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This paper deals with the optimization of the ply angles and the internal geometry of a composite helicopter
blade with a D-spar internal construction. The design involves the simultaneous optimization of several
conflicting objectives such as: attaining three stiffness parameters, minimizing the blade mass and the dis-
tance between the mass-center and the aerodynamic-center. Optimization methods with a priori and a pos-
teriori articulation of preferences are used to solve the problem. Among the a priori approaches, the
min-max approach is used to transform multiple objective functions into a single criterion which is opti-
mized with Particle Swarm Optimization (PSO). Alternatively, the design problem is tackled using a poste-
riori approach by using our in-house Non-dominated Sorting Hybrid Algorithm (NSHA). The results
obtained with NSHA demonstrate trade-off designs which could not be captured with the min-max
approach. The multi-objective approach allows identifying a window of 10% adjustment in mass and 20%
adjustment in the distance between the mass center and the aerodynamic center with no significant devi-
ation from the target stiffness vector. Furthermore, we have observed that the target stiffness vector can be
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attained more easily if the internal geometry, besides the ply angles, is considered as a design variable.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

High stiffness-to-weight, strength-to-weight ratios and supe-
rior fatigue and dynamic properties are among crucial characteris-
tics that a helicopter rotor blade should be designed for. Laminated
composite structures can cater to such performance requirements
provided that their material and geometry parameters are opti-
mally designed. This can be a daunting task due to the interdisci-
plinary nature of the design problem, the presence of conflicting
objectives and the number and nature of the design variables in-
volved. This complexity has led to the use of hierarchical decompo-
sition approaches [1] that allow modularization within the
structural discipline and facilitate the interaction among hierarchi-
cal levels. The structural design of a blade is decomposed into an
upper and a lower level [1,2] problem. At the upper level, the stiff-
ness vector of the blade is treated as a variable that is adjusted to
provide minimum vibration or maximum aeroelastic performance.
At the lower level, which is the aim of this study, the lamination,
material parameters and the cross-section geometry are optimized
to provide the target stiffness vector determined at the upper level.

The cross-section design of a rotor blade requires simulta-
neously achieving several target stiffness parameters; however,
pioneering studies are mainly focused on single-objective formula-
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tions [2]. The most popular technique is the min-max approach in
which the maximum deviation from the target stiffness vector is
minimized [4,5]. This technique yields only one solution and fails
to capture other Pareto-optimal solutions. In addition, it cannot
take into account other objectives, such as the structural mass
and the distance between the aerodynamic center (AC) and the
mass center (MC); yet, these are shown to play a crucial role in
the blade performance [3]. A lower structural mass of the blade en-
hances the payload carrying capacity, while a shorter distance be-
tween the AC and MC facilitates reducing the pitching moments
and benefits the aerodynamic performance. Leihong et al. [3] pro-
posed to use a weighted-sum approach; however, this strategy re-
quires assigning preferences by the user and yet fails to capture
multiple optimal solutions on the Pareto front. In this study, a mul-
ti-objective optimization approach is proposed to find the Pareto
front without the need to set a priori preferences on the objective
functions.

After formulating the problem into a multi-objective optimiza-
tion framework, an appropriate optimization algorithm must be
selected. The design optimization of composite structures is often
characterized by the presence of several local minima and discrete
design variables. Particle Swarm Optimization (PSO) [5,6] and
Genetic Algorithms (GAs) [4] are two common algorithms suitable
for solving the lower-level problem of the blade design. This point
was substantiated even by authors who opted to use other meth-
ods, such as the method of feasible directions [7]. Computational
advantage and superior performance of the PSO over GA-based ap-
proaches and gradient-based approaches have been demonstrated
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on particular test cases [5,6]; however, such conclusion may not be
generalized. To improve upon the high computational requirement
and low convergence rate of these methods, several hybrid algo-
rithms have been proposed [3,7], one of the most recent ones,
namely NSHA [8], is used in this research.

Finally a realistic model of the structural behavior of the blade is
required. The popular approach of modeling a composite blade as a
box-beam inhibits the designer to examine the sensitivity of the
blade performance to the cross-sectional geometrical parameters.
Although small in number, the research works that opted for a
realistic model of the blade have demonstrated that the ply angles
and internal geometry parameters are crucial in efficient handling
of the stiffness values and aerodynamic performance of a compos-
ite blade [3,7,8].

This work contributes towards the optimum design of a com-
posite blade by demonstrating a design approach that differs from
those in the literature in the following four aspects: (1) it uses a
blade with a realistic airfoil cross-section and a variable internal
geometry, rather than a simplified box-beam model; (2) it shows
the impact of the internal geometry parameters on the target stiff-
ness vector; (3) it proposes a multi-objective optimization ap-
proach that does not require a priori prioritization of the
objectives; and (4) it considers mass and aerodynamic perfor-
mance, besides the target stiffness vector, to clearly demonstrate
the trade-off designs of the composite rotor blade.

These goals are achieved by first performing a target vector
optimization using a min-max formulation and PSO, with and
without inclusion of the cross-section geometry variables and with
different fiber angle discretizations. Next, the multi-objective for-
mulation of the target-stiffness problem is solved using NSHA
[8]. This formulation allows optimization of other performance
parameters, in addition to the target stiffness vector. Multiple solu-
tions obtained by this approach are discussed to provide an insight
into the conflicting behavior and the interaction between the stiff-
ness components and the aerodynamic performance parameters.

2. Blade modeling

The complex geometry of the blade cross-section and the aniso-
tropic nature of composite materials make accurate 3-D finite ele-
ment modeling of a composite blade a challenging and time
consuming task. As an alternative, a simplified approach is used
that models the blade as an equivalent 1-D beam. The stress-strain
relation and the cross-sectional stiffness matrix of the blade in this
formulation is as follows:
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The diagonal terms of the stiffness matrix are of primary impor-
tance. The first diagonal term, a;, represents the axial stiffness,
while the others are shown in Fig. 1. The off-diagonal terms are re-
ferred to as elastic couplings. Ny in this equation represents the ax-
ial force, M, and M, are the flapwise and chordwise bending
moments and Ty is the torsional moment. Correspondingly, &2 rep-
resents the axial strain, p; and p, are the curvatures around Y and
Z axes and 0 shows the shear strain. A computationally efficient
in-house code is developed in MATLAB that calculates the stiffness
matrix of a composite beam with an arbitrary cross-section using a
combination of beam theory, plate theory and classical lamination
theory [10-16]. Appendix A shows the principal equations used in
this code.

Chordwise bending (as3)

Torsion (a;7) Flapwise bending (a,;)

X Y

Fig. 1. Composite beam and co-ordinate system.

3. Composite blade optimization

A generic cross-section of a composite blade with a D-spar
internal construction is shown in Fig. 2. The design vector includes
discrete and continuous variables and consists of six ply angles
(61-0s), web distance from the leading edge (wd), and the inclina-
tion angle of the spar web (a,ep). To account for different manufac-
turing conditions, the fiber angles are discretized in the range of
0°-90° with the increment of 10° (high precision manufacturing),
15° and 45° (low quality, non-expensive manufacturing). A sym-
metric layup is chosen in order to mitigate any warpage. The
web distance, wd, is assumed to be continuous and ranges from
30% to 70% of the chord length so as to produce designs that are
realistic and manufacturable. The spar web angle, oep, is also a
continuous variable ranging from —30° to 30°. A web inclination
greater than 30° is not accepted as it can cause overly large re-
sin-rich regions at the corners. The cross-sectional geometry,
material properties and the target stiffness values used in this
study are shown in Table 1. The target stiffness vector is the one
used by Suresh et al. [5].

3.1. Problem formulation

While the literature on target stiffness design of composite
blades entails mainly the use of a min-max approach, here four dif-
ferent formulations are proposed. They are referred as Cases 1-4.

3.1.1. Case 1

includes the traditional min-max approach where the objective
is to minimize the maximum deviation from the target stiffness
vector. The value of the min-max error represents the proximity
of the stiffness vector of the current design to the target stiffness
vector. Two sub-cases with dissimilar design variables are
examined.

3.1.1.1. Case 1(a). considers only the ply angles as design variables.
The web is kept constant at the vertical position at the distance of
0.35C (35% of the chord length) from the leading edge of the blade.

6, =[0/0/+6,/%6,/%6,1+6,/0/0];

f\i 0, =[0/0/+6,/%6,];

Fig. 2. Generic cross-section of a rotor blade with a D-spar construction.
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Table 1
Airfoil geometry and graphite/epoxy material properties, target stiffness vector.

Airfoil profile NACA0015 Material properties of graphite/epoxy
Chord length, C (m) 0.3048

Web-distance, wd 0.35C E1 (GPa) 141.5
Target stiffness vector [5] E2 (GPa) 9.8

El;y (N m2) 39,767 G12 (GPa) 5.9

EIT, (N m?) about AC 82,916 Poisson’s ratio, v 0.42

GJ" (Nm?) 20,420 p (kg/m?) 1445.4

The optimization problem is mathematically represented as
follows:

%mgmum@y®%mni=1ww& i=1,23) @
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where the objective functions are defined as:
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3.1.1.2. Case 1(b). emphasizes the role of the internal geometry
variables and considers both ply angles and the internal geometry
parameters. The optimization problem here is formulated as
follows:

min {max{)j-(@,-.,ocspm,wd):(@6,‘.1?2)H*R; i=1,...,6;j=1,2,3}}

0;,0tspar wd
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3.1.2. Case 2

describes situations where the achievement of certain compo-
nents of the target stiffness vector is more important than the oth-
ers; for instance, Bhadra et al. [17] showed that the bending
stiffness at the root of a helicopter blade is more important than
the torsional stiffness. In contrast, closer to the tip of the blade
the torsional stiffness is more important than the bending stiffness.
Assigning preferences to the objective functions requires informa-
tion about the trade-off among three stiffness parameters, which
does not exist in practice; therefore a posteriori approach is pro-
posed to obtain a set of optimal solutions. The formulation of the
problem is similar to Case 1(b) (Eq. (4)) with the exception of the
objective function that is defined as follows:

Ommﬁﬂﬂﬂmmwwt@ﬂm%Hm;i:L”w& j=1,2,3}
i»Ospar , W/
(5)

3.1.3. Case 3

combines the min-max target stiffness problem with another
performance parameter, the blade mass. Although several
researchers considered mass as an objective, none has used a pos-
teriori approach to establish the trade-off between the target stiff-
ness and the blade mass. The formulation of the problem is similar
to Eq. (4) with the objective being modified as follows:

min d{max{fj(()i,aspanwd), j=1,2,3}, mass(0;, otspar, wd) }

0;,Olspar , W

(@5 RN, i=1,...,6 (6)

Not only the blade mass, but also the distance between MC and AC
is crucial in the performance of a blade. The MC-AC distance must
be minimized otherwise additional non-structural mass would be

required to adjust the distance. Minimization of MC-AC distance
is an objective considered in the next formulation of the blade de-
sign problem, Case 4.

3.1.4. Case 4
is similar to Case 3 but it requires minimizing the MC-AC
distance. AC is assumed to be at 25% of the chord length.

3.2. Optimization methods

Among several formulations proposed in the previous section,
only Case 1 converts the design problem into a single-objective
optimization problem. All other formulations imply simultaneous
optimization of multiple objectives. Since the relative priority of
the objectives is unknown prior to solving the optimization prob-
lem, a multi-objective optimization method with a posteriori artic-
ulation of preferences is required. Such an optimization method is
able to provide several optimum solutions and illustrate the trade-
off among the objective functions. This section explains the single-
and multi-objective optimization techniques used to solve Cases
1-4 formulated in previous section.

3.2.1. Particle Swarm Optimization (PSO)

Particle Swarm Optimization [18] is a multi-agent search tech-
nique based on the behavior of a swarm. A swarm, composed of
several entities called “particles”, explores the design space of a
problem seeking the optimum value of a single objective function.
PSO is suitable for a combinatorial problem characterized by the
presence of local minima and discrete design variables such as
the problem in hand; however, it is limited to single-objective
problem and hence Case 1 is the only formulation in this study that
allows the use of this optimization method. A swarm consisting of
50 particles is found to be the minimum swarm size that returns an
acceptable convergence for the problem in hand. The inertia
weight that controls the trade-off between the global and the local
exploration ability of the swarm is linearly decreased from 0.8 to
0.1. Finally, the cognitive/acceleration constants that represent
the relative importance of position of the particle to the position
of the swarm are taken as two.

3.2.2. Non-dominated Sorting Hybrid Algorithm (NSHA)

To handle multiple objectives without assigning any priority or
preference to the objectives, a multi-objective hybrid algorithm
developed by Ghiasi et al. [8] is used. This technique, known as
Non-dominated Sorting Hybrid Algorithm (NSHA), is a modified
version of NSGA-II [19], NSHA starts with a randomly generated
population with a user-defined size. Using this initial population,
a few generations of NSGA-II are carried out. The local search is
activated only after all the individuals of the current population
are located at the first non-domination front. When activated,
the local search operates only on a subset of the current population
and a subset of design variables. In order to locally improve good
solutions in the current population of NSGA-II, a simplex is gener-
ated around each selected solution and a local search based on Nel-
der-Mead simplex method [20] is executed. The locally optimized
solutions replace the original ones and the improved population is
used for the next few generations by NSGA-IL

It is shown that NSHA increases the convergence rate of NSGA-II
and improves the spread of the solutions while offers simplicity,
modularity and independency to user-defined parameters [8] sim-
ilar to NSGA-II. In addition to handling multiple objectives without
prioritization, NSHA is able to capture optimum solutions at the
presence of multiple local optima and discontinuity within the de-
sign space, hence properly fitting the problem at hand.

The minimum initial population for NSHA that results in a
reasonable convergence rate and preserves the diversity of the
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population, is found by trial-and-error and is set to 400 points. The
algorithm is found to converge after approximately 50,000
function evaluations. Other user-defined parameters in NSHA are
adjusted to recommended values in [8]. In both algorithms, the
optimization process was initiated at random. Each case is
optimized five times and the best results of all the runs are
reported in the following section.

4. Results and discussion

The optimization algorithms described in the previous section
are used to solve the four proposed cases formulated in Section 3.1.
The optimum solutions are presented, contrasted and discussed in
this section.

4.1. Target stiffness design using min-max approach (Case 1)

The min-max target stiffness design problem, formulated in
Section 3.1, is solved using PSO with and without consideration
of the internal geometry parameters. The results presented in
Table 2 shows that the average deviation from the target stiffness
vector (i.e. the value of the objective function, f) can be as high as
7% when the internal geometry parameters are not considered;
however, the target objective is achieved with a deviation less than
1.2% when the internal geometry parameters are considered. A
more detailed analysis of the results reveals that the stiffness vec-
tor is less sensitive to the web angle than to the web distances,
which confirms the parametric studies published in [9]. The differ-
ence between the optimum cross-sectional geometry achieved in
Case 1(b) and the base-line geometry in Case 1(a) is shown in
Fig. 3. Lower deviation from the target stiffness vector in Case
1(b) is accompanied by an increase in the spar size and conse-
quently an undesired increase in mass. The clear trade-off between
the two aforementioned objectives confirms that structural bene-
fits can be gained if the target stiffness design is combined with
the minimum mass design in a multi-objective optimization
framework. Case 3 is an effort to address this issue.

The results also show that among different discretizations
schemes, the one with 10° increment yielded the lowest deviation
from the target stiffness vector. The level of fiber angle discretiza-
tion can be evaluated as a measure representing the manufactura-
bility of the design. From the manufacturability point-of-view,
coarse ply angle discretizations are preferred to the fine ones as
the placement of fibers in large number of different angles is a te-
dious task. Table 2 shows that fine ply angle discretizations gener-
ally return a lower deviation from the target stiffness parameters

Table 2
Optimum solutions for Case 1(a) and 1(b).

Without internal
geometry variables Case
1(a)

With internal geometry
variables Case 1(b)

Discretization Discretization

Design variables 10° 15° 45° 10° 15° 45°
01 (°) 40 45 45 50 60 45
05 (°) 80 75 45 80 90 45

03 (°) 30 15 45 30 45 90
04 (°) 30 30 0 90 75 45

05 (°) 20 30 0 60 90 0

06 (°) 30 30 45 0 0 90
spar (°) 0 -7.06 563 -0.50
wd as %C 0.35 043 0.47 043
Computation time (s) 151.1 1869 2760 166.4 247.2 194.1
Mass (kg/m) 2.48 2.48 2.48 2.68 2.79 2.68
Objective function (f) 3.75 5.92 7.09 0.11 0.35 1.18
Number of Iterations 35 42 50 41 60 46

and a lower mass for the structure. Fine discretization of the ply
angles is also beneficial from an optimization standpoint, as it al-
lows better exploration of the design space and improves the con-
vergence rate of the algorithm. The remainder of the results
presented in this paper use 10° increments for the ply-angles.

4.2. Target stiffness design using NSHA (Case 2)

While the trade-off between stiffness tailorability, blade mass
and manufacturability was observed in the results of Casel, no
comment could be made concerning the trade-off among the three
components of the stiffness vector. Case 2 examines this trade-off
by individually and simultaneously minimizing the deviation from
three target stiffness values using NSHA.

Fig. 4 shows the set of optimal solutions found by NSHA. This
figure confirms the possibility of designing a blade that can achieve
all three components of the target stiffness vector with less than
0.5% deviation from the target values. The traditional min-max ap-
proach returns only one point on the Pareto surface; however the
Pareto surface shown in Fig. 4 gives an overview of other possible
designs. This approach can help adjusting the most important stiff-
ness parameter close to the target value with a predictable loss in
other stiffness parameters; it can also be beneficial when designing
an intrinsically smart composite blade with variable stiffness along
the blade span.

Fig. 5 shows all the optimum solutions sorted by deviation from
the chordwise target stiffness (f2). The majority of the solutions
have a very low deviation from chordwise target stiffness (small
value for f2) and relatively high deviation in other stiffness compo-
nents (f1 and f3). We mark these optimum solutions as “Set 1”. An
attempt to reduce the deviation from torsional stiffness (f3) causes
drastic changes in all stiffness components. This can be attributed
to a shift from one local optimum to another. The shift in local min-
ima of f3 corresponds to severe changes in stacking sequence but a
very small change in position and angle of the web. Another dis-
tinct set of solutions (shown as “Set 2” in this figure) corresponds
to solutions with low f1 and f3 values but higher f2 values. Tradi-
tional min-max approach can find only a single solution to this
problem overlooking the rest of the spectrum. Most of the solu-
tions in Set 2 exhibit less deviation from target flapwise and tor-
sional stiffness than the traditional min-max solution. NSHA
gives the opportunity to the designer to see other possible solu-
tions and to select the optimum design according to the situation.
For instance, solutions in Set 1 can be better than solutions in Set 2
for particular applications where torsional stiffness is more impor-
tant than flapwise and chordwise bending stiffness.

From the manufacturing point of view, solutions in Set 1 are
more favorable because they are less sensitive to the design
parameters. Set 2 is also relatively stable but less than Set 1; how-
ever, it corresponds to a min-max error less than the one achiev-
able in Set 1. The final design is not only a trade-off among three
target stiffness parameters but also a trade-off between manufac-
turability and target stiffness vector. A sensitivity analysis carried
out on the solution in Set 1 shows that the objectives are generally
more sensitive to geometrical design variables than fiber angles,
with the web distance being the most influential variable.

4.3. Target stiffness vs. mass (Case 3)

The analysis of the results from Case 1 suggests that there is a
trade-off between mass and level of achieving the target stiffness
vector. Case 3, which is solved by NSHA, is formulated to demon-
strate this trade-off. The most interesting observation is the clear
exchange between mass and maximum deviation from the target
stiffness values shown in Fig. 6. This figure shows that for the par-
ticular blade studied here, reducing the deviation from the target
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Fig. 4. Pareto-front for Case 3 shows that a trade-off exists among three target
stiffness parameters, which could not be captured by traditional min-max method.

stiffness from 5% to 2% increases the mass of the blade by around
300 g. The most influential design parameter in this trade-off is
the web-distance, which is also responsible for the significant in-
crease of mass seen in Fig. 6. The increase in mass corresponds
to the relocation of the web from 0.45C to 0.37C. The target stiff-
ness vector is achieved with a lower error, when the web is located
at the distance of approximately 0.45C from the leading edge;
however, designs with lower masses are achieved at lower web
distances. Web distance not only affects the mass, but also is cru-
cial in the aerodynamic performance of the blade; therefore, it is
necessary to see the trade-off between stiffness vector and aerody-
namic performance of the blade. This relation is studied in Case 4.

4.4. Target stiffness vs. MC-AC distance (Case 4)
The results of the simultaneous optimization of stiffness and

aerodynamic performance are shown in Fig. 7. The trade-off be-
tween MC-AC distance and the maximum deviation from target
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The baseline geometry yields a min-max error of 3.75%; while the optimized geometry yields a min-max error of 0.11%.

stiffness vector is apparent. Similar to Case 3, the web distance is
the most influential design parameter and is responsible for the
discontinuity of the data. Fig. 7 also shows that a decrease in
MC-AC distance from 0.026% to 0.022% results in only a marginal
penalty in stiffness, while reducing the MC-AC distance below this
value corresponds to a large deviation from the target stiffness vec-
tor (around 3%). Since MC-AC distance is usually adjusted by add-
ing non-structural masses, the results in Case 3 and Case 4 can be
combined to design a blade with minimum total weight and max-
imum aerodynamic performance while meeting the assigned stiff-
ness requirements.

5. Conclusion

The lower-level design optimization problem of a helicopter ro-
tor blade has been solved using two different formulations: (1) the
single-objective min-max approach for the target vector optimiza-
tion utilizing Particle Swarm Optimization, and (2) a multi-objec-
tive formulation utilizing multi-objective GA-based hybrid
algorithm called NSHA. The multi-objective formulation involves
simultaneously minimizing the structural mass of the blade, the
MC-AC distance and the deviation from three target stiffness
parameters. A realistic model of a blade with airfoil cross-section
has been created to study the effect of internal geometry variables
and ply angles on the structural and aerodynamic performance of
the blade.

The first set of results obtained from a single-objective min-
max optimization has demonstrated the crucial role of internal
geometry parameters and ply-angle discretization on the blade
stiffness. Adjustment of the internal geometry variables obtained
with a 10° ply-angle discretization has yielded a blade whose stiff-
ness vector differed from the target stiffness vector by only 0.11%.
Further analysis of the results has shown that the internal geome-
try variables are more crucial than ply-angles; thus the inclusion of
these parameters into the design problem greatly facilitates
achieving the target stiffness vector. This study also confirmed that
lowering the deviation from the target stiffness vector accompa-

Deviation from target stiffness (%)

o .0 ;
11

Solutions sorted by f_2 (deviation from target value for the chordwise stiffness)

Fig. 5. Comparison of the optimum solutions found by a multi-objective optimization approach and the single solution achieved by the traditional min-max approach.
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nies an increase in the blade mass, hence the simultaneous mini-
mization of these parameters is recommended.

In addition, multi-objective optimization of a composite blade
was carried out in order to highlight the trade-offs among three
stiffness components, mass and aerodynamic performance of the
blade. Pareto frontiers were found for these trade-off designs.
The analysis of the results showed that the simultaneous consider-
ation of mass and target stiffness can give a window of up to 11%
adjustment in structural mass without a significant deviation from
the target stiffness vector. This is particularly beneficial to the de-
sign of a helicopter blade, where minimizing the structural mass
mitigates the dynamic stresses. Similarly, including the aerody-
namic performance in the target stiffness optimization process
provides opportunity to vary the MC-AC distance by up to 20%;
this choice can reduce the weight of non-structural mass usually
added for the adjustment of the MC-AC distance.

Appendix A. Blade modeling

The blade cross-sectional stiffness matrix shown in Eq. (2) is
computed using closed-form expressions developed in [13]. A
composite blade is modeled as a slender thin-walled beam (thick-
ness-to-chord ratio and chord-to-length ratio less than 0.1).
Assuming a negligibly small thickness-to-curvature ratio, a small
segment of such one-dimensional beam is considered as a flat com-
posite laminate, as shown in Fig. Al.

The stress-strain relation for the flat composite laminate is as
follows:

N; = Aijgf + B,‘jkj; M; = B,’j(‘]f + D,‘jkj; i=1,2,6

oi= Y Qug,i=126

j=126

where N and M are force and moment resultants and indices 1, 2
and 6 shows axial, transverse and shear directions, respectively.
Matrix A, D and B are axial, bending and coupling stiffness matrices
which are defined as follows (see Refs. [10-16] for details).

[Aj, Bj, Dy] :/

thickness

Qij[]7z7zz}dz7 i:]72367 ]:]72*6

Using linear elasticity theory, overall stiffness of the blade section
can be obtained by summing the stiffness of these segments over
the entire section. Each term in cross-sectional stiffness matrix in
Eq. (2) can be calculated as shown below:

ai = [Kyids az = [[K11y? +2yK 4 Cosfi+ Kaa (Cosp)*|ds
az3 = [[Ki12% — 22K14Sinf+ K4 (Sinp)*)ds az7 = ¢ [WK3ds +2 [Ks3ds

a1z = [[Ki1y +Ki4Cosplds a13 = [[K11z—Kq4Sinf]ds
a7 = [Kyzds a3 = [ [K11yz—yK,,Sinp +zK14Cosp

—K44SinpCosplds

az7 = [[K13y +KasCosplds ay; = [[K13z — Ka3Sinp)ds

where reduced stiffness, K, is defined as follows:

K11 =Ap— A%, /An Kis =B —A1Bia/An, Kaa =Dy — B3, /A1

Ki3 =2 (Azs —432) 212 (Byg —A48k) K3 =2(Ags —42) 2+ 2 (Bos — 242

Kas =2(Bas —2325) 2.4 2 (D —2485), Koy =2(Bes —2425) 242 (Des 7%)

a:}{ds, Q:1/2f5ds, ¥ =29/
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