weA

X2
e

ue

ve
ð36Þ

By rearranging Eq. (36), the contribution of the cell element geom-
etry to the strength of the lattice material can be isolated, and ryL

can be redefined as:
  !

r�yL :¼ ryLffiffi

2
p

p2

� �
Ae0
r2

eg0

� �
ry0
E0

� �
ue
ve

� � ¼ weA

X2
e

ð37Þ

Step (3) Finally, the objective function, �qL, is expressed in terms
of the design variables. From Eq. (35), se is expressed in
terms of Xe and the resulting expression is substituted
into Eq. (10b), which is then written as:
�qL ¼ Ce
weA

X2
e

ð38Þ

where Ce ¼ 6
ffiffi
2
p

p2

� �
Ae0
r2

eg0

� �
1
v2

e

� �
ry0
E0

� �
. As noted previously, Eq. (38), sim-

ilarly to Eq. (36), is dependent on weA

X2
e

through the coefficient Ce.

The previous relations are now plotted into the design chart
shown in Fig. 8. The lightest lattice materials that minimize weA

X2
e

in
Eq. (38) are the solutions displayed at the left-top corner. The black
lines, which guide the choice of Xe, represent the cell element
lengths, Eq. (35), of different cross-section shapes. Iso-stress con-
tours r�yL, Eq. (37), are also superimposed to help the designer to
select the best cell element cross-section shape and its length for
a given rL requirement.

Since rL is specified by the problem, Eq. (37) is used to deter-
mine r�yL, after having scaled the element cross-section with a va-
lue of ue/ve that meets the strength requirement. Although a
specific ratio of ue/ve can be generated by an infinite combinations
of values of ue and ve, in practice the maximum dimension of the
cubic envelope of the microscopic octet-truss lattice cell must be
limited by the minimum dimensions of the structure at the macro-
scopic scale.
7. Multiscale design of an axially loaded macroscopic member

The chart presented in the previous section helps design the lat-
tice material at the microscale. In this section, the design of a real
macroscopic pin-jointed strut manufactured of octet-truss lattice
material is examined. The structure is subjected to a compressive
force F with octet-truss lattice material properties qL (density), EL

(Young’s modulus) and ryL (yield strength). The lattice material is
manufactured of a solid material that has density, q0, Young’s
modulus, E0, and yield strength, ry0. As mentioned in Section 3,
the macroscale parameters are specified by the subscript G.

Section 7.1 examines the design chart for a macroscale strut;
Section 7.2. presents the multiscale design of the strut, which in-
volves the simultaneous use of both the micro- and macroscale de-
sign charts.

7.1. Design chart for macroscopic strut

Similar to the previous section, we pose the design problem of
the strut under compressive force F as follows:

Minimize m

With respect to sG and wGA

Subject to sf r ¼ ryL 6 rcr
G

uG P vG

where m is the mass of the macroscopic structure, sG is the strut
length, ryL is the yield point of the strut, sf is a design safety factor
and r is the axial stress generated by the external force F. To devel-
op the macroscopic structure design chart, we rearranged the above
expression in three steps.

Step (1) Similar to the microscopic cell element length multiplier,
se, the macroscopic strut length multiplier, sG, is formu-
lated as:
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffis
sG 6 pð Þ rGg0

LG0

� �
vGð Þ 2

3

� �
E0

ry0
kG ð39Þ

Now, Eq. (39) is rearranged to isolate the macroscopic cross-section
geometrical parameters where a new expression of sG is redefined
as:



Fig. 8. Design chart of the microscopic architecture of 3D lattice materials.
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ffiffiffiffiffip

XG :¼ sG

pð Þ rGg0
LG0

� �
vGð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

	 
 E0
ry0

h ir 6 kG ð40Þ

Step (2) To avoid the yielding of the macroscopic strut under the
compressive loading, F, the yield constraint sfr = ryL, is
written as a function of the external force, F, such that:
sf
F

AG
¼ sf F

AG0wGuGvG
¼ ryL ð41Þ

Isolating vG in Eq. (40), and substituting its expression into Eq. (41)
results in:
Fig. 9. Design chart of mechanical members lo
ffiffiffiffiffiffiffiffiffiffiffiffiq

ryL :¼

sf Fp 2
3

	 
 E0
ry0

LG0
rGg0

� �
AG0sGuG

XG

wGA
ð42Þ

In Eq. (42), the cross-section shape contribution is isolated and the
strut yielding point is redefined as:
� � 1

r�G ¼

LG0
rGg0

AG0sG

sf Fp
ffiffiffiffiffiffiffiffiffiffiffiffi

2
3

	 
 E0
ry0

q
0
B@ CA uGð Þ ryL

	 

¼ XG

wGA
ð43Þ

Step (3) The objective function, m, is expressed in terms of the
design variables as:
aded in axial compression.
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m ¼ CG �qLXGwGA ð44Þ

where CG ¼ p
ffiffi
2
3

q� �
AG0rGg0
	 


q0

ffiffiffiffiffiffi
E0
ry0

q� �
uGv2

G

	 

.

Fig. 9 visualizes the macroscopic design chart that can be used
to select the best geometrical attributes of a strut in axial compres-
sion for a given macroscopic loading. In Fig. 9, the black lines are
the plots of Eq. (40), obtained for different cross-section shapes.
They represent the correspondent strut length multiplier, sG, which
is determined from XG through Eq. (40), after the cross-section
height is scaled with the value of vG that meets the load require-
ment. In addition, Eq. (43) is plotted in Fig. 9 to represent iso-stress
lines that intersect the curves XG. From this chart, the designer can
select the best element length and cross-section shape of the mac-
roscopic strut.

Next section shows how to combine Figs. 8 and 9 for a multi-
scale design of a lattice structural member.

7.2. Multiscale design charts

We consider a multiscale design problem which involves the
optimization of a column manufactured of octet-truss lattice mate-
rial at both the micro- and the macroscales. The design require-
ments are set at the structure as well material level. At the
column level, the length, LG, the external load, F, and the design
safety factor, sf, are prescribed; at the material scale the require-
ments include the solid material properties of the yield strength,
ry0, the Young’s modulus, E0, and the density, q0. For the reference
element, the baseline of the geometric parameters are reg0, Ae0 and
Le0 at the microscale and LG0, rGg0 and AG0 at the macroscale.

In this problem, the objective of fully exploiting the material
strength at each length scale requires the design of a column in
which the three failure modes, namely, the local buckling rcr

e

(buckling of the microscopic cell elements), global buckling rcr
G

(buckling of the macroscopic structure) and the plastic yielding
failure of the strut ryL, occur simultaneously, i.e. rcr

e ¼ ryL ¼ rcr
G .

The rationale behind is the following: if any of the three failure
modes dominates the structural failure, any performance enhance-
ment that shifts the other two failure modes to higher limits will
not contribute to the global structural performance (Weaver and
Ashby, 1997). Based on this criterion, we now combine the charts
shown in Figs. 8 and 9 to design a column made out of regular oc-
tet-truss lattice material.

At the macroscale, we first determine the column length multi-
plier, sG = LG/LG0, from which we calculated XG through Eq. (40),
after scaling the cross-section with vG to meet the load require-
ment. When XG is obtained, the cross-section shape of the strut
can be selected in Fig. 9 for different values of the constraint
r�GyL. Substituting the selected r�GyL into Eq. (43) allows obtain the
plastic strength ryL that will be used as an input in Fig. 8 for the de-
sign of the lattice material. ryL is then used in Fig. 8 to determine
r�eyL through Eq. (37), after scaling the cell element cross-section
with the appropriate ue/ve, as explained in Section 6. The obtained
value r�eyL corresponds to an iso-stress line, whose intersections
with Xe define the cell element multiplier of the lattice. The crite-
rion to use when moving along such an iso-stress line is that of
minimizing the mass of the structure, i.e. minimizing the density
of the lattice material. As described in Eq. (38), the lattice materials
that best minimize weA

X2
e

are the solutions displayed at the left-top
corner of Fig. 8.

8. Conclusion

Under compression, a column manufactured of regular solid
material experiences two types of failure modes, namely, the glo-
bal buckling and the yield failure. A lattice material column, on
the other hand, may also fail for either the local buckling or yield-
ing of its microscopic cell element. To fully exploit the strength of a
strut made of lattice material, the global buckling and the yielding
failures must occur simultaneously with the microscopic failure
modes. To achieve this, this paper introduced a set of multiscale
design charts for the selection of the geometric properties for both
the cell elements and the column cross-section. The charts help to
gain insight into the impact that the structural geometry at both
the micro- and macroscale has on the overall resistance of the
column.
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