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We present a mechanical model of the plant cell wall viewed as anisotropic two dimensional soft matter,

where a dilute dispersion of cellulose fibrils of variable orientations is uniformly distributed on a curved

deformable viscoelastic matrix membrane. The plant cell wall model integrates the elastic energy of the

curved membrane, the nematic Landau–de Gennes fiber orientation energy, and competing curvophilic

and curvophobic interactions mediated by the membrane geometry and the fibrils’ orientation. The

selected membrane geometry is a straight cylinder of variable cross-section, whose shape varies from

a circle to a sharp super-ellipse as in many cell specimens, and whose size increases as in plant cell wall

growth. Model predictions indicate that due to curvature–orientation couplings, the fiber orientation

displays three modes: (i) line (along the cylindrical axis), (ii) helical (oblique to the axis), and (iii) ring

(normal to the axis), where the former arises under large curvature and the latter under small one. In

addition to aligning the fibers in the line mode, high curvature also promotes the order of the fibrils. The

predicted fiber structure is validated with fiber structures in the cell wall of tracheids. The structure–

property relations for super-elliptical membranes with gradient curvature are established and its role in

cell growth shape is predicted. The principal mechanisms are the role of fiber orientation and order on

bending stiffness: (a) orientation along the axis has no stiffening effect, (b) orientation along the

azimuthal direction produces maximal stiffening, and (c) fiber randomization softens the membrane.

The largest fiber stiffening effect is found when the membrane length scale (radius of curvature) and

fiber length scale (curvophobic/curvophilic energy ratio) are equal. It is found that super-elliptical

shape invariant growth and expansion is preferred for cells with sharp/soft corners and straight/stiff

sides. Otherwise growth promotes shape changes. Lastly, master plots that categorize fiber structures

by the number of multimodal regimes (line/helix, line/helix/ring) that arise in super-ellipses are used to

relate shape and size to domain structures that affect toughness and modulus.
1. Introduction

Two dimensional anisotropic soft matter exhibits a combination

of long range in-plane orientational order of filament inclusions

and deformable membranes (or interfaces) that interact through

novel surface phenomena such as curvophobic and curvophilic

effects. Examples of these materials include: (a) liquid crystal

interfaces and films1 of interest to the display industry2 and

online stress field measurements3 due to their optical properties,

(b) nematic shells of interest to biotechnological and pharma-

ceutical researchers owing to their structural similarity to vesi-

cles,4 and (c) graphite foams for novel heat transfer applications

in electrical devices.5 In addition, biological structural and

functional materials including fiber-laden membranes such as
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plant cell walls6 and protein containing lipid-bilayers7 are 2D

anisotropic membranes of interest to researchers in biophysics

and biomimetic materials development. Two dimensional self-

assembly and orientational order of rods, fibers, and filaments on

soft deformable thin substrates remain partially understood

despite their biological and biomimetic relevance. In this work,

the delicate interplay between membrane geometry and

embedded fiber order in biological fiber-laden membranes is

explored using a model that integrates membrane elasticity and

liquid crystal fiber ordering.

Biological fiber-laden membranes are conveniently classified

as:

(a) Hard fiber/soft membrane: the orientation of the fibrous

fillers is fixed and the membrane adapts to the fiber structure by

modifying its shape. A class of proteins called membrane-curving

proteins such as clathrin adaptor protein complexes and BAR

domain proteins that provide scaffolds for spherical and cylin-

drical membrane curvature are a well-known example of this

case;8
This journal is ª The Royal Society of Chemistry 2011
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(b) Hard membrane/soft fiber: the membrane shape and size

are fixed and the fiber orientation adapts to the membrane

geometry by changing its conformation. An example of this case

is antimicrobial peptides adsorbed onto the microbial cell

membrane resulting in cell lysis. It has been reported that the

effectiveness of antimicrobial activity of these peptides depends

strongly on concentration, orientation and degree of insertion of

these peptide filaments onto the membrane;7

(c) Soft fiber/soft membrane: the membrane shape and the

fiber orientation are coupled and hence adapt to each other

dynamically by simultaneously varying fiber structure and

membrane shape. The plant cell wall, a structural element in the

order of nanometres that surrounds every cell of a plant, is an

example of this class. This generic class reduces to case (a) when

the fiber orientation is fixed and case (b) when the membrane

geometry is fixed. The generic class (c) is well represented by the

plant cell wall and is the focus of this paper.

The plant cell wall is a multifunctional, dynamical structure

that is made of sequentially deposited layers of different thick-

nesses, chemical constituents and compositions, and structural

organizations.9 The primary cell wall is the first layer to be laid

down after cell division and its formation coincides with cell

growth.9 When the cell reaches its final size, three layers of

secondary cell wall are laid over the primary cell wall in the

inward direction; see Fig. 3 below for details. The central layer,

called secondary layer 2 (S2), comprises about 80–90% by volume

of the entire cell wall. Towards the lumen (a cavity left by the cell

after shrinkage and death of the cell) is the secondary layer 3 (S3).

At the other side of S2, there are the secondary layer 1 (S1) and

the primary cell wall.9 Growing cells are surrounded by primary

cell wall and lack secondary cell wall layers. The primary cell wall

has the following functions: it supports the cell membrane

against the turgor pressure contained within the cell; it undergoes

an enzyme controlled expansion under turgor pressure and

regulates the direction of expansion contributing to growth and

form of a plant; it cooperates with adjacent cells under turgor

pressure to build a three-dimensional tissue. The secondary cell

walls provide additional mechanical strength to the tissue and in

some seeds perform energy storage. The shape of these

membranes depends on the types of the cells. For example,

compression wood cells of spruce are cylinders of circular or

elliptical cross-section, while normal wood cells of spruce are

often cylinders with super-elliptical cross-section.10

The plant cell wall can be considered as a reinforced biological

membrane consisting of cellulose microfibrils of high tensile

strength embedded in a matrix of polysaccharides and structural

glycoproteins.9 These cellulose microfibrils in the extracellular

matrix are oriented in strategic directions to generate commonly

observed textures such as line, ring, helix, crossed helix and

helicoid.11 The orientation of cellulose microfibrils in secondary

cell wall layers governs the physical properties of wood and that

in primary cell wall controls the shape of the cell and contributes

to the morphology at the tissue and organ level.12 The mecha-

nisms by which the microfibrils are orientated in a specific

direction are not well understood.13 In an earlier attempt to

understand this mechanism, a mechanical model based on force

balance on an open fiber reinforced cylinder representing rein-

forced biological membranes concluded that the fiber orientation

angle with respect to the long axis of the cylinder should be 54.7�
This journal is ª The Royal Society of Chemistry 2011
at maximum volume of the cylinder and the volume of the

cylinder will diminish towards zero at lower and higher fiber

angles.14 For a closed cylindrical membrane of constant volume,

the system can change its cross-sectional shape from a circle to an

ellipse depending on the system volume, while maintaining the

fiber orientation angle with respect to the long axis of the cylinder

at 54.7�. This theoretical prediction is in contradiction with

experimentally observed microfibril angle in plant cell walls13

that can range from 0� to 90�.
In a later mesogenic self-assembly model, based on the

observed structural similarity between the helicoidal texture and

chiral nematic liquid crystals and defect patterns characteristic of

chiral self-assembly observed in secondary cell wall of some plant

species, it has been hypothesized that these structures arise

through liquid crystalline self-assembly.15 According to this

hypothesis, when the concentration of the microfibrils exceeds

Onsager’s critical fiber concentration threshold, the interaction

between these microfibrils results in the alignment of microfibrils

in a specific direction as an attempt to minimize the excluded

volume of the microfibril.16 A review supporting this hypothesis

by analyzing it from the aspects of anatomy and developmental

biology has emphasized on the necessity of characterizing the

nature of the forces inducing this self-assembly.17 It is also known

that the cellulose microfibrils extracted from plant cell walls by

acid-hydrolysis self-assemble to form chiral-nematic phases

in vitro.18,19 Despite scant in vivo experimental evidence and/or

data, this hypothesis is strongly supported by theory and simu-

lations based on a well established liquid crystal theory. This is

evident from the recent review that emphasizes the continuum

Landau–de Gennes theory that yields testable and verifiable

predictions of thermodynamical, textural, and rheological

phenomena observed in biological systems.20 For an extensive

review of mesoscopic models employed to quantitatively describe

biological liquid crystalline phases and processes, see ref. 20.

Recently,21 a mathematical model based on the Landau–de

Gennes theory of liquid crystals has been used to simulate defect

textures arising in the domain of self-assembly due to the pres-

ence of secondary phases. This study concludes that the defect

patterns observed in some plant cell walls are those expected

from a truly liquid crystalline self-assembly process, supporting

the above hypothesis.21

In the present work, we use theory and simulation to investi-

gate the possibility that the cellulose microfibril orientation is

imparted by the interaction between membrane curvature and

embedded fiber order, when the cellulose microfibril concentra-

tion is less than that of Onsager’s critical limit, and partially

validate the model predictions through available experimental

observations. An example of the possible effect of membrane

curvature on microfibril orientation in plant cell walls is found in

the abrupt changes in microfibril angle in the S2 and S3 layers at

the corners of juniper tracheid plant cells.14 The existence of

membrane curvature-driven fiber orientation is further sup-

ported by the transient nature of helicoidal pattern in primary

plant cell walls of mung bean, owing to drastic change in cell

curvature during the deposition of primary cell wall.22

In an earlier attempt to estimate the influence of membrane

curvature on embedded fibers, a theoretical model based on

continuum elasticity theory for anisotropic membrane inclusions

in lipid membranes was developed.23 The model neglected
Soft Matter, 2011, 7, 7078–7093 | 7079



interactions between the inclusions and was able to predict line

and ring orientation modes.23 Recently,24 an integrated

mechanical model describing nematic liquid crystalline self-

assembly of rigid rods on an arbitrarily curved membrane has

been presented and relative predictions of cellulose ordering and

orientation in the plant cell wall are presented. In this model,24

the mechanics of the fluid membrane is described by the Helfrich

bending-torsion membrane model, the fiber self-assembly is

described by the 2D Landau–de Gennes quadrupolar Q-tensor

order parameter model, and the fiber–membrane interactions

(inspired by an extension of the 2D Maier–Saupe model to

curved surfaces) include competing curvophilic (curvature-

seeking) and curvophobic (curvature-avoiding) effects. An inte-

grated shape and nematic order equation developed in this

work24 gives a complete model whose solution describes the

coupled membrane shape and fiber order state. The analytical

solution of the model for a cylindrical membrane of circular

cross-section can predict line, ring and helical modes observed in

some plant cell walls.24 The model when integrated with the

Gibbs–Duhem equation can describe the role of temperature and

adsorption on membrane shape and fiber order.25 A viscoelastic

model that integrates the statics of anisotropic membranes

developed in this model with the planar nematodynamics of

fibers and the dynamics of isotropic membranes has been

developed to study dynamic remodeling of plant cell wall during

growth and morphogenesis.26

The main issue considered in this paper is self-assembly of rigid

fibers representing microfibrils on a soft deformable non-planar

2D membrane. The membrane average (deviatoric) curvature is

H (D);27,28 see Section 2.1. The fiber orientation is defined by the

director n and exists when the scalar order parameter S is non-

zero; see Section 2.2. We consider a flat membrane (H ¼ D ¼ 0)

with a random assembly of rigid rod fibers of length L and

diameter df. When the fiber volume fraction 4 is such that 4Lp/

deff < C which according to the Onsager 3D model gives C z 4,

the fibers on a flat surface should be in the isotropic state29–31 (S¼
0); Lp is the fiber persistence length and deff is the effective

diameter of the fiber. The phenomenon we wish to describe is

how under sufficient curvature (H s 0, D s 0), a 2D nematic

state with a specific director orientation n and a non-zero scalar

order parameter S may arise through curvature-mediated inter-

actions. The main concept is that introducing mechanical

bending and torsion to the membrane creates a curvature field

that then may generate a 2D nematic ordering with a particular

director orientation. The 2D soft deformable, fluid membrane

under consideration in this paper is described by the Helfrich

model,32 and contains bending and torsion elasticity. The fibers

interact with each other through excluded volume. The fiber and

membrane interactions are mediated through the membrane

curvature, such that both curvophilic and curvophobic effects

are included; in the former (latter) n seeks to align along high

(zero) curvature directions.33 Thus the process to be described is

the coupling of planar nematic liquid crystal self-assembly and

membrane shape selection under the action of a pressure differ-

ential. Curvature-mediated interactions have been previously

discussed in the literature.33,34

The second important motivation of this paper is the under-

standing and characterization of spatial heterogeneities in

fiber-filled membranes. Since many biological and synthetic
7080 | Soft Matter, 2011, 7, 7078–7093
membranes have variable curvature (VsH s 0, VsD s 0), the

fiber response to curvature gradients is likely to produce

heterogeneous fiber distributions. Restricting this comment to

cylinders (H ¼ D), the relation between fiber orientation and

membrane curvature n ¼ n(H) leads to the expectation that

smooth curvature gradients VsH will result in fiber orientation

gradients. For a dilute fiber system, where gradient elasticity is

small or insignificant, the fiber orientation gradients will be

sharp. Hence it is expected that smooth curvature variations may

lead to orientation domains along the membrane. Similar

considerations apply to the order S of the fibers.

The third motivation of this paper is the quantitative charac-

terization of mechanical bending stiffness of membranes parti-

tioned by domains of different fiber orientation and fiber order.

In this 2D analysis, the bending of the membrane refers to

changes in curvature in the cross-sectional plane of the cylin-

drical membrane and not along the cylindrical axis and hence the

cross-sectional shape changes while preserving the cylindrical

shape of the membrane. It is expected that curvature gradients

that lead to orientation domains will result in gradients in the

membrane bending modulus. For example, when the fibers are

aligned along a cylindrical axis, no stiffening effect is expected.

On the other hand, when the fibers are along the azimuthal

direction, a maximum stiffness is expected. In this paper the

integration of these three motivations:

membrane curvature gradients 0 fiber organization gradients

0 bending stiffness gradients

is pursued in the context of cellulose-filled plant cell membranes,

where it is assumed that fibers adapt and respond to membrane

curvature. Once the bending stiffness profile is known, shape

changes during growth can be predicted, as the stiffer section will

not bend to accommodate expansion. In partial summary, the

specific objective of this work is to investigate the curvature-

induced microfibril orientation in plant cell walls by solving an

integrated micromechanical model developed for fiber-laden

membranes. The knowledge gained is then extended to cylin-

drical membranes of super-elliptical cross-section (relevant to

plant cell walls) in which the membrane curvature varies

smoothly around the circumference of the membrane resulting in

spatially graded fiber orientation.

The organization of this article is as follows. Section 2 presents

the characterization of membrane geometry, the Lame’ curves

used to characterize the super-elliptical membrane cross-section,

the 2D quadrupolar nematic order parameters Q used to char-

acterize the fiber structure and the effective bending modulus

used to characterize the bending stiffness of fiber-laden

membranes. The average H and deviatoric D membrane curva-

tures used to characterize the membrane shape in this paper are

derived in Appendix A. Section 3 introduces the Helmholtz free

energy density of the membranes, the 2D Landau–de Gennes

nematic liquid crystal homogeneous energy of the planar fiber

interactions, and the membrane–fiber coupling energies. The

fiber structure plot depicting the fiber orientation regimes and

their transitions is presented and validated. The Helmholtz free

energy density in terms of fiber angle a, fiber order S, and

membrane curvatures H/D is derived and minimized to obtain

the preferred fiber orientation and ordering modes in Appendix
This journal is ª The Royal Society of Chemistry 2011



B. The role of fiber structure on effective bending modulus of the

fiber-laden membranes is also presented. The fiber and

membrane contributions to effective bending modulus of the

fiber-laden membranes are derived in Appendix C. Section 4

utilizes the validated fiber structure plot to investigate fiber

orientation modes for a set of super-elliptical membranes of

variable curvature around the circumference of the membrane.

Phase maps for fiber orientation modes and uniformity of fiber

orientation distribution are also presented. The effective bending

modulus plots presenting typical elastic inhomogeneities arising

in super-elliptical membrane systems and their characteristic

deformation mode are discussed. Section 5 presents the

conclusions.
2. Geometry, order parameters and elasticity

2.1 Membrane shape characterization

In this paper, the geometry of an arbitrarily curved membrane is

characterized by the curvature tensor b which can be decom-

posed into a trace and a deviatoric curvature tensor: b¼HIs +Dq

(seeAppendixA), whereH is the mean surface curvature andD is

the deviatoric curvature. For cylindrical membranes of circular

cross-section, the mean surface curvatureH is equal to deviatoric

curvatureD and the curvature is constant throughout the surface

and hence D ¼ H ¼ �(1/2R), where R is the radius of the

membrane. As the cross-section of the cylindrical membrane

deviates from that of a circle to an ellipse or a super-ellipse, the

curvature varies smoothly around the circumference and is

a function of polar angle q. In this work, the cross-sectional

shape of the cylindrical membranes is represented by a family of

super-ellipses. This family of curves is mathematically described

by Lame’ curves:35–37 ���x
a

���h þ ���y
b

���h ¼ 1 (1)

The shape parameter h is any rational number that selects the

shape of the membrane. The size parameters a and b correspond

to the intersections of the curves with the x and y axes respec-

tively and determine the size of the membrane. In this work, we

consider only the subset of Lame’ curves, where h$ 2 and a ¼ b.

When h ¼ 2, eqn (1) represents a circle and for h > 2, the curve

becomes a super-ellipse until it becomes a rectangle for h / N.

The curvature of a cylindrical membrane of super-elliptical cross-

section at a given polar angle q is given by:35

H ¼ D ¼ �ðh� 1ÞðxyÞh�2ðxh þ yhÞ
2ðx2h�2 þ y2h�2Þ3=2

(2)

where x ¼ b/(1 + tanh q)1/h and y ¼ btan q/(1 + tanh q)1/h. In this

work, the variables x, y and the parameter b are non-dimen-

sionalized by scaling with the bare length scale of the model ‘0,

discussed in Section 3.2.
2.2 Fiber structure characterization

The characterization of microfibril structure in the membrane is

given by the 2 � 2 symmetric traceless quadrupolar tensor order

parameter Q:38,24
This journal is ª The Royal Society of Chemistry 2011
Q ¼ S

�
nn� I s

2

�
(3)

where S is the scalar order parameter that measures the micro-

fibril alignment along the director n, and n$m¼ 0. The range of S

is �1 # S # 1, when S < 0 the microfibrils are aligned along m,

and when S ¼ 0 the microfibrils adopt an isotropic disordered

state. In this paper we focus on non-negative values of S. Since

the curvature b has a trace (H), the energy-coupling with nematic

order involves a non-zero trace 2 � 2 symmetric tensor S with

non-zero eigenvalues:

S ¼ Q þ I s
2
¼
�
S þ 1

2

�
nnþ

�
1� S

2

�
mm (4)

2.3 Membrane bending elasticity

The elasticity of the fiber-laden membrane can be characterized

by the effective elastic bending modulus that determines the

rigidity of the fiber-laden membrane. The effective bending

modulus kc,eff, which is necessarily positive, is defined as the free

energy cost to deform a membrane from its intrinsic curvature to

some other curvature and it is given by the second derivative of

the total free energy (rÂ) with respect to the mean surface

curvature H:

kc;eff ¼ d2ðrÂÞ
dH2

(5)

The free energy of the fiber-laden membranes (rÂ) in eqn (5) is

discussed in Section 3.1.

3. Model and predictions for curvature-induced fiber
ordering

In this section, the free energy of the fiber-laden membrane

system is formulated and the resulting planar fiber orientation

regimes are presented. The reader is referred to ref. 24 for details.

The model focuses on curvature-driven competing interactions,

and does not account for spatial gradients.

3.1 Free energies and fiber orientation regimes

The total free energy per unit area rÂ is posited to be:
rÂ ¼ rÂmembrane(u,H,K) + rÂfiber(u,Q) + rÂcoupling(u,b$S) (6)

where r is the density and u is the fiber mass fraction; in this

paper u is fixed and will be omitted in what follows. The Helfrich

free energy per unit area widely used to describe the elasticity of

membranes reads:39,40

rÂmembrane(H,K) ¼ go + 2kc(H � Ho)
2 + �kcK (7)

where kc is the membrane bending elastic moduli, Ho is the

spontaneous curvature of the membrane, �kc is the torsion elastic

moduli of the membrane; the effect of fiber concentration on kc
and �kc is neglected in eqn (7). The fiber contribution is given by

the Landau–de Gennes expansion:38,41

rÂfiber ¼ a1

2
Q : Q þ a4

4
ðQ : QÞ2 (8)
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where a1 is a function of microfibril concentration and a1 > 0, a4
> 0 indicating that if nematic ordering arises at all, it is only

through the fiber order–membrane curvature coupling; we note

that this paper is restricted to dilute fiber suspensions for which

a1 > 0. The fiber order–membrane curvature coupling contri-

bution up to second order terms in S is:

rÂcoupling ¼ b : ða2S þ a5S$SÞ þ a3

2
ðb : SÞ2 (9)

For a2 > 0 (a2 < 0) the first term b:(a2S) promotes fiber alignment

along the principal e1 (e2) direction; the same holds for a5, and

hence they are denoted curvophilic. For a5 > 0, the second term

b:(a5S$S) promotes nematic ordering when the fibers are oriented

along the principal axes (curvophilic). For a3 > 0, the third term

a3(b:S)
2/2 promotes fiber orientation away from the principal

axes (curvophobic). In biological fiber-laden membranes, cur-

vophobic interactions may arise as an attempt to minimize the

non-attachment penalty, the elastic energy cost associated with

the rigid fibers not completely supported by the membrane when

they are aligned in the direction of maximum curvature. On the

other hand, curvophobic interactions may originate from any of

the following mechanisms: (i) the fibers exhibiting preferential

orientation over corrugated grooves on the membrane surface

known as Berreman anchoring,42 (ii) intrinsic nanoscale coiling

of biological fibers predominantly modeled by the Helfrich

elastic chiral filament model or Kirchhoff elastic theory of rods,43

(iii) membrane curvature induced by soft-mode instability of

membranes caused due to the adsorbed fibers.44 Other mecha-

nisms applicable to micron-ranged inclusions due to capillary

process have been characterized by Stebe and co-workers.45,46

The balance between these curvophobic and curvophilic

competing interactions is modified by the ambient curvature b,

since the power dependence is linear for (a2, a5) and quadratic for

a3. The nature and meaning of the a2 and a3 terms has been

previously discussed,47 but the role of the curvophilic a5 in

creating nematic order was not.

For a given geometry, the preferred fiber orientation (a) and

fiber order (S) are found by minimizing the Helmholtz free

energy density rÂ. By setting r(vÂ/vS) ¼ 0 and r(vÂ/va) ¼ 0 the

following three equilibria states of fiber orientation arises: (a)

orientation along major curvature or ring mode, a ¼ 0; (b) along

the minor curvature or line mode, a ¼ p/2; and (c) oblique or

helical mode, cos2 a ¼ �b2/2b4 as depicted in Fig. 1.

The expression of the free energy in terms of S, a,H andD, the

minimization of the free energy, the conditions under which

the three orientation regimes occur and their transitions radii

(R1, R2) are discussed in Appendix B.
Fig. 1 Schematic of curvature-induced fiber orientation (thick line

segment) on a cylinder of increasing radius R. At small (large) radius, the

fibers align along the axial (azimuthal) direction. At intermediate

curvatures, the oblique state minimizes the free energy (eqn (13)).

Adapted from ref. 24.
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3.2 Fiber structure–curvature relations

Next, the equations for fiber orientation regimes and their

transitions (Appendix B) are solved for typical values of

dimensionless energy coefficients {ai}; we scaled the parameters

with a1 and use the same symbol for brevity. From the free

energy we find the bare internal length scale ‘o associated with

the fiber orientation:

lo ¼ a3

a2 þ a5
¼ curvophobic energy

curvophilic energy
(10)

Hence the characteristic radius of curvature or radius of the

cylindrical membrane (R) is scaled with the bare internal length

scale ‘o such that the dimensionless radius R* that controls the

fiber orientation is the ratio of the external length scale to the

internal length scale:

R* ¼ external length

internal length
¼ R

lo
(11)

The selected dimensionless energy coefficients are {ai; i ¼ 1–5} ¼
[1, 1, 1, 10, 0.4]. The large selected a4/a1 value reflects the fiber

concentration condition close to the order/disorder transition,

where a1 vanishes. The similar magnitudes in a1, a2, a3, and a5
reflect a condition of similar ordering and curvophobic and

curvophilic effects for dilute fiber concentrations below the

nematic transition.

Fig. 2 depicts the fiber orientation modes in terms of cosine of

equilibrium fiber orientation angle with respect to azimuthal

coordinate (cos a) and equilibrium fiber order in terms of scalar

order parameter (S). At low membrane radius, for 0 < R* <

0.1847, the curvophilic free energy is negligible and the curvo-

phobic free energy is minimized, thus the fibers are aligned in the

axial direction resulting in the line mode. At intermediate

membrane radius, for 0.1847 < R* < 0.3867, the competition

between the fiber interactions and curvophilic free energy aligns
Fig. 2 Fiber structure plot for cylindrical membranes of circular cross-

section. The three possible modes are: l—line mode, h—helical mode, and

r—ring mode. The order parameter displays a typical V shape and the

orientation a step-like response as the radius increases. The inset semi-log

plot shows fiber order vanishing asymptotically as R* / N.

This journal is ª The Royal Society of Chemistry 2011



the fibers at an angle between 0 and 90�, resulting in the helical

mode. At high membrane radius, for R* > 0.3867, the curvo-

phobic free energy is negligible and the curvophilic free energy is

minimized, thus the fibers are aligned in the azimuthal direction

resulting in the ring mode. At low membrane radius, the fibers

are more uniformly aligned in the axial direction. As the

membrane radius increases, the fiber order S decreases until

a local minimum (cusp) is reached, due to the cancellation of free

energy contributions from curvophobic and curvophilic inter-

actions. At the onset of the ring mode, the fiber order S starts

increasing until a local maximum is reached promoted by cur-

vophilic interactions. At high membrane radii, the fiber order

vanishes asymptotically as the membrane curvature vanishes

resulting in random fiber orientation.
3.3 Model validation for fiber orientation regimes

Although the present model does not take into account temporal

variation of cellulose microfibril concentration during different

stages of cell wall deposition, the predicted fiber orientation (see

Fig. 2) is in qualitative agreement with the experimental obser-

vations for the orientation of cellulose microfibrils in cell walls of

tracheids of conifers based on field emission scanning micros-

copy.48 The progressive changes in the orientation of cellulose

microfibrils in primary and secondary layers of these plant cell

walls are shown in Fig. 3(a). A schematic of cell wall deposition

process and corresponding changes in membrane size are

depicted in Fig. 3(b). The initial layers of primary cell wall are

deposited at the onset of cell growth when the membrane radius

is small, resulting in line mode (Fig. 3(a)-1 and (b)-1). The final

layers of primary cell wall are deposited towards the end of cell

growth, when the membrane radius is large as the cell reaches its

maximum size (Fig. 3(b)-2). Consequently, the layers deposited

in this phase exhibit ring mode (Fig. 3(a)-2). This result is in
Fig. 3 (a) A model for the orientation of cellulose microfibrils viewed from th

S1, S2, and S3—secondary cell wall layers, 1, 2, 3, Lu—lumen. Adapted from

changes in membrane shape. Lu—lumen. The changes in curvature correspo

This journal is ª The Royal Society of Chemistry 2011
agreement with experimental observations showing the orienta-

tion of microfibrils changing from line to ring mode in different

plant species.48–50 When the cell growth ceases the secondary cell

wall layers are deposited from the inner side and the cell starts

shrinking to become a lumen. As the radius of the membrane

decreases due to the cell wall deposition, the fiber orientation

changes to helical mode in the S1 layer and the fiber angle with

respect to azimuthal direction progressively changes from 0 to

90�.46 The S2 layers deposited at further smaller membrane

diameter exhibit further steeper fiber orientation closer to the line

mode and show high fiber order45 (Fig. 3(a)-3 and (b)-3). The

discrepancy between the experimentally observed helical or

crossed helical modes and the model based prediction of line

mode in the S3 layer might be attributed to lignification of the S3
layers before completion of cellulose microfibril alignment, as S3
is the innermost layer deposited towards the end of the cell wall

deposition process. This reasoning is further supported by wide

variations in observed microfibril orientation in innermost layers

of S3 among different tree species.48 As the fiber structure of S3
layer is determined by the duration of deposition and the rate of

change in orientation of microfibrils prior to lignification,

modelling the temporal dynamics of fiber orientation might be

able to resolve this discrepancy.
3.4 Effective bending modulus of cylindrical fiber-laden

membrane of circular cross-section

To gain insight into the role of fiber structure on the elasticity of

fiber-laden membranes, the effect of fiber orientation and fiber

order on the effective bending modulus of the fiber-laden

membrane cross-section is investigated. In this 2D analysis,

bending denotes changes in curvature in the cross-sectional plane

and not along the membrane axis. The effective bending modulus

of an arbitrarily curved fiber-laden membranes kc,eff has
e lumen side in the cell walls of tracheids of conifers. P—primary cell wall,

ref. 48. (b) A schematic of cell wall deposition process and corresponding

nd to different fiber orientation and order, as per Fig. 2.
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contributions due to membrane bending elasticity, kc,membrane,

and membrane curvature induced nematic ordering of fibers,

kc,fiber. For cylindrical membranes in which the fiber order is

induced through coupling between fiber order and membrane

curvature,H ¼ D¼ �(1/2R), and fiber orientation, a, and order,

S, are functions of the dimensionless radius of curvature of the

membrane R*:

kc,eff(R*) ¼ kc,fiber(R*,a(R*),S(R*)) + kc,membrane(R*) (12)

The expressions for kc,eff in the three fiber orientation modes are

derived in Appendix C.

The effective bending modulus of the fiber-laden membrane

system kc,eff is plotted as a function of the dimensionless radius of

the membrane R* in Fig. 4. The effective bending modulus of the

fiber-laden membrane system results from competing interac-

tions between curvophobic and curvophilic interactions, and

bare membrane bending modulus. It is evident from Fig. 2 and 6

that the effective bending modulus is sensitive to fiber order S

when the fibers are oriented in ring mode and is independent of

fiber order when the fibers are oriented in line or helical mode.

Depending on the role of fibers on the bending elasticity of the

fiber-laden membranes, three distinct regions have been identi-

fied as follows:

(i) Pure membrane regime: 0 <R* < 0.3867, region (i) in Fig. 4:

in this region, the effective bending modulus kc,eff is almost equal

to the bending modulus contribution from the membrane

kc,membrane, as the fiber contributions kc,fiber are negligible (i.e.,

kc,eff z kc,membrane,kc,fiber z 0). This is due to a lack of resistance

to change in membrane curvature when the fibers are oriented

in the line or helical mode. The addition of fibers neither

strengthens the membrane nor destabilizes the membrane shape.
Fig. 4 Effective bending modulus plot for cylindrical membranes of

circular cross-section. l—line mode, h—helical mode, and r—ring mode.

The inset semi-log plot shows regions: (i) pure membrane regime kc,eff ¼
kc,membrane, (ii) membrane hardening regime kc,eff > kc,membrane, and (iii)

membrane elastic softening regime kc,eff < kc,membrane. The maximum

stiffening occurs when the membrane radius R is nearly equal to the

internal length scale ‘o.
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The bending elasticity of the fiber-laden membranes is not

influenced by the presence of fibers.

(ii) Membrane hardening regime: 0.3867 < R* < 4.175, region

(ii) in Fig. 4; for R* > 0.3867, the fibers oriented in ring mode

offer resistance to change in membrane curvature proportional

to the magnitude of fiber order parameter S. The theoretical

maximum effective bending modulus, which is the value obtained

when the fibers are oriented in ring mode and the fiber order

parameter S equals 1, is never realized as the maximum observed

fiber order (Smax) in ring mode for the typical values of energy

coefficient used in this work is 0.439 at R* ¼ 0.913. The corre-

sponding maximum effective bending modulus for the fiber-

laden membrane system under investigation is 6.071. As R* is

increased from 0.3867 to 0.913, dS/dR* > 0 and S / Smax and

hence the fibers oriented in the ring mode become more ordered

resulting in gradual strengthening of the membrane by the fibers,

against deformation through the change in curvature. For R* >

0.913, gradual randomization of the fibers begins (dS/dR* < 0) as

the membrane curvature diminishes asymptotically. This results

in the steady decrease in effective bending modulus at values of

R* > 0.913. For 0.913 <R* < 4.175, the curvophobic interactions

dominate over curvophilic interactions, resulting in finite positive

fiber bending modulus contribution (i.e., kc,fiber > 0, kc,eff >

kc,membrane) and the fibers continue to strengthen the membrane

against deformation through the change in curvature.

(iii) Membrane elastic softening regime: R* > 4.175, region (iii)

in Fig. 4: at R* ¼ 4.175, the fiber contribution to the effective

bending modulus vanishes as the curvophobic and curvophilic

interactions cancel each other and hence the effective bending

modulus of the fiber-laden membranes is that of the pure

membrane (i.e., kc,eff ¼ kc,membrane). At values of R* > 4.175, the

curvophilic interactions dominate the curvophobic interactions,

resulting in finite negative fiber bending modulus contributions

(i.e., kc,fiber < 0) and fibers tend to destabilize the membrane

shape. This destabilizing effect induced by the fibers is compen-

sated by the membrane bending modulus contribution, thus

maintaining the effective bending modulus of the fiber-laden

system positive (i.e. 0 < kc,eff < kc,membrane). This competing

interaction between the fiber and membrane contributions at

values of R* > 4.175 helps sustaining the shape stability of the

fiber-laden membrane system, but results in membranes of low

effective bending modulus that are more susceptible to defor-

mation. This elastic softening observed at values of R* > 4.175 is

attributed to the bilinear coupling between the order parameter

and curvature, and is commonly observed in systems with one

order parameter (such as Q) coupled to strain (such as b) or

systems with multiple order parameters.51 For the selected

parametric data, as the fiber order asymptotically vanishes at

R* / N, the effective bending modulus of the fiber-laden

membrane system stabilizes at 1.084.

Fig. 5 shows the bending stiffness phase plot in terms of radius

of curvature of a circular membrane (R) as a function of the bare

internal length scale of the material (‘o), identifying the three

membrane elasticity regimes (i–iii) discussed in Fig. 4. For any

fiber-filled circular membrane the bare internal length scale (‘o,

eqn (10)) is fixed and the membrane displays growth-induced

bending variability as a result of changes in membrane radius

(R). The maximum stiffening of the membranes occurs on the

dotted line in the plot, when the membrane radius R is nearly
This journal is ª The Royal Society of Chemistry 2011



Fig. 5 Bending stiffness phase plot in terms of circular membrane radius

(arbitrary units) as a function of the internal length scale of the material

(eqn (10)). Regions: (i) pure membrane regime, (ii) membrane hardening

regime, and (iii) membrane softening regime. The dotted line represented

the line of maximum membrane stiffness.
equal to the internal length scale ‘o. For a given material,

increasing R first generates no fiber effect, subsequently the fibers

stiffen the membrane, and eventually the fibers soften the circular

membrane.

In partial summary, fibers have the strongest effect in

increasing bending stiffness of the cross-section when they are

strongly mutually aligned (high S) and with an average orien-

tation in the azimuthal direction (region (ii) in Fig. 4) and this

occurs when the membrane radius R is essentially equal to the

internal length scale of material ‘o. When the fibers are disor-

dered they promote elastic softening (region (iii) in Fig. 4), and

when they are axially oriented they have essentially no effect.

During cell growth, the variation in bending stiffness can serve as

a shape lock-in mechanism (hardening regime) or conversely

allow shape change through the softening effect.

4. Curvature-induced fiber ordering in cylindrical
membranes of super-elliptical cross-section

In this section, the fiber structure (Q) in cylindrical fiber-laden

membranes of super-elliptical cross-section is analyzed based on

the fiber orientations and their transitions predicted in Section

3.2. The key issue is to characterize the effect of membrane

curvature gradients (Vsb) inherent in super-elliptical shapes on

the fiber order parameter gradients (VsQ), using the circular

shape as reference.

4.1 Effect of shape parameter on fiber structure

As stated in Section 2.1, the membrane cross-sectional shapes

observed in plant cell walls have been represented by Lame’

curves. The fiber structure plots for h $ 2 and b ¼ 1 for the

typical values of energy coefficient used in Section 3.2 are pre-

sented in Fig. 6. The intercept of the curves on x and y axes is

fixed by setting the size parameter b equal to 1 while varying the
This journal is ª The Royal Society of Chemistry 2011
shape parameter (h), resulting in a set of curves shown in Fig. 6

(a). The curves being symmetric, calculating the fiber structure

for a quadrant of the membrane is sufficient.

At h ¼ 2, the general equation for the Lame’ curves represents

a circle of constant curvature around the membrane’s circum-

ference. Planar self-assembly of fibers driven by membrane

curvature in these membranes results in microfibrils aligning in

a specific direction at a uniform fiber order throughout the

membrane. The resulting fiber structure has unimodal fiber

orientation and uniform fiber order. The fiber orientation and

order are dictated by the fiber structure plot in Fig. 2.

For h ¼ 2 and b ¼ 1, the fibers are aligned in ring mode (Fig. 6

(b)). For h > 2, the cross-sectional shape transforms the circle

into a family of super-ellipses resulting in curves with flat sides of

large characteristic radius of curvature and corners of small

characteristic radius of curvature. As h is progressively increased,

the variation in radius of curvature between the sides and the

corners becomes increasingly pronounced and results in hetero-

geneous fiber orientation. For h ¼ 3 and b ¼ 1, the gradient in

radius of curvature is not large enough to induce different fiber

orientations. As the result, the fibers are aligned in ring mode

throughout the membrane but the fiber order varies smoothly

around the membrane circumference as a function of membrane

curvature (Fig. 6(c)). The resulting fiber structure has unimodal

fiber orientation and non-uniform fiber order. For h ¼ 5 and b ¼
1, the gradient in radius of curvature induces a ring mode in the

sides of larger radius of curvature and a helical mode in the

corners of smaller radius of curvature (Fig. 6(d)). The resulting

fiber structure has bimodal fiber orientation and non-uniform

fiber order. For h ¼ 10 and b ¼ 1, the gradient in the radius of

curvature induces ring mode in the sides of larger radius of

curvature, line mode in the corners of smaller radius of curvature

and helical mode in the regions of intermediate radius of

curvature (Fig. 6(e)). The resulting fiber structure has trimodal

fiber orientation and non-uniform fiber order.

These numerical predictions are consistent with abrupt change

in fiber angle in S2 and S3 at the corners reported in plant cell

walls of juniper tracheid. The fiber orientation angle in the

corners measured with respect to azimuthal coordinate (a) is 15

to 25� greater than in the sides.14
4.2 Effect of size parameter on fiber structure

For a given cross-sectional shape of a plant cell, the size of the

membrane increases during growth and decreases during

secondary cell wall deposition. The effect of varying the

membrane size on the fiber structure, while fixing the membrane

shape, is investigated in this section. The shape of the membrane

is fixed by setting the shape parameter h equal to 5 while varying

the intercept of the curves on x and y axes (b), resulting in a set of

curves shown in Fig. 7(a). As b is progressively decreased, the

radius of curvature of the corners decreases drastically in

comparison to that of the sides resulting in a greater curvature

gradient between the corners and the sides. This difference in

curvature might result in different fiber orientation modes in the

sides than the corners.

For h ¼ 5 and b ¼ 2, the gradient in radius of curvature is not

large enough to induce different fiber orientations. As a result,

the fibers are aligned in ring mode throughout the membrane but
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Fig. 6 Fiber structure plot for cylindrical membranes of super-elliptical cross-section. (a) Lame’ curves for h ¼ 2, 3, 5, and 10 and b ¼ 1, (b) fiber

structure plot for h¼ 2 and b¼ 1, (c) fiber structure plot for h¼ 3 and b¼ 1, (d) fiber structure plot for h¼ 5 and b¼ 1, and (e) fiber structure plot for h¼
10 and b ¼ 1. Increasing and localizing curvature produces sharp and localized fiber structure changes.
the fiber order varies smoothly around the membrane circum-

ference as a function of membrane curvature (Fig. 7(b)). The

resulting fiber structure has unimodal fiber orientation and non-

uniform fiber order. For h¼ 5 and b¼ 1, the gradient in radius of

curvature induces ring mode in the sides of larger radius

of curvature and helical mode in the corners of smaller radius of

curvature (Fig. 7(c)). The resulting fiber structure has bimodal

fiber orientation and non-uniform fiber order. For h ¼ 5 and b ¼
0.5, the gradient in radius of curvature induces ring mode in the

sides of larger radius of curvature, line mode in the corners of

smaller radius of curvature and helical mode in the regions of

intermediate radius of curvature between the sides and the

corners (Fig. 7(d)). The resulting fiber structure has trimodal

fiber orientation and non-uniform fiber order.

An experimental investigation supported by analytic and

computational predictions on the mechanical advantages of

having graded fiber orientation in man-made fiber-reinforced

composite materials has concluded that under tensile stresses

induced by indentation, a composite material with linearly

graded fiber orientation exhibits greater resistance to micro-

cracking.52 In addition to fiber orientation, the fiber orientation

distribution is also known to influence all the elastic moduli of

composite materials53 and hence the uniformity of fiber
7086 | Soft Matter, 2011, 7, 7078–7093
orientation distribution is a crucial factor that determines the

elastic homogeneity and hence the modulus of the composite

material. In biological fiber-laden membranes, shape fluctuations

arising due to elastic inhomogeneities are known to induce local

change in bending rigidity and spontaneous membrane curva-

ture54 and play a crucial role in morphogenesis in biological

systems.55 Hence, an understanding of deformation modes in

cylindrical membranes of super-elliptical cross-section due to

spatial variation in membrane bending modulus is crucial.

To gain insight into the effect of membrane geometry on these

factors influencing the mechanical efficiency of fiber-reinforced

composites, a fiber structure phase map is developed in Section

4.3. The spatial distribution of the effective bending modulus in

cylindrical fiber-laden membranes of super-elliptical cross-

section and their characteristic deformation modes are presented

in Section 4.4.
4.3 Fiber structure phase map for cylindrical membranes of

circular and super-elliptical cross-section

As illustrated in Sections 4.1 and 4.2, in plant cell walls, multi-

modal fiber orientations resulting in graded fiber orientation may

arise both in radial and azimuthal directions due to curvature
This journal is ª The Royal Society of Chemistry 2011



Fig. 7 Fiber structure plot for cylindrical membranes of super-elliptical cross-section. (a) Lame’ curves for b¼ 2, 1, and 0.5 and h¼ 5, (b) fiber structure

plot for h ¼ 5 and b ¼ 2, (c) fiber structure plot for h ¼ 5 and b ¼ 1, and (d) fiber structure plot for h ¼ 5 and b ¼ 0.5.
gradients between the sides and the corners induced by the shape

of plant cells and change in its size during cell growth and

secondary cell wall deposition. To characterize the number of

coexisting modes and the degree of heterogeneity we collapse all
Fig. 8 Phase map for fiber orientation modes in cylindrical plant cell

walls of circular and super-elliptical cross-section. a—unimodal, b—

bimodal, and c—trimodal fiber orientation modes.
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the computational results into master plots that summarize the

impact of size and shape on these important indices.

Fig. 8 shows a phase diagram in terms of the shape parameter

as a function of the size parameters indicating the number of

coexisting modes on a given cross-section. The unimodal (a)

domain might correspond to fibers oriented in either ring, helical

or line mode, the bimodal (b) domain corresponds to fiber

structures with coexisting ring and helical modes or helical and

line modes, and the trimodal (c) domain corresponds to fiber

structures containing the three modes.

Fig. 8 demonstrates that an increase in mode coexistence is

attained through either membrane size reduction or by deviation

from membrane constant curvature.

The uniformity in fiber orientation distribution is character-

ized using the following non-uniformity index U:

U ¼
ðp=2
0

����dSdq
����dq: (13)

when h ¼ 2, the fiber order is uniform and the non-uniformity

index isU¼ 0. In the range of 2.25 < h < 10, 0.05 < b < 4 explored

in this work, the maximum value of U is 3.77 � 10�2, which

corresponds to h ¼ 9 and b ¼ 0.05. We introduce the following
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Fig. 9 Phase map for uniformity in fiber orientation distribution in

cylindrical plant cell walls of circular and super-elliptical cross-section.

a—high uniformity, b—intermediate uniformity, and c—low uniformity.

Fig. 10 Effective bending modulus plot for cylindrical membranes of super-el

and b¼ 3.5, and (iii) h¼ 4 and b¼ 0.75, (b) effective bending modulus plot fo

3.5, and (d) effective bending modulus plot for h ¼ 4 and b ¼ 0.75.
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index classification: (i) high uniformity: 0 < U < 1 � 10�2, (ii)

intermediate uniformity: 1 � 10�2 < U < 2 � 10�2, and (iii) low

uniformity 2 � 10�2 < U < 3.77 � 10�2. Fig. 9 shows the

uniformity index phase diagram in terms of shape h and size

b parameters.

Fig. 9 shows that low uniformity is promoted by size reduction

and variable curvature. Under sufficiently small size, even

modest deviations from circular shape create large heterogeneity.

As mentioned above a composite material with linearly graded

fiber orientation exhibits greater resistance to microcracking,52

while the uniformity of fiber orientation distribution is known to

influence all the modulus of the composite materials.53 Based on

these facts, we may expect that region ‘‘c’’ in Fig. 8 has better

resistance of microcracking. In Fig. 9, we may expect region ‘‘a’’

to have higher modulus due to homogeneous membrane elastic

properties. Transferring the rules of man-made composites to

our biological system,52,53 the phase maps indicate trade-off

between microcracking resistance and strength in plant cell walls

of super-elliptical cross-section. Obviously, further experimental
liptical cross-section. (a) Lame’ curves for (i) h¼ 2.5 and b¼ 0.5, (ii) h¼ 6

r h¼ 2.5 and b¼ 0.5, (c) effective bending modulus plot for h¼ 6 and b¼

This journal is ª The Royal Society of Chemistry 2011



characterization and simulation is needed to put these claims on

firm ground but they highlight potential mechanical optimiza-

tion mechanisms in plants.
4.4 Effective bending modulus of fiber-laden membranes of

super-elliptical cross-section

It is evident from Fig. 4 that the effective bending modulus

kc,eff(R*) is a function of the dimensionless radius of curvatureR*.

As the membrane curvature varies smoothly across the circum-

ference of super-elliptical membranes, the effective bending

modulus is spatially inhomogeneous. As mentioned above under

stress, the softened section with low bending elastic modulus

deforms while the stiffened sections with high bending elastic

modulus remain intact resulting in membrane shape distortions.

In this section, the effective bending modulus of cylindrical fiber-

ladenmembranes of super-elliptical cross-section is computed for

typical values of shape and size parameter, and their potential

deformation modes under further expansion are analyzed.

Fig. 10 shows the effective bending modulus kc,eff(R*) as

a function of the polar angle q for three distinct super-elliptical

membranes (a) corresponding to: (i) h ¼ 2.5 and b ¼ 0.5 (b), (ii)

h ¼ 4 and b ¼ 0.75 (c), and (iii) h ¼ 6 and b ¼ 3.5 (d). The polar

angle is measured by q from the x-axis. Below we make reference

to the corners which are at q ¼ +45� and to the midpoint of the

sides which are at q ¼ 0, +90�.
Case (i): for h ¼ 2.5 and b ¼ 0.5, the effective bending

modulus plot shown in Fig. 10(b) has soft sections of low

bending modulus in the corners of the super-elliptical

membrane (34� < q < 56�), where the fibers oriented in helical

mode do not influence the membrane elasticity and stiffened

sections of high bending modulus on the sides (q ¼ 0,90�)
where the fibers are oriented in ring mode contributing to

strengthening of the membrane. This bending stiffness variation

is compatible with growth and inflation with invariant shape,

since the softer corners can change curvature (increase its

radius) but the stiffer and more straight sides remain

unchanged. Case (ii): for h ¼ 6 and b ¼ 3.5, the effective

bending modulus plot shown in Fig. 10(c) has soft sections of

low bending modulus in the sides (0� < q < 32� and 58� < q <
Fig. 11 Shape of the fiber-laden membranes resulting from expansion of the s

growth, (b) h¼ 6 and b¼ 3.5 leads to growth with weak shape change, and (c)

between sides and corners lead to large shape changes. S—side and C—corn
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90�), where the fibers oriented in ring mode promote elastic

softening of the membrane as discussed in Section 3.4 and

stiffened sections of high bending modulus in the corners (32�

< q < 58�), where the fibers oriented in ring mode contribute to

strengthening of the membrane. This bending stiffness variation

is incompatible with growth and inflation with invariant shape

and the initial super-ellipse can only grow distortions of the

sides. Case (iii): for h ¼ 4 and b ¼ 0.75, the effective bending

modulus plot shown in Fig. 10(d) has weakened sections of low

bending modulus in the sides (0� < q < 13� and 77� < q < 90�),
where the fibers oriented in ring mode promote elastic softening

of the membrane, and the corners of the super-elliptical

membrane (37� < q < 53�), where the fibers oriented in helical

mode do not influence the membrane elasticity, and stiffened

sections of high bending modulus in the regions between the

sides and the corners (13� < q < 37� and 53� < q < 77�) where
the fibers oriented in ring mode contribute to strengthening of

the membrane. Growth and expansion produce maximal shape

change since the contour now has two weakened sections.

A schematic representing the shape of the fiber-laden

membranes resulting from deformation of membranes shown in

Fig. 10(a) is presented in Fig. 11.

Fig. 11 shows that fiber-driven stiffness regulation results in

three characteristic growth modes in super-ellipses: (i) shape

invariant growth (stiff sides) (Fig. 11(a)), (ii) growth with weak

shape change (stiff corners) (Fig. 11(b)), and (iii) growth with

strong shape change (stiff sections between the sides and the

corners) (Fig. 11(c)).
5. Conclusions

In this work, the curvature-induced cellulose microfibril orien-

tation in plant cell walls at dilute concentrations is investigated

by solving numerically an integrated micromechanical model

developed for fiber-laden membranes. The model was formulated

using a Helmholtz free energy that integrates the Helfrich

bending/torsion membrane energy (eqn (7)), the nematic

Landau–de Gennes fiber orientation energy (eqn (8)), and

competing curvophilic and curvophobic interactions between the

membrane and microfibrils (eqn (7)). The influence of membrane
uper-elliptical membrane: (a) h¼ 2.5 and b¼ 0.5 leads to shape invariant

h¼ 4 and b¼ 0.75 leads to growth with large shape change. Stiff sections

er.
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curvature on the fiber structure in cylindrical membranes of

circular cross-section was characterized (Fig. 2), showing that as

the radius increases a sequence of line, helical, and ring fiber

orientation modes emerge. The fiber order is maximum at low

membrane radius and asymptotically vanishes to zero as the

membrane grows infinitely large.

The model predictions are validated by comparing the pre-

dicted microfibril orientation (Fig. 2) with experimentally

observed orientation in cell wall of tracheids48 (Fig. 3(a)). The

primary cell walls deposited during growth of plant cell from

a small radius to a large radius show progressive change in fiber

orientation from line mode to ring mode (Fig. 3(a)-1 and (a)-2).

The deposition of secondary cell wall layers results in decrease of

membrane radius and consequently helical and line modes are

observed in S1 and S2 layers, respectively (Fig. 3(a)-3). The

discrepancy between the observed helical or cross-helical mode

and predicted line mode in S3 layer might be resolved by

modeling the temporal dynamics of fiber orientation.

The role of fiber structure on the elasticity of the fiber-laden

membranes is investigated by analyzing the effective bending

modulus of the system as a function of dimensionless radius

(Fig. 4). The analysis shows that the bending elasticity of the

fiber-laden membranes is not influenced by the presence of

fibers oriented in line and helical mode irrespective of the

magnitude of the fiber order, while the fibers oriented in ring

mode can either strengthen or weaken the membrane. The role

of fibers oriented in ring mode on membrane bending elasticity

is influenced by the magnitude of fiber order and is a result of

the interplay between pure membrane elasticity, curvophobic,

and curvophilic interactions. The maximum stiffening occurs

when the membrane radius R is nearly equal to the internal

length scale ‘o (Fig. 5).

With the aim of characterizing graded fibrous structures, the

model was then extended to cylindrical membranes of super-

elliptical cross-section in which the membrane curvature varies

smoothly around the circumference of the membrane. The cross-

sectional shape of the membranes is represented by Lame’

curves. The effect of varying the shape and size parameter of

Lame’ curves on the fiber structure was investigated. Multimodal

fiber orientations resulting in graded fiber orientation may arise

both in radial and azimuthal directions due to curvature gradi-

ents between the sides and the corners induced by the shape of

the plant cells and change in its size during cell growth and

secondary cell wall deposition (Fig. 6 and 7). This prediction is

supported by the observation that the fiber orientation angle in

the corners measured with respect to azimuthal coordinate (a) is

15� to 25� greater than in the sides.14

Phase maps of fiber orientation modes and uniformity of

fiber orientation distribution were developed to gain insight on

the effect of membrane geometry on fiber structure in fiber-

laden membranes (Fig. 8 and 9). Assuming that the mechanics

of synthetic composites apply to plant cell walls,52,53 the phase

maps indicate a trade off between microcracking resistance and

strength in plant cell walls of super-elliptical cross-section, but

further plant-based experimental evidence is necessary. The

super-elliptical membranes have a spatially inhomogeneous

effective bending modulus (Fig. 10), which leads to different

growth modes. Three distinct spatial inhomogeneity patterns in

effective bending modulus of membranes and their
7090 | Soft Matter, 2011, 7, 7078–7093
characteristic growth modes are analyzed (Fig. 11). The shape

invariant growth through membrane stretching predominant in

plant cell walls is predicted to arise when corner sections have

low bending modulus and the sides have stiffened sections of

high bending modulus.

The coupling between in-plane fiber orientation and order and

the curvature of the membranes demonstrated by plant cell walls

in nature has the potential to open up a novel venue to control

two dimensional anisotropic soft matter with tailored

functionalities.56

Appendix A

Geometric characterization of a curved surface

The purpose of this Appendix is to derive the average H and

deviatoric D membrane curvatures used throughout the paper.

The geometry of an arbitrarily curved surface is characterized

by the mean surface curvature H and the deviatoric curvature D

given by27,28

H ¼ � 1

2
Vs$k ¼ 1

2
b : I s ¼ � 1

2
I s : Vsk ¼ 1

2
ðy1 þ y2Þ; (A1a)

D ¼ 1

2
b : q ¼ 1

2
ðy1 � y2Þ (A1b)

where Vs ¼ Is$V is the surface gradient, Is ¼ I � kk is the 2 � 2

unit surface dyadic, k is the unit normal, I is the 3 � 3 unit

dyadic, b is the 2 � 2 symmetric surface curvature dyadic, and

{ym,em}, m ¼ 1,2 are the eigenvalues and eigenvectors of b. The

principal curvatures (y1,y2) define the principal radii of curvature

(rm) of the surface: ym ¼ �1/rm. The magnitude of the deviatoric

curvature D is a useful non-sphericity index, since for a sphere

D ¼ 0. For a cylindrical surface, the average surface curvatureH

and deviatoric curvature D are equal.

The four independent basis surface tensors are:1,57

{Is, q, 3s, q1 ¼ q$3s} (A2)

The matrix representations of the basis vectors in the principal

frame are:34,58

I s ¼
�
1 0

0 1

�
; q ¼

�
1 0

0 �1

�
; 3s ¼

�
0 1

�1 0

�
;

q1 ¼ q$3s ¼
�
0 1

1 0

�
(A3)

where 3s is the surface alternator tensor. The tensor basis

orthonormality yields the following results:
Is:Is¼ q:q¼ 3s:3s¼ q1:q1¼ 2, Is:q¼ Is:3s¼ Is:q1¼ q:3s¼ q:q1¼ 3s:

q1 ¼ 0, Is$q ¼ q,Is$q1 ¼ q1,Is$3s ¼ 3s,q$q1 ¼ 3s,q$3s ¼ q1,q1$3s ¼ q

(A4)

Any 2 � 2 tensor Z can be expanded as:

Z ¼ 1

2
ðZ : I sÞI s|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

trace

þ 1

2
ðZ : qÞq|fflfflfflfflfflffl{zfflfflfflfflfflffl}

diagonal traceless

þ 1

2
ðZ : 3sÞ3s|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
antisymmetric

þ 1

2
ðZ : q1Þq1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

symmetric off-diagonal

(A5)
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where the subtext identifies the nature of the tensor. A symmetric

2� 2 tensor diagonal in the principal coordinate frame simplifies

to:

Z ¼ 1

2
ðZ : I sÞI s þ 1

2
ðZ : qÞq (A6)

Using eqn (A6), the curvature tensor b can be decomposed into

a trace and a deviatoric curvature tensor: b ¼ HIs + Dq.
Appendix B

Free energy minimization of fiber-laden membrane and selected

orientation modes

The purpose of this Appendix is: (i) to derive the Helmholtz free

energy density in terms of fiber angle a, fiber order S, and

membrane curvaturesH/D, and (ii) to obtain the orientation and

ordering modes that result from the free energy minimization.

These results are used in Sections 3.1 and 3.2.

Using the principal curvature frame (e1,e2), parametrizing the

director with n ¼ (cos a, sin a), where a is the fiber orientation

angle with respect to azimuthal coordinate of the cylindrical

membrane (cos a ¼ n.e1) the free energy rÂfiber + rÂcoupling

becomes:
rÂfiber + rÂcoupling ¼ bo + b2cos
2 a + b4cos

4 a (B1a)

bo ¼
��

a2 þ a5

2

�
þ a3

2
H
�
H � ðða2 þ a5ÞDþ a3HDÞ S

þ
�a1
4
þ a5

2
H þ a3

2
D2
�
S2 þ a4

16
S4 (B1b)

b2 ¼ 2(a2 + a3H � a3DS + a5)DS, (B1c)

b4 ¼ 2a3D
2S2 (B1d)

This energy (eqn (B1)) vanishes for flat isotropic states: D ¼H ¼
S¼ 0. The quartic contribution (b4cos

4 a) is necessary to observe

fiber alignment away from the principal axes. The form of the

free energy is identical to that describing the interfacial tension of

nematic–substrate interfaces.47

For a given geometry, the preferred fiber orientation (a) and

fiber order (S) are found by minimizing the Helmholtz free

energy density rÂ:

r
vÂ

vS
¼ a4

4
S3 þ

�a1
2
þ a5H

�
S þ ða2 þ a3H þ a5

þ a3DS cos 2aÞD cos 2a ¼ 0 (B2a)

r
vÂ

va
¼
�
b2

2b4

þ cos2 a

�
sin a cos a ¼ 0 (B2b)

where the second equation is re-written in a more revealing

format. In terms of the fiber director, there are three equilibria

states: (a) orientation along the major curvature, a¼ 0; (b) along

the minor curvature, a ¼ p/2; and (c) oblique, cos2 a ¼ �b2/2b4,

as follows.
This journal is ª The Royal Society of Chemistry 2011
(a) Orientation along the major curvature. Here n¼ e1 and the

scalar order parameter S satisfies a cubic:

a ¼ 0, (B3a)

a4

4
S3 þ

� a1
2
þ a5H þ a3D

2
�
S þ ða2Dþ a3HDþ a5DÞ ¼ 0

(B3b)

The necessary conditions are

b2

2b4

¼ ða2 þ a5 þ a3ðH �DSÞÞ
2a3DS

. 0;

b2 ¼ 2ða2 þ a3H � a3DS þ a5ÞDS\0 (B4)

Since b4 < 0, b2 < 0 the minimum energy corresponds to orien-

tation along the largest principal curvature (a ¼ 0). For

a cylinder, this is the azimuthal direction.

(b) Orientation along the minor curvature. Here n¼ e2 and the

scalar order parameter S satisfies a cubic:
a ¼ p/2, (B5a)

a4

4
S3 þ

�a1
2
þ a5H þ a3D

2
�
S � ða2Dþ a3HDþ a5DÞ ¼ 0

(B5b)

The necessary conditions are

b2

2b4

¼ ða2 þ a5 þ a3ðH �DSÞÞ
2a3DS

. 0;

b2 ¼ 2ða2 þ a3H � a3DS þ a5ÞDS. 0 (B6)

Since b4 > 0, b2 > 0 the minimum energy corresponds to the

orientation along the smallest principal curvature (a ¼ p/2). For

a cylinder this is the axial direction.

(c) Oblique orientation along the minor curvature. Here n¼ e2
and the scalar order parameter S satisfies a cubic:

cos2 a ¼ � b2

2b4

¼ �ða2 þ a5 þ a3H � a3DSÞ
2a3DS

; (B7a)

�a1
2
þ a5H

�
S þ a4

4
S3 ¼ 0 (B7b)

The necessary conditions are

�2b4 < b2 < 0, b4 > 0 (B8)

The ordering under oblique conditions is the result of

a competition between the Landau–de Gennes terms (a1, a2) and

the curvophilic a5 term.

Next, we discuss transitions and assume without loss of

generality that all the energy coefficients are positive {ai} > 0.

For b4 > 0, orientation transitions from oblique to principal

curvature directions occur for D s 0 as follows. (a) Oblique-

major curvature (e1) transition: as �b2 / 2b4, a / 0. In this

case b2 becomes sufficiently negative to balance b4. At the tran-

sition when a / 0 the curvatures obey:

D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2a1 þ 4a5HÞ

a4

s
þH ¼ �ða2 þ a5Þ

a3
\0 (B9)
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This transition will occur at sufficiently small curvatures so that

the effect of a2 and a5 prevail (see discussion below, eqn (B10)).

(b) Oblique-minor curvature (e2): as b2 / 0, a / p/2. This

transition to orientation along the minimum curvature occurs as

the tension introducing cos2 a in the free energy vanishes (see eqn

(B1c)) and this can happen only at sufficiently large H and D. At

the transition the curvatures obey:

H �D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2a1 þ 4a5HÞ

a4

s
¼ �ða2 þ a5Þ

a3
(B10)

Next we demonstrate an application of these results (eqn (B9)

and (B10)) for the case of a cylinder of radius R, when D ¼ H ¼
�(1/2R), relevant to plant cell walls of cylindrical cells with

circular cross-section. Using (eqn (B9) and (B10)), we find that

the critical transition radiiR1 andR2 for oblique/major curvature

and oblique/minor curvature, respectively, obey:

R1 ¼ a3

2ða2 þ a5Þ

(
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ða1 � ða5=R1ÞÞ

a4

s )

¼ a3

2ða2 þ a5Þ ð1þ SÞ (B11)

R2 ¼ a3

2ða2 þ a5Þ

(
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ða1 � ða5=R2ÞÞ

a4

s )

¼ a3

2ða2 þ a5Þ ð1� SÞ ¼\R1 (B12)

where we used eqn (B7b) for S. Fig. 1 shows the stability regions

for line, helix and ring modes as a function of the radius for

a cylindrical membrane. A small cylinder radius induces axial

orientation while larger radius induces azimuthal orientation,

and the interval over which the intermediate oblique state

exists is:

R1 � R2 ¼ a3

2ða2 þ a5Þ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðða5=R1Þ � a1Þ

a4=2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðða5=R2Þ � a1Þ

a4=2

s !

(B13)

Appendix C

Effective bending modulus of a fiber-laden membrane

The purpose of this Appendix is: (i) to derive the effective fiber

modulus of a fiber laden membrane in terms of fiber angle a, fiber

order S, and membrane curvature H, and (ii) to establish the

relations between bending stiffness and fiber orientation and

order. These results are used in Section 3.4.
kc;fiber ¼
d2
	
r Âfiber þ r Âcoupling



dH2

¼ �1� 2S þ S

þ�	a2 þ a5 þ 2a3H � 2a3HS þ 4a3HS

þ�ða2 þ a5 þ 2a3H � 4a3HSÞ2cos2 a�
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The effective bending modulus of an arbitrarily curved fiber-

laden membranes kc,eff has contributions due to membrane

bending elasticity, kc,membrane, and membrane curvature induced

nematic ordering of fibers, kc,fiber. The fiber contribution to

effective bending modulus, kc,fiber, is given by the second deriv-

ative of the fiber and coupling free energies rÂfiber + rÂcoupling

with respect to mean surface curvature H:The three fiber

contributions to bending stiffness include the bare curvophobic

effect (a3), the director effect (va/vH), and the order parameter

effect (vS/vH). As shown below the maximum fiber reinforcing

effect is obtained as expected when a ¼ 0 and the order is high.

For 0 < R* < 0.1847, the fibers are oriented in line mode and eqn

(C1) simplifies to:

kc;fiberj0\R*\0:1847
¼ 	1� 2S þ S2



a3 þ ð2a3HS � 2a3H � a2 � a5

þa5SÞ vS

vH
(C2)

For R* > 0.3867, the fibers are oriented in ring mode and eqn

(C1) simplifies to:

kc;fiberjR*.0:3867 ¼
	
1þ 2S þ S2



a3 þ ð2a3HS þ 2a3H þ a2 þ a5

þa5SÞ vS

vH
(C3)

The derivatives vS/vH, v(cos a)/vH in eqn (C1)–(C3) are evalu-

ated numerically using the central difference method at each

value of R*. The membrane contribution to effective bending

modulus, kc,membrane, is given by the second derivative of the

membrane free energy rÂmembrane with respect to mean surface

curvature H:

kc;membrane ¼ d2ðrÂmembraneÞ
dH2

¼ 4kc (C4)

In this work, the dimensionless membrane bending modulus kc is

set equal to 1 representing similar magnitudes of membrane

elasticity and membrane–fiber interactions.
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2 þ 4Scos2 a� 4S2cos2 aþ 4S2cos4 a
�
a3

cos2 a


4Ssin a

� vcos a

vH

ða2 þ a5 þ 2a3HÞ þ ða5 þ 2a3HÞS þ 8a3HScos4 a
� vS

vH
(C1)
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