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A shape and material selection model has been previously introduced to characterize the structural effi-
ciency of a slender beam under pure bending. The method is extended here and applied to the case of a
beam undergoing non-uniform flexure. In the first part of this paper, the strain energy density is used to
formulate the beam stiffness in terms of strain energies due to both transverse shear forces and bending
moments. Shape transformers are defined to capture the shear deformation that shapes of alternative
cross-section exhibit with respect to beam slenderness. In the second part, the expressions of the shape
properties are plotted on selection charts that assist co-selecting the best material, shape and slenderness
of a lightweight stiff beam under non-uniform bending. Numeric results from finite element analysis val-
idate the model for concept design.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Optimized slender and short-thick components are used in
building, aircraft and machine structures to increase performance
and lower material cost. Whereas the former exist in most applica-
tions, the latter are frequently encountered in concrete and steel
structures. Squat beams, for example, contribute to stiffen founda-
tion walls and increase the load capacity of walls supported by col-
umns [1]. Short beams with thin webs are also an integral part of
aircraft structures, and short-thick cantilevers are used for gear
teeth [2,3].

The strain response of a beam strongly depends on the type of
applied load. In practice, most beams are subjected to loads that in-
duce non-uniform bending, which consists of both bending mo-
ments and shear forces. Once deformed, the beam stores strain
energy due to normal and shear stresses. In a slender beam, how-
ever, the strain energy of shear is negligible since it is relatively
small in comparison the strain energy due to bending. Typically,
for a length-to-height ratio as high as 10 the shear deformation
is less than 3% and the beam can be assumed to undergo pure flex-
ure. On the other hand, in a short-thick beam, the pure bending
assumption ceases to hold. The shear strain cannot be ignored, be-
cause a beam slenderness as large as 0.2 induces a shear deflection
which is at least 10% of that caused by bending [4].

Besides slenderness and applied load, structural geometry and
material are factors governing deformation and mass-efficiency.
Several researchers have developed design methods to optimize
the material and geometry selection. Most of them, e.g. Shanley
ll rights reserved.

: +1 514 398 7365.
ni).
[5], Cox [6], Parkhouse [7], Ashby [8], and Pasini [9,10], introduced
shape parameters, performance criteria, and selection charts to
visualize the impact of design variables on structural efficiency.
Cox and Shanley, for example, used a structure-loading-coefficient
for a visual comparison of the mass-efficiency of structural con-
cepts. Ashby [8,11] proposed a material index to characterize the
efficiency of a material, and introduced the well-known material-
property charts, an invaluable tool for material selection. In his
work, Ashby [8] assumed that the impacts of material and shape
are not independent and, subsequently, introduced a shape factor
in the material index to allow for material and shape co-selection.
More recently, a selection model has been presented to compare
the lightweight potential of shaped materials on shape property
charts. Based on a shape classification, the method introduces
shape transformers to characterize the role of shape and decouple
it from the size effect [9,10,12,13].

In the design for stiffness, the aforementioned methods may be
applied to non-uniform bending, as long as the beam is slender
[4,14,15]. Their inaccuracy, however, amplifies with the increase
of the beam slenderness ratio. This paper examines this last issue
by focusing on the effect that shear strain and slenderness have
on the co-selection of material and geometry. A method, previously
introduced for pure bending [10], is extended to include non-uni-
form flexure and is reformulated for the lightweight design of
beams of any slenderness. In Section 2, the stiffness of a beam is
modeled for compliance due to combined shear and bending load-
ing. Shape transformers are introduced in Sections 3, 4 and 6 to
model beam stiffness and performance of both slender and short-
thick beams. The impact of slenderness is demonstrated in Section
5 followed by design maps in Section 7. Section 8 presents finite
element analysis results to validate the model.
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2. Beam stiffness for non-uniform bending

Under non-uniform bending, the beam resistance to deforma-
tion can be expressed as a function of the shear and bending stiff-
ness. In this work, the beam cross-section is assumed to be uniform
along its length with homogeneous and isotropic material. The lon-
gitudinal neutral axis is linear and coincides with the x-axis, and
the orientations of y- and z-axes are, respectively, along the height
and width of the cross-section.

Consider a centrally loaded and simply supported beam under-
going small and linear-elastic deformation. The beam is modelled
as a system of two springs mounted in series under a load P, sim-
ilarly to the model of a beam under non-uniform bending in [16].
One spring is associated to the bending deflection, db, at the loca-
tion of the applied load. The other governs the shear deflection,
ds, at the same location. Therefore, the beam stiffness, k, can be ex-
pressed as a function of the individual stiffness due to bending,
kb = P/db, and shear, ks = P/ds, as

k ¼ 1
kb
þ 1

ks

� ��1

¼ P
db þ ds

ð1Þ

In the above expression, the elastic deflection d = db + ds is un-
known. To compute the two spring deflections, we apply the Cas-
tigliano’s theorem to the total strain energy density of the beam
subjected to bending and shear forces [2,4,17]. In the case of
non-uniform bending, the total strain energy due to a state of
bending and shear stresses, r and s, can be expressed as

U ¼
Z

V
ðub þ usÞdV ¼

Z
V

r2

2E
þ s2

2G

� �
dV ð2Þ

where ub and us are the bending and shear strain energy per unit
volume; E and G are, respectively, the Young’s and shear modulus.
The next step in calculating the beam deflection is to apply Castigli-
ano’s theorem at the location of the applied load. By differentiating
the integral of the strain energy with respect to the load applied at
the location of deformation and by substituting the internal bend-
ing and shear stresses with the external force, we obtain

d ¼ jdb þ dsj ¼
oU
oP
¼ PL3

bEI
þ PLK

aGA
ð3Þ

which, substituted in (1), gives the following beam stiffness:

k ¼ L3

bEI
þ LK

aGA

 !�1

ð4Þ

where a and b are constants dependent on boundary conditions and
load location. For a simply supported beam, the constants are found
to be b = 48 and a = 4 [2]; furthermore, K is the shear correction fac-
tor dependent on the shear stress distribution, which in a solid rect-
angular cross-section is parabolic with respect to the height.

The shear correction factor is governed by the cross-section
shape. Approximate expressions of K are available in the literature
for basic cross-sections [4,18–20]. For example, in Timoshenko
beam theory, a shear correction factor is introduced to compensate
for the error due to assuming a constant shear stress in the cross-
section. The following describes a method to model the shape
properties of a cross-section and it will be used in Section 4.1 to
formulate K for alternative shapes.
3. Methodology

The scheme used in this paper is based on the notion that the
geometry of a cross-section can be described by two distinct enti-
ties [10]. One governs the size of the cross-section, the other its
shape. The former is represented, in two-dimensions, by a rectan-
gle, namely the envelope, D, of dimensions (B,H) equal to those of
the cross-section. The latter is the shape, S, of the figure enclosed in
D with geometric properties described by dimensionless parame-
ters called shape transformers. Decoupling D from S leads to the
definition of scalar operators that deal with the scaling and the
shaping of a cross-section. The former is described by envelope
multipliers; the latter by shape transformers, which represent
the geometric properties of a shape, similarly to the physical prop-
erties of a material.

A shape transformer wg is defined by normalizing a geometric
characteristic, g, of the cross-section shape by that of the envelope
as

wg ¼ g=gD ð5Þ

where g represents a geometric quantity of the shape, such as the
area, A, or the second moment of area, I, and gD that of the envelope.
Shape transformers are generally expressed in terms of c ¼ b=B and
d ¼ h=H, with 0 6 c 6 1 and 0 6 d 6 1. When the material saturates
the envelope completely, the shape is a solid rectangle, which is
chosen to be a reference shape with wg unity; on the other hand,
0 < wg < 1 for all other shapes.

The above scheme has been used to categorize shape concepts.
Shapes have been classified into families and classes in a way sim-
ilar to material classification [13]. Shapes falling into a family can
be solid or hollow. The former should originate from the solid
shape of the family. The latter falls into a family if the contour of
the removed material, i.e. the internal hole, is the same as that of
the external profile. Table 1 presents three shape families together
with the shape classes of the rectangles, the ellipses, and the dia-
monds. Here, a shape class is defined by the direction in which
the material layers are scaled with respect to the envelope. Shape
classes are ideal limiting-cases that define the boundaries of all
possible beam stiffness behavior for a given loading. They are the-
oretical, but represent approximately the cases of a bi-material
system in which the low density core layers can be neglected.
Three shape classes are considered in this work, namely vertical,
horizontal and proportional scaled layers classes, as illustrated in
Table 1.

Shape transformers generally enable to decouple the effects of
various parameters in an expression of classical mechanics, such
as a failure mechanism. In general, an equation of mechanics
E.M., can be expressed in terms of design specifications, material,
and geometric properties as

E:M: ¼ F �M � wg � gD ð6Þ

where F identifies the design specifications and M corresponds to
material properties. wg symbolizes the shape transformers of the
cross-section for a given geometric quantity g of the shape, and gD

represents the geometric quantity of the envelope.
4. Shear shape transformers for modeling non-uniform bending
stiffness

To apply the above scheme to non-uniform bending stiffness
design, we need to formulate the shape transformers for pure shear
stiffness. Eq. (4) shows that the geometric contribution governing
shear stiffness is K/A. In Section 4.1, symbolic expressions of the
shear correction factor are derived for the shape families. We use
the results in Section 4.2 to formulate the shape transformers
and substitute them into the beam stiffness.

4.1. The shear correction factor for shape families

As previously described, the shear correction factor is obtained
by applying the strain energy method and Castigliano’s theorem to



Table 1
Classes of symmetric rectangles, ellipses and diamonds
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the shape families and their classes. For hollow shapes, the first
moment of inertia is evaluated separately in the first cross-section
segment, 0 6 y 6 h=2 or �h=2 6 y 6 0 and in the second one,
h=2 6 y 6 H=2 or �H=2 6 y 6 �h=2, [4,21].

Rectangles: For the family of the rectangles shown in Table 1, the
expression of the shear correction factor K is given by

K ¼
3 � 7cd5 þ 8c2d5 � 30cd3 þ 15cd� 8c þ 8
� �

20 � 1� cð Þ 1—cdð Þ�1 1� cd3
� �2 ð7Þ

For the reference cross-section, i.e. solid rectangle where c = 0
and d = 0, and for the class of horizontally scaled layers where
d = 1, the value of k is 6/5, which is in agreement with that found
in literature [2,3,17,22].

Applying the scaling conditions c = d and c = 1 to Eq. (7), gives
the shear correction factor, respectively, for the proportionally
and vertically scaled layers classes. These expressions will be used
in Section 4.2 to formulate the shape transformers, as illustrated in
Table 2.

Ellipses: Similarly, we apply the strain energy method and Cas-
tigliano’s theorem to each shape class of the family of the ellipses.
For the proportionally scaled hollow ellipse, the shear correction
factor is given by

K ¼
2 3pd4 þ 8d3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p
þ 13pd2 þ 4d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p� �
9p d4 þ 2d2 þ 1
� �

þ
2 16d2 arcsinðdÞ � 4 arcsinðdÞ þ 5p
� �

9p d4 þ 2d2 þ 1
� � ð8Þ

For a solid ellipse and for the horizontally scaled layers ellipse,
the shear correction factor is correctly found to be equivalent to
that of a circle [2], which is K = 10/9. The shear correction factor
for the vertically scaled ellipse is obtained by numeric analysis.

Diamonds: For the proportionally scaled diamond, K is given by
K ¼ 8d5 þ 56d4 þ 101d3 þ 61d2 þ 31dþ 31

30 d3 þ d2 þ dþ 1
� �

1þ d2
� � ð9Þ

The shear correction factor for a solid diamond and for the hor-
izontally scaled diamond is K = 31/30, which is in agreement with
[2]. The above expressions given for alternative shapes are used in
the following section to formulate the shape transformers for pure
shear stiffness.

4.2. Beam stiffness for non-uniform flexure

The shear shape transformer wS governs the pure shear correc-
tion factor of a cross-section. As defined in Eq. (5), wS is a measure
of the geometric term, A/K, relative to that of the envelope, given
by

wS � A=ADð Þ= K=KDð Þ ð10Þ

Table 2 summarizes the shape transformers for the shapes illus-
trated in Table 1. Similar to materials, shapes of a family exhibit
properties that fall into a particular range of properties. For the
hollow rectangles, ellipses and diamonds, wS varies, respectively,
as follows: 0 6 wS 6 1;0 6 wS 6 27p=100 and 0 6 wS 6 18=31.

If wS is substituted in Eq. (4), the terms of shape, material and
size are decoupled in the shear stiffness, which can be expressed as

ks ¼ ða=LÞ � G � wS � ðAD=KDÞ ð11Þ

In addition to material and geometry, the slenderness governs
the beam deformation under non-uniform bending. When variable,
H/L has a major impact on the pure shear stiffness which differs
from that on the pure bending stiffness. As mentioned, the shear
stiffness is a linear function of H/L, whereas in pure bending stiff-
ness, the relation kb = f(H/L) is cubic. To express the dependence
of the beam stiffness on the beam slenderness, we write ks and
kb separately as

ks ¼ ð5a=6Þ � G � wS � ðBðH=LÞÞ ð12Þ



Table 2
Shape transformers for rectangles, ellipses and diamonds
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kb ¼ ðb=12Þ � E � wI � ðBðH=LÞ3Þ ð13Þ

By substituting the above relations in Eq. (1), we obtain the
beam stiffness under non-uniform flexure

k ¼ ð5abB=6Þ � E � wI � G � wS � ðH=LÞ3

ð10aÞ � G � wS þ ðbÞ � E � wI � ðH=LÞ2
ð14Þ
5. The impact of slenderness

Fig. 1 illustrates how the beam resistance to shear and bending
deformations, i.e. ds and db, changes with the beam slenderness. In
the plot, curves of shear and bending deflection relative to the
beam deflection, d, are shown for steel and iron beams of the rect-
angle family.

The curves confirm that for 0 < H/L < 0.1, the stiffness of a pris-
matic beam is governed mainly by the bending strain. For rela-
tively slender beams with 0.1 < H/L < 0.2, the deflection due to
shear increases by no more than 10% of the beam deflection. How-
ever, for deep beams, where 0.2 < H/L < 1, the shear contribution is
no longer negligible because it is greater than 10%. For example, for
a depth-to-span ratio of 0.5, the shear contribution is approxi-
mately 40%.

The horizontally scaled layers class exhibits a variation of the
shear contribution with respect to H/L equivalent to that of the so-
lid rectangle. For the rectangles class of the proportionally scaled
layers, the impact of slenderness depends on the size of the open-
ing. The thinner the cross-section walls, the greater the shear
deformation. Furthermore, as expected, the impact of slenderness
for iron and steel is low, because the materials have similar prop-
erties. For example, stiffness contributions are equal at H/L = 0.566
and H/L = 0.589, respectively, for prismatic steel and iron beams.
On the other hand, a change of shape properties has a larger impact
on the stiffness contributions. Hollow cross-sections undergo a sig-



Fig. 1. Relative shear ds
d and bending db

d deformations versus H/L steel q = 7500 kg/
m3, E = 200 GPa, G = 75 GPa; iron q = 7100 kg/m3, E = 100 GPa, G = 42 GPa. Fig. 2. Efficiency ranges of the shape classes for pure shear stiffness.
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nificant shear deformation, which even for relatively slender
beams cannot be systematically neglected.

6. Performance indices for minimum mass

Based on the previous results, this section presents performance
indices of minimum mass for pure shear stiffness design and non-
uniform bending stiffness design.

6.1. Pure shear stiffness

In lightweight design, the minimum mass of a generic beam rel-
ative to that of a reference beam can be measured by a perfor-
mance index, p. Maximizing p results in minimizing mass.

Similar to the procedure followed for pure bending stiffness [9],
p is derived here for a pure shear stiffness requirement. The shape
and material properties of the reference prismatic beam, as well as
its mass, are assumed to be unity [9]. For prescribed shear stiffness,
length, load and boundary conditions, the performance index for
minimum mass of a generic beam, p, relative to the reference is gi-
ven by

p ¼ 1
m
¼ 1

uvq � wA
ð15Þ

where u = B/Bo and v = H/Ho are the envelope multipliers governing
the scaling of a generic cross-section with D(B,H) to the reference
rectangle Do(Bo,Ho).

Since in pure shear stiffness design k is specified, we write the
shear stiffness ratio of a generic beam, k, to the reference beam,
ko, as

k
k0
¼ GwSuv ¼ 1 ð16Þ

Rearranging Eq. (16) to substitute uv in Eq. (15) gives the fol-
lowing performance index:

ps ¼
G
q
� wS

wA
ð17Þ

Regardless of scaling, the performance in pure shear stiffness
design is governed only by shape and material properties. For
material selection, the shape is constant and p reduces to G

q,
whereas the performance for shape selection is given by

ks ¼
wS

wA
ð18Þ
where ks is the shear stiffness efficiency, analogous to that intro-
duced for bending [13]. Fig. 2 illustrates in a bar chart the ranges
of ks for the shape families. The bounds are obtained by calculating
the limit of ks for wA ? 0 and wA ? 1 for each shape class. Although
theoretical, because no manufacturing constraints and buckling
requirements are considered, the ranges help select lightweight
shapes in pure shear stiffness design. As expected, the best shape
class in pure shear stiffness is no longer the most efficient in pure
bending stiffness [13]. The vertically scaled shape class is indeed
the least efficient for pure shear stiffness regardless of the shape
family. On the other hand, the horizontally scaled layers classes
are the most efficient in shear stiffness. Among the families of Table
1, the diamonds are the most efficient, followed by the ellipses.

6.2. Non-uniform bending

In non-uniform bending, the shear stiffness is coupled with the
bending stiffness (Eq. (4)). A minimum mass criterion for the co-
selection of material, shape, and slenderness of a beam can be ob-
tained by combining Eq. (15) with (16). Hence, for a prescribed
envelope, beam stiffness and boundary conditions, the perfor-
mance p of a beam is given by

p ¼ 1
qwA

�
10aGþ bE � H=Lð Þ2
� �

� wI � wS

10aGwS þ bEwI � H=Lð Þ2
� � ð19Þ
7. Shape and material selection charts

Selection charts help to develop a visual understanding for the
optimum design of structures. Maps are presented here to ease
material, shape and slenderness co-selection in lightweight stiff-
ness design.

7.1. Pure shear stiffness design

Fig. 3 illustrates parametric plots of GwS versus qwA for beams
in pure shear. For a given envelope and increasing values, from 0
to 1, of the parameters c and d, the curves illustrate the resistance
of alternative shapes to deform under shear strain. In contrast to
pure bending, in pure shear the stiffness boundaries change. Not
all shapes of the ellipse and diamond families fall within curves
1 and 2; rather only the rectangles classes are included in the do-
main. For a given material, higher shear stiffness can be obtained



Fig. 3. Pure shear stiffness shape and material selection chart.
Fig. 4. Pure shear stiffness selection chart (log–log scale).

Fig. 5. Total beam stiffness shape and material selection chart (H/L = 10�4).

Fig. 6. Total beam stiffness shape and material selection chart (H/L = 0.2).
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from the ellipse and diamond families because of a more efficient
material distribution.

In pure shear stiffness, the upper and lower limiting curves of
the rectangle family describe the horizontally and vertically scaled
layers as opposed to those obtained in pure bending stiffness. For
the rectangle class of horizontally scaled layers, the shear stiffness
is linearly proportional to the amount of material, as was the case
for bending. However, for the proportionally scaled layers the per-
formance drops and becomes the lowest for vertically scaled lay-
ers. This class is the least efficient because the cross-section core
has no material to balance the maximum shear force.

Similar behaviors are observed for ellipse and diamond shapes.
However, the vertically scaled layers class for the ellipses and dia-
monds perform better than that of the rectangles. The reason is
that the former shapes allow material distribution close to the neu-
tral axis, where shear stress is maximum.

If the envelope is free to be scaled along prescribed directions,
graphical selection in pure shear stiffness can be conveniently per-
formed by using logarithmic charts. In this scenario, selection
guidelines describing the performance for a given scaling condition
are introduced in a way similar to bending. After taking the loga-
rithmic function and rearranging, their equation from Eq. (17)
can be written as

log GwS ¼ log qwA þ log p ð20Þ

In contrast to pure bending, in pure shear scaling does not im-
pact the mass-efficiency. For any scaling condition, the iso-perfor-
mance line has a slope equal to unity; the higher the y-intercept
the better the performance. As an example, Fig. 4 shows three par-
allel lines corresponding to p = 0.25, 0.5 and 0.75 for shape selec-
tion. For a prescribed shear stiffness requirement, shapes above a
line perform better than those below, regardless of the relative
scaling of the envelopes.

7.2. Non-uniform bending stiffness design

For stiffness design of beams under non-uniform bending, pure
shear stiffness is coupled with pure bending stiffness. With respect
to slenderness the shear deformation scales with a law different
than that for bending. For the former, deflection scales up linearly
with H/L; whereas for the latter with the cube of H/L.

For a given envelope, Figs. 5–7 illustrate the impact of varying
slenderness on the stiffness of the shape families and their classes.



Fig. 8. Superposition of FEA (‘‘+”) and model results for varying H/L.

Fig. 9. Superposition of FEA (‘‘+”) and model results for H/L = 0.2.
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Slenderness is assumed to be, respectively: H/L = 10�4, 2 � 10�1,
5 � 10�1 and, it is used with Eq. (19) to plot the performance for
steel and iron, chosen as sample materials.

In Fig. 5, the curves plotted for slender beams match those ob-
tained in previous works for pure bending [9,10,13]. Compared to
this case, Fig. 6 shows that for a relatively slender beam, the perfor-
mance of the most efficient shape in pure bending drops. For the
class of the vertically scaled layers, the best shape in bending is
the least efficient, since for this ideal shape the material does not
fill the core, where the shear stress is highest. Fig. 7 plots the beam
stiffness for beam with H/L = 0.5. As can be observed, the curves are
equivalent to those obtained for pure shear stiffness design (Fig. 3).

The charts presented in this work assist material and shape
selection for lightweight stiffness of short-thick and slender beams.
Through examination, insight can be gained into the impact of
slenderness on beam stiffness and structural performance.

8. Model validation

This section presents the numeric results obtained through fi-
nite element analysis (software package: ANSYS�) and compares
them to those predicted by the model presented in this paper.
The test case is that of a simply supported steel beam under a
mid-span load P = 1000 N. Cross-section dimensions are B =
0.1 m, H = 0.2 m, and material properties q = 7500 kg/m3,
E = 200 GPa, G = 75 GPa. The beams are modeled as beam elements
(BEAM189) that can capture flexural, torsional, shear effects as
well as warping effects. The numerical stiffness ratio (k/kD)ANSYS

for each tested beam is determined as

k=kDð ÞANSYS ¼ dD max ANSYS=dmax ANSYS ð21Þ

with data dD max ANSYS, for the envelope shape with c = d = 0 and
dmax ANSYS, for the shape with prescribed c and d.

Figs. 8 and 9 show FEA results obtained as Eq. (21) superim-
posed to the model plots. In Fig. 8, the vertically scaled rectangle
concept, with c = 0.99 and varying d is plotted for varying depth-
to-span ratios. On the other hand, Fig. 9 illustrates structural con-
cepts for the proportionally and vertically scaled layers of the rect-
angle family. In both cases, a good agreement is observed between
the model and numeric results. The errors vary in the percentage
range of 0.01–6.28. The reason of the discrepancy is due to the
beam element used in ANSYS�, which can also account for the
warping effect. However, the divergence is within an acceptable
range, especially for concept design. Similar results obtained for
Fig. 7. Total beam stiffness shape and material selection chart (H/L = 0.5).
the families of the ellipses and diamonds confirm that the model
is suitable for early optimization of beams under non-uniform
flexure.

9. Concluding remarks

This work extends a previous method for material and shape
selection for the stiffness design of a beam under non-uniform
bending. Cross-section size and shape, beam slenderness, and
material govern the minimum mass of a beam, designed to meet
a given stiffness requirement. The beam stiffness has been formu-
lated as a combination of bending and shear stiffness. Shape trans-
formers, introduced to model the pure shear correction factor, have
been obtained by applying the strain energy method and Castigli-
ano’s theorem to alternative shape concepts.

The results have been used to develop design maps and effi-
ciency bar charts that assist the co-selection of slenderness, shape
and material for optimizing the lightweight design of stiff beams
under non-uniform flexure. The results were validated by using fi-
nite element analysis to confirm that the model can be used
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appropriately at the concept stage of design, because the error falls
within 6%.
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