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Lumped Elastodynamic Model for MEMS:
Formulation and Validation
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Abstract—Proposed in this paper is a symbolic linearly
elastodynamic model for the analysis and synthesis of micro-
electromechanical system. In particular, the strain energy in the
compliant links is computed from the results of a previous work,
by representing beam deflections with small-displacement screws.
This allows for a systematic coherent approach based on screw
theory. Two case studies are proposed to illustrate the application
of the model. In the first example, the elastodynamic model of a
simple accelerometer is derived and compared to one available in
the literature. In the second example, a complex accelerometer is
modeled, fabricated, and tested. Comparison between the simu-
lated results and data from the literature or obtained experimen-
tally shows the accuracy of the proposed model. [2007-0287]

Index Terms—Accelerometer, analysis, compliant mechanism,
cross-axial motions, dynamics, mechanical systems, stiffness
matrix, synthesis.

I. INTRODUCTION

THE DEVELOPMENT of micromachining techniques
has led to the realization of more sophisticated

microelectromechanical-system (MEMS) devices (see [1] and
[2]). In most instances, the underlying mechanisms are modeled
numerically [3], either through finite-element methods [4] or
others, such as finite differences [5], relaxation methods [6], or
the rigid finite-element method [7]. These methods have been
incorporated to numerical-synthesis methods, among which
we may cite the ground-structure method [8], the load-path-
synthesis approach [9], and the homogenization method [10].
If these methods apply to a broad range of problems, each
solution gives information regarding the single problem that
corresponds to the chosen objective function, loads, constraints,
mesh, optimization domain, etc. Hence, these numerical meth-
ods tend to bury the physics of MEMS under the data. In con-
trast, when possible, a symbolic approach yields mathematical
relations that deepen the insight of the designer. This is thought
to be important, particularly at the early stage of the design
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process. Accordingly, the method proposed in this paper may be
regarded as a complement to numerical-synthesis methods. The
classical approach for the synthesis of compliant micromech-
anisms is to simplify the representation of the physical problem
by making a number of assumptions, which come at the expense
of model accuracy. As the proposed method targets the early
synthesis of MEMS, simplicity of application to a wide range
of design variants is thought to be more important than model
accuracy, leaving the final dimensional optimization to more
accurate numerical methods. Hence, several of the classical
assumptions of elastodynamic modeling will be adopted in the
formulation as follows.

Such assumptions are at the root of other symbolic models
for compliant MEMS. One instance of this is the replacement
of the compliant links with two or more rigid links articu-
lated with one or more kinematic pairs—generally prismatic
or revolute—constrained by translational or torsional springs.
This is the idea behind the pseudorigid-body model [11]–[13].
The main merit of this method is to be accurate over large
displacements while remaining relatively simple, thus allowing
for a symbolic approach. However, this method is difficult to
implement when it comes to arbitrary displacements in space.
Indeed, the pseudorigid-body model requires that the spring-
driven kinematic pairs be inserted at specific positions on the
compliant links of the mechanism. If that link is to deflect about
several directions and axes—in translation and rotation—then
several kinematic pairs need to be added in series at different
positions, which results in a complex kinematics model.

Another common assumption is that of small displacements
of the micromechanism rigid links from their reference poses,
which allows the linearization of their dynamics [14]. This
assumption is valid in most MEMS applications, since the small
displacements involved tend to affect important quantities such
as air friction, heat dissipation, and electrostatic forces but
generally have little effect on the inertia and stiffness properties
of the mechanism. Hence, the small-displacement assumption
will be adopted here.

From the foregoing observations, it would be interesting
to have a systematic method for deriving symbolically
the complete linearized elastodynamics of complex lumped-
compliance micromechanisms undergoing small displace-
ments. To this end, we resort to screw theory. We build
upon the work reported in [15], which describes the elastic
properties of beams by representing their deformations with
small-displacement screws. From these results, we are able to
compute the strain energy in a compliant link from the small-
displacement screw representing the relative displacement of
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Fig. 1. jth rigid link in its equilibrium pose and in a displaced pose.

the two rigid links it connects. The resulting model pertains to
the linear theory of elastodynamics [16] and should be relevant
to the analysis and synthesis of complex micromechanisms
(e.g., [2] and [17]).

Two examples are included to illustrate the application of
the proposed model. The first example treats the simple case of
the ADXL150, an accelerometer produced by Analog Devices;
comparison of the results obtained with those reported in [18]
is included. The second example addresses the elastodynamics
modeling of a complex micromechanism composed of 4 rigid
and 18 compliant links. The model obtained is compared with
experimental results.

II. DYNAMIC MODEL OF LUMPED-COMPLIANCE

MECHANISMS UNDERGOING SMALL DISPLACEMENTS

Since this is a lumped-parameter model, each component
of the flexible mechanism falls into one of two categories.
The first category gathers the m compliant links, which are
assumed to have no inertia and a given nonnull compliance in
all directions. The second category contains the n rigid links,
which are attributed a given inertia and no compliance.

Moreover, the compliant links are modeled as Euler–
Bernoulli beams, and all the rigid-link displacements are con-
sidered to be small. From this last assumption, the mass and
stiffness properties of the links are assumed to be constant, i.e.,
independent of the mechanism posture.

A. System Posture

Let us first define the fixed frame F and frame R′
j attached

to the jth rigid link, as shown in Fig. 1. Moreover, we define
frame Rj as coinciding with frame R′

j whenever the jth rigid
body lies in its equilibrium pose, designated its reference pose.
The origins of frames F , Rj , and R′

j are labeled as O, Rj , and
R′

j , j = 1, . . . , n, respectively, where Rj is chosen to lie at the
mass center of its corresponding rigid link.

The displacement taking F into Rj is described by the
pose array rj ≡ [θT

j ρT
j ]T, where θj ∈ R

3 is defined as the
product of the natural invariants [19] θj and dj of the associ-
ated rotation, and ρj ≡ −−→

ORj ∈ R
3. The natural invariants of a

rotation are the unit-vector dj pointing in the direction of its
associated axis, and its angle of rotation θj . In order to avoid
ambiguities, we use the right-hand rule in order to determine the
direction of the rotation around the screw axis, and we constrain
θj within a ball of radius π, i.e., 0 rad ≤ ‖θj‖2 ≤ π rad.
Notice that this leaves an ambiguity at ‖θj‖2 = π rad, since
in that case, θj and −θj yield the same rotation. However,
since we are using these parameters to describe postures of the
mechanism that are close to its static-equilibrium posture, this

ambiguity may be resolved a priori by the good judgment of
the designer.

Similarly, we define the pose of the jth rigid body with
respect to its equilibrium pose as

xj ≡
[
νT

j ξT
j

]T
(1)

where νj ∈ R
3 is the array of products of the natural invariants

for the rotation taking Rj into R′
j and following the same

convention as that used for θj ; moreover, ξj ≡ −−−→
RjR

′
j ∈ R

3.
Since the posture of the mechanism is fully described by the
poses of all the rigid links, we define the 6n-dimensional
posture array

x ≡ [ xT
1 xT

2 · · · xT
n ]T . (2)

B. System Kinetic Energy

For starters, we need an expression for the angular velocity
ωj of the jth link, which is known to be linear in the derivatives
of the linear invariants [19]. We start by computing rather
Ωj , the angular-velocity matrix of the jth link, defined as
the product QjQT

j , with Qj denoting the rotation matrix that
carries F into an orientation identical to that of Rj , making
abstraction of the translation of the origin. In fact, Ωj is
CPM(ωj), with CPM(·) denoting the cross-product matrix1 of
the 3-D Cartesian vector (·). Once Ωj is found, ωj is readily
derived as its axial vector2 vect(Ωj).

The expression for Qj in terms of the linear invariants is
recalled for quick reference [19]

Qj = djdT
j + cos θj

(
1 − djdT

j

)
+ sin θjCPM(dj)

in which one is the 3 × 3 identity matrix. Under the “small
displacement” assumption, θj is small enough so that cos θj ≈1
and sin θj ≈ θj ; the foregoing expression thus reducing to

Qj ≈ 1 + θjCPM(dj) ≡ 1 + CPM(θjdj) ≡ 1 + Nj (3)

where Nj ≡ CPM(vj).
Hence, the product QjQT

j , which yields Ωj , can be approx-
imated as

Ωj ≈ Nj

(
1 + NT

j

)
= Nj + NjNT

j . (4)

The first term of the foregoing expression is bilinear in the
natural invariants and their time derivative; the second is
quadratic in the former, linear in the latter. Under our “small-
displacement” assumption, then, we drop the second term and
end up with an approximation for Ωj involving only the first
term of the foregoing expression, whence the approximation of
ωj follows:

ωj ≈ νj , j = 1, . . . , n. (5)

1CPM(a) is defined as ∂(a × x)/∂x, for any a, x ∈ R
3.

2The axial vector vect(A) of a 3 × 3 matrix A is defined, for every 3-D
vector x, as the 3-D vector a for which (1/2)(A + AT)x ≡ CPM(a)x ≡
a × x.
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Fig. 2. ith compliant link attached to the jth rigid link. (a) Layout. (b) Detail
of the definition of Si(si).

Let us store the mass properties of the jth rigid link into its
associated inertia dyad [19]

Mj ≡
[
Ij O
O mj1

]
(6)

where mj is the mass of the jth rigid link, Ij is its inertia
matrix about point Rj , its mass center, and O is the 3 × 3
zero-matrix. As a result, the kinetic energy T of the system is
computed as

T =
1
2

n∑
j=1

ẋT
j Mjẋj =

1
2
ẋTMẋ (7)

where

M ≡




M1 O6×6 · · · O6×6

O6×6 M2 · · · O6×6
...

...
. . .

...
O6×6 O6×6 · · · Mn




will be referred to as the mass matrix of the mechanism.

C. System Potential Energy

Consider the ith compliant link that is clamped, at one end,
to the jth rigid link and, at the other end, to the kth rigid link,
with j < k. From the free-body diagram of the ith compliant
link shown in Fig. 2(a), we see that the wrench vi ∈ R

6 applied
at the mass center Rj by the jth rigid link onto the ith compliant
link has to be balanced out by wrench ui(si) ∈ R

6 applied
at point Si(si), where si is a curvilinear coordinate along
the beam neutral axis. The wrenches are defined so that their
reciprocal product with the small-displacement screws, defined
in (1), is dimensionally meaningful. Therefore, the first three
components of the wrench represent a moment, whereas the last
three represent a force; the latter applied at the corresponding
mass center, where the wrench is defined. Let us attach frame
Si(si) with axes XS,i, YS,i, and ZS,i to the beam cross section
at si, as shown in Fig. 2(b). Frame Si(si) is defined so as to have
its XS,i-axis tangent to the beam neutral axis and pointing in the
positive direction of si, and its YS,i- and ZS,i-axes along the
principal directions of the cross section. Let τ i(si) be the array
of products of the natural invariants of the rotation taking frame
Rj into frame Si(si), following the same convention as that
used for θj , and σi(si) ∈ R

3 be the vector moving point Rj

into Si(si). We regroup these two arrays in the cross-sectional
pose array

si(si) ≡
[
τ i(si)T σi(si)T

]T ∈ R
6. (8)

Furthermore, let us define Σi ≡ CPM(σi) and Ti ≡
CPM(τ i).

The strain energy in a beam element of length dsi starting
at coordinate si and ending at coordinate si + dsi is computed
as [15]

dUi(si) =
1
2

[ui(si)]
T
S,i Hi(si) [ui(si)]S,i dsi (9)

where [·]S,i indicates that the quantity (·) is expressed in frame
Si and with respect to its origin Si. Matrix Hi(si) ∈ R

6×6, in
turn, contains the properties of the cross section. This matrix is
defined according to the strain-energy formulas for beams [20]

Hi(si) ≡ diag
(

1
GiJi

,
1

EiIY,i
,

1
EiIZ,i

,
1

EiAi
,

αY,i

GiAi
,

αZ,i

GiAi

)
(10)

where E and G are the Young and the shear moduli, respec-
tively; IY,i, IZ,i, and Ji are the YS,i-axis moment of inertia,
the ZS,i-axis moment of inertia, and the torsional modulus
of the beam cross section, respectively3; Ai is the area of
the cross section; and αY,i and αZ,i are the shearing-effect
coefficients for the YS,i- and ZS,i-directions, respectively. No-
tice that all these parameters are functions of the curvilinear
coordinate si.

In the sequel, we shall need the adjoint representation of the
Euclidean group [21], which maps linearly the associated Lie
algebra onto itself. In the case of the cross-sectional pose-array
screw si(si), we obtain

Si ≡
[

eTi(si) O3×3

Σi(si)eTi(si) eTi(si)

]
(11)

which leads to the following expression of wrench vi in frame
Si, namely,

[ui(si)]S,i = −[vi]S,i = −ST
i [vi]R,j (12)

where the first equality was obtained from the equilibrium in
the free-body diagram of Fig. 2(a). Upon substituting (12) into
(9) and integrating over the length of the ith compliant link, we
obtain the strain energy as

Ui =
1
2
[vi]TR,jBi[vi]R,j (13)

where

Bi ≡
li∫

0

Si(si)Hi(si)Si(si)T dsi

and li is the length of the ith compliant link. It will prove useful
to express all wrenches vi in the same reference frame F .

3IY,i, IZ,i, and J are defined with respect to the centroid of the cross section.
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To do this, we will need the adjoint representation of the
Euclidean group that corresponds to the rigid-body motion
taking frame F into frame Rj , namely,

Rj ≡
[

eΘi O
Υie

Θi eΘi

]
(14)

where Θi ≡ CPM(θi) and Υi ≡ CPM(ρi). Hence,

[vi]R,j = RT
j [vi]F (15)

and the total strain energy—or potential energy, for that
matter—of the system becomes

U =
m∑

i=1

Ui =
m∑

i=1

1
2
[vi]TFRjBiRT

j [vi]F . (16)

For the sake of conciseness, let us rewrite this expression as

U =
1
2
[v]TFB[v]F (17)

where B is a block-diagonal matrix, namely,

B ≡ diag
{
Rj1B1RT

j1
,Rj2B2RT

j2
, . . . ,Rjm

BmRT
jm

}m

i=1

with ji taking the value of the smallest index among those
of the two rigid links that are connected to the ith compliant
link, and

[v]F ≡
[
[v1]TF [v2]TF · · · [vm]TF

]T
.

Upon writing the static equilibrium of the wrenches acting
on the jth rigid link, we obtain

[wj ]Rj
−
∑
i∈C+

j

[vi]Rj
+
∑
i∈C−

j

[vi]Rj
= 06 (18)

where 06 is the 6-D zero-vector and C+
j is the set of the indexes

of the compliant links that are connected to the jth rigid link
and to another rigid link that has an index greater than j, while
C−

j is the set of the indexes of the compliant links that are
connected to the jth rigid link and to another rigid link that
has an index smaller than j. We substitute (15) into (18) and
solve for [wj ]Rj

, which leads to

[wj ]Rj
= RT

j


∑

i∈C+
j

[vi]F −
∑
i∈C−

j

[vi]F


 . (19)

In order to simplify the notation, we define the arrays v and
w of compliant- and rigid-link wrenches, respectively, i.e.,

[v]F ≡




[v1]F
[v2]F

...
[vm]F


 [w]R ≡




[w1]R,1

[w2]R,2

...
[vn]R,n


 . (20)

Accordingly, we may rewrite (19) in the more convenient form

[w]R = RTA[v]F (21)

where R ≡ diag{R1,R2, . . . ,Rn} ∈ R
6n×6n, while

A ≡




A11 A12 · · · A1m

A21 A22 · · · A2m
...

...
. . .

...
An1 An2 · · · Anm


 ∈ R

6n×6m. (22)

Moreover

Aji =




O6×6 if compliant-link i is not connected
to rigid-link j

16×6 if compliant-link i is connected to
rigid-links j and k, with j < k

−16×6 if compliant-link i is connected to
rigid-links j and k, with j > k.

This allows the introduction of the potential energy of the ex-
ternal wrenches as a function of the internal wrenches, namely,

Π = −[w]TR[x]R = −[v]TFATR[x]R. (23)

For a linearly elastic system, the potential energy V and the
complementary potential energy V take the same value, which
is the sum of the strain energy and the potential energy, namely,

V = V = U + Π = (1/2)[v]TFB[v]F − [v]TFATR[v]R.
(24)

The internal wrenches v are computed from the minimization
of the potential energy V for given displacements x of the rigid
links. This follows from the second theorem of Castigliano. The
partial derivative of V with respect to the internal wrenches
yields

∂V

∂[v]F
= B[v]F − ATR[x]R (25)

whereas the Hessian yields

∂2V

∂[v]2F
= B. (26)

One may readily verify, from (17), that B is symmetric positive-
definite, and therefore, all stationary points v of V are minima.
Matrix B being nonsingular, ∂V /∂[v]F of (25), admits one
single root, namely,

[v]F = B−1ATR[x]R. (27)

Upon substituting (21) into the foregoing equation, we obtain

[w]R = K[x]R, where K ≡ RTAB−1ATR. (28)

The potential energy can now be written as a function of the
system posture x, namely,

V = (1/2)vTKx. (29)

D. Dissipated Energy

Damping in MEMS is known to be the result of a variety
of phenomena (e.g., air damping, clamp losses, thermoelastic
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dissipation, and crystallographic defects) that are generally
nonlinear functions of the system posture x and its derivative ẋ.
However, for small displacements x and a narrow bandwidth,
it is often possible to linearize these functions around the
operating point of the mechanical system. In the case of non-
linear damping, the resulting ordinary differential equation is
not likely to admit a closed-form solution. In the analysis that
follows, we decided to restrict ourselves to applications where
observable-damping phenomena may be linearized around the
operating point of the system. Moreover, it is assumed that
damping acts on the rigid links alone, which allows us to define
the Rayleigh dissipation function

P = (1/2)ẋTCẋ (30)

where C ∈ R
n×n is, at least, positive-semidefinite and contains

the system damping coefficients.

E. Dynamic Model of the Compliant Mechanism

The Lagrangian of the mechanism is readily computed as

L ≡ T − V = (1/2)ẋTMẋ − (1/2)xTKx (31)

and its associated Lagrange equations are

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= −∂P

∂ẋ
+ w (32)

where

Mẍ + Kx = −Cẋ + w (33)

which is the mathematical model sought. As the mass matrix is
bound to be symmetric and positive-definite, we can compute
its Cholesky decomposition as M = LLT. This allows us to
rewrite (33) in its monic representation [22] by performing the
change of variable z = LTx, namely,

z̈ + ∆ż + Ω2z = L−1w (34)

where ∆ ≡ L−1CL−T is the dissipation matrix and Ω2 ≡
L−1KL−T is the square of the frequency matrix of the un-
damped compliant mechanism.

Let µi and µi, i = 1, . . . , n, be the eigenvalues and eigen-
vectors of Ω2, respectively; the former being identical to the
natural frequencies squared, the latter linear transformations of
the modal vectors of the undamped system of (34). That is, if we
let λi and λi be the natural frequencies and the modal vectors
of the undamped nonexcited system [(33)], then

λi =
√

µi

λi =L−Tµi, i = 1, . . . , n. (35)

Let us pursue this analysis by computing the Laplace-domain
transfer function H(s), which maps the input wrenches w
acting on the rigid bodies onto the system states x, and where s
is the variable of the Laplace domain. From (33), we have

H(s) = L−T(16n×6ns2 + ∆s + Ω2)−1L−1. (36)

Fig. 3. Analog Devices ADXL150.

Fig. 4. Mechanical structure of ADXI 150.

In the balance of this paper, the proposed mathematical model
is applied to two MEMS devices. The ensuing estimates of the
dynamic properties are then compared against those obtained
from other methods.

III. ANALYSIS OF A SIMPLE CASE: THE ADXL150
ACCELEROMETER FROM ANALOG DEVICES

Even though it is now replaced with the ADXL78, the
ADXL150 accelerometer from Analog Devices has been a
reference for accelerometer designers [18]. Because of that,
its properties are known, and it is thus a good starting point
to validate the proposed mathematical model and to show its
usefulness. The ADXL150 has a range of action of ±50g. It
is fabricated using surface-micromachining techniques, which
allows for a size as small as 753 × 657 µm, which can be
appreciated from Fig. 3.

The ADXL150 is a uniaxial accelerometer, and hence, its
stiffness should be much lower along its sensitive axis than
along any other direction. To verify this, we analyze the me-
chanical structure of the device, which is shown in Fig. 4.
In this sketch, the thickness t of the compliant mechanism is
measured in the direction orthogonal to the plane of the figure.
The compliant legs are numbered in encircled numerals from
one to four, whereas the only rigid link of this mechanism is the
proof mass itself, which is thus labeled with number one, in a
square.

The dimensions are recorded in Table I, as taken from [18],
except for b, which was estimated from Fig. 3. Frames F
and R1 are defined as shown in Fig. 4, with their X-axes
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TABLE I
DIMENSIONS OF THE ADXL150 ACCELEROMETER

TABLE II
SCREWS si(si), i = 1, 2, 3, 4

along the accelerometer sensitive axis—represented here by a
dashed line—and with their Y -axes in the plane of the wafer
surface. We take those frames to be right-handed, and so, their
Z-axes stem out of the plane of the wafer surface. Moreover, the
origins O and R1 of these two frames are located at the proof-
mass centroid. Hence, apparently, frames F and Rj are chosen
to be identical, which simplifies subsequent calculations. The
material of the flexible mechanism is polysilicon, which has
a Young modulus E = 160 GPa, a Poisson ratio ν = 0.2,
and a density ρ = 2331 kg/m3. The mass matrix M of the
mechanism is the mass matrix of the proof mass as defined in
(6). The corresponding inertia matrix is estimated to be

[I1]F =[I1]R,1 =


 0.5586 0 0

0 3.088 0
0 0 3.647


× 10−18 kg · m2

(37)

from a computer-aided-design (CAD) model of the proof mass
that included its 54 electrodes, whereas the mass is taken to be
m1 = 2.2 × 10−10 kg, the same value as that used by [18]. This
allows the evaluation of the kinetic energy from (7).

On the other hand, calculating the potential energy requires
the definition of the additional frames Si(si), i = 1, 2, 3, 4. This
can be done through the definition of their associated screws
si(si), i = 1, 2, 3, 4, which take frame R1 into their respective
frames Si(si), i = 1, 2, 3, 4. Because the compliant links
exhibit discontinuous neutral axes, these screws are defined as
piecewise functions, as detailed in Table II.

The beam cross section remains constant in all the compliant
links, and therefore, from the numerical data of Table II,

TABLE III
MODAL ANALYSIS OF THE ADXL150 ACCELEROMETER

we obtain

Ji = βht3 = 3.37 × 10−24m4, with β = 0.1685
IY,i = t3h/12 = 1.67 × 10−24m4

IZ,i = h3t/12 = 2.60 × 10−24m4

Ai = ht = 5.00 × 10−12m2

αY,i = αZ,i = 6/5. (38)

Since frames F and R1 are coincident, we have

R = R1 = 16×6 (39)

and because the four compliant links connect the fixed rigid link
to the only mobile rigid link, we may assign

A = [−16×6 −16×6 −16×6 −16×6 ] (40)

where the minus sign comes from the assumption that the fixed
rigid link corresponds to the index j = 0. From (28), we obtain
directly

K = diag(2.87 × 10−8, 1.94 × 10−7,

1.61 × 10−5, 5.16, 268, 3.17) (41)

whose first three entries bear units of newton meters per radian,
the last three of newtons per meter. The fourth diagonal term
in (41) represents the stiffness of the mechanism along the
accelerometer sensitive axis. The value reported in [13] for the
same dimensions was 5.6 N/m, but this did neither take into
account the deflection of the shorter intermediate straight beams
in each leg, i.e., the beams with a length of b = 10 µm, nor the
shear strain in any of the beams. According to [18], the actual
value measured by Analog Devices is 5.4 N/m. Hence, in this
paper, the proposed model appears to be accurate.

The frequency matrix can thus be computed from its defini-
tion, in (34), which yields

Ω = diag(2.27 2.51 21.0 1.67 12.0 1.31) × 105 rad/s
= diag(36.1 39.9 335 24.4 176 19.1) kHz.

Apparently, the frequency matrix is diagonal, which allows for
the extraction of its eigenvalues and eigenvectors by simple
inspection. For the sake of clarity, these values are listed in
Table III, in ascending order.

A natural frequency of 24.7 kHz is reported in [18] in the
direction of the accelerometer sensitive axis, which is somewhat
larger than the 24.4 kHz obtained here. The reason behind this
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is the different stiffness estimate which, in the case of [18],
did not take into account the shear strain nor the compliance
of the intermediate beam in each leg of the ADXL150. There is
a relatively large difference between the fundamental frequency
and that of the mode in the direction of the accelerometer
sensitive axis, as compared to the small difference of the former
with that of a translational out-of-plane motion of the proof
mass, which may surprise anyone who is not familiar with
MEMS design. Indeed, at this scale, the damping due to the
squeezed film of air between the proof mass and the substrate
is extremely high in that direction, which prevents this parasitic
motion from becoming significant at high frequencies.

To substantiate this claim, let us estimate the damping in
the system by assigning some values to matrix C defined in
(30). Here, we consider only the damping that is due to air
friction beneath the proof mass and between the electrodes.
Moreover, even though it may be just as high as the damping
due to proof-mass translations, we neglect air damping due to
proof-mass rotations. This choice is mainly justified by virtue
of correspondence of the lowest frequencies of the system to
those of the translational proof-mass motions; the choice can
also be justified by the level of complexity associated with
the modeling of the air flow around a rotating plate close to
a flat surface. Indeed, the air flow beneath the proof mass
induced by in-wafer-plane translations may be modeled as a
simple Couette4 flow, whereas the air flow produced by out-
of-wafer-plane translations may be assimilated to a Poiseuille5

flow [18]. Moreover, as a rough approximation, we consider
the flow between the electrodes as well as when the proof mass
translates in the X-axis direction to be of the Poiseuille type;
we consider a Couette flow when the proof mass translates in
the Y -axis direction. As a result, we have

C = diag
{
0, 0, 0, η(L − 2b)w/c + 108 × 96ηlt3/(π4d3),

η(L − 2b)w/c + 108ηlt/d, 96η(L − 2b)w3/(π4c3)
}

(42)

i.e.,

C = diag{0, 0, 0, 1.107 × 10−6,

0.629 × 10−6, 259.858 × 10−6}N · s/m (43)

where c = 1.6 µm is the gap between the proof mass and
the chip, d = 1.3 µm is the gap between two electrodes, and
η = 18 × 10−6 Pa · s is the dynamic viscosity of air.

The associated matrix transfer function is computed from
(36). In the case of an accelerometer, the array of rigid-link
external wrenches w defined in (20) may be regarded, from
d’Alembert’s principle, as an array of inertial wrenches. More-
over, if we assume that the instant screw axis of any motion
of the accelerometer frame lies at infinity, which is reasonable
for a small mechanical system, we can neglect the angular
velocity and write w as a linear function of the twist time-
derivative a of the accelerometer frame. Hence, the acceleration

4A Couette flow is a laminar flow of an incompressible Newtonian fluid
induced by the relative motion of the two parallel planes in relative translation
that contain the fluid [23].

5A Poiseuille flow is a laminar flow of an incompressible Newtonian fluid in
a pipe [23].

Fig. 5. Frequency response of the ADXL150. (a) Magnitude. (b) Phase.

field of the accelerometer frame is approximated by a helical
field represented by screw a, which is formed with the angular
acceleration of frame F with respect to an inertial frame, and
the acceleration of its origin O with respect to a fixed reference
point, both expressed in the accelerated frame F . Symbolically,
we obtain

w = −MRTTa (44)

where T ≡ [16×6 16×6 · · ·16×6]T.
Let us now label ξX , ξY , and ξZ , the components of the

position of the proof-mass position vector ξ1, and aX , aY ,
and aZ , the components of a. We also define unit vectors
e4 ≡ [0T

3 1 0T
2 ]T, e5 ≡ [0T

4 1 0]T, and e6 ≡ [0T
5 1]T,

which lets us write the input–output relationships

hX(s) ≡ ξX(s)/aX(s) = −eT
4 H(s)MRTTe4 (45)

hY (s) ≡ ξY (s)/aY (s) = −eT
5 H(s)MRTTe5 (46)

hZ(s) ≡ ξZ(s)/aZ(s) = −eT
6 H(s)MRTTe6. (47)

We compute the complex frequency responses hX(ω), hY (ω),
and hZ(ω) of the proof mass to transverse accelerations by
evaluating the corresponding transfer functions at ω

√
−1,

where ω is the input frequency. Upon computing the magni-
tudes and phase angles of these complex functions, we obtain
the Bode plots shown in Fig. 5.

From the magnitude-versus-frequency plot shown in
Fig. 5(a), we see that the accelerometer response to Z-axis
accelerations is overdamped, whereas the responses to in-wafer
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Fig. 6. CAD model of the SBA.

Fig. 7. Package microfabricated SBA.

plane accelerations are underdamped. Nevertheless, the out-
of-wafer-plane motion can still pose problems when the proof
mass is subjected to low-frequency accelerations (e.g., gravita-
tional or centripetal) along the Z-direction of frame F . Indeed,
cross-axis sensitivity is the highest source of errors (±2% of the
full-scale range, i.e., 1g) for the ADXL150 accelerometer.

IV. ANALYSIS OF A COMPLEX CASE: THE SBA

Let us now turn our attention toward a more complex me-
chanical architecture, that of the simplicial biaxial accelerome-
ter (SBA) [24], which is shown in Fig. 6. The proof mass of this
accelerometer takes the shape of a regular triangle. This triangle
is suspended at each of its edges by a pair of distal beams, which
connects at its other ends to an intermediate rigid link. In turn,
this rigid link is suspended by four proximal beams perpendic-
ular to their corresponding pair of distal beams, which connect
to the accelerometer frame at their other ends. As a result, this
mechanism is compliant to proof-mass translations in the wafer
plane, while offering high stiffness to proof-mass rotations and
translations out of the wafer plane. The equilateral triangular
geometry of the SBA resembles that of the HexFlex [25] while
resulting in a completely different mechanical behavior. If the
SBA allows for in-plane translations of its moving platform, the
HexFlex allows for any displacements of its moving platform in
space. Moreover, in the case of the SBA, the moving platform
serves as an acceleration sensor, whereas the HexFlex moving
platform is actuated through its supporting legs. A prototype of
the packaged microfabricated device is shown in Fig. 7.

For the purpose of this analysis, a top view of the SBA is
shown in Fig. 8, where each link is labeled with a number
appearing in a circle for a compliant link and in a box for a
rigid link. Table IV lists the numerical values of the dimensions
shown in Fig. 8 as well as the numerical value of the device
wafer thickness t.

Fig. 8. Dimensions of the SBA.

TABLE IV
DIMENSIONS OF THE SBA

A. Kinetic Energy

Frames Rj , j = 1, . . . , n, n = 4, are located at the mass
centers of their corresponding rigid links and oriented so that
screws rj , j = 1, . . . , n, take the values as shown at the bottom
of the next page, where

f ≡ (b + c)(be2 − 2d3 + 3bd2 + 6bde − 6de2) − 2e2c2

3(b + c) (e(b − c) + 2d(b − d))
.

The mass properties of the rigid links are computed from a CAD
model, which yields

m1 =m2 = m3 = 1.387 × 10−3 kg

m4 = 30.25 × 10−3 kg

[I1]R, 1 = [I2]R,2 = [I3]R,3

= diag(0.1456 0.4656 0.5904) × 10−9 kg · m2

[I4]R,4 = diag(12.63 12.63 252.1) × 10−9 kg · m2.

The mass matrix is evaluated directly from these numerical
values and the definition of (7).

B. Potential Energy

Upon defining the lengths g ≡ b/2 + L and h ≡
√

3a/6 +
l + e, screws si, i = 1, . . . , m, m = 18, are evaluated as the
second set of equations shown at the bottom of the next page.

Turning our attention to the elastostatic properties of the
compliant links, we realize that the beams are not all identical
in that respect, since silicon crystal is an anisotropic material.
The axes of the cubic crystal correspond to the axes of frame F
shown in Fig. 8. As a result, the Young moduli Ei and the shear
moduli Gi, i = 1, . . . , m, are not all equal, depending on the
orientation of their corresponding compliant link with respect
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to the crystal axes. Because of the symmetry in the crystal,
we have

Hi =diag
(

1
G⊥J

,
1

E⊥IY
,

1
E⊥IZ

,
1

E⊥A
,

αY

G⊥A
,

αZ

G⊥A

)
(48)

for i = 1, . . . , 6, and

Hi =diag
(

1
G∠,T J

,
1

E∠IY
,

1
E∠IZ

,
1

E∠A
,

αY

G∠,Y A
,

αZ

G∠,ZA

)
(49)

for i = 7, . . . , 18, where the ⊥ subscript refers to the beams
that are at 0◦ or 90◦ from a crystal axis, and the ∠ subscript
refers to the beams that are at 30◦ or 60◦ from a crystal axis.
Because of material anisotropy, two distinct shear moduli are
associated with the cross sections that are not orthogonal to
one of the crystallographic axes. These moduli, which we label
G∠,Y and G∠,Z , correspond, respectively, to the directions of
the YS,i- and ZS,i-axes of the cross-sectional frames Si(si),

i = 7, . . . , 18. Moreover, in this model, we neglect any cou-
pling between torsion and bending due to the distinct shear
moduli in compliant links i = 7, . . . , 18. In fact, to avoid over-
complicating the problem, we define the section shear modulus
in torsion as the average of the two actual shear moduli of the
section, i.e.,

G∠,T ≡ (G∠,Y + G∠,Z)/2. (50)

This saves us from resorting to a modified Saint–Venant
method, which would require the solution of a partial differ-
ential equation of the form

G∠,Y
∂2φ(y, z)

∂y2
+ G∠,Z

∂2φ(y, z)
∂z2

= 0 (51)

where φ(y, z) represents the warping of the beam cross sec-
tions. Hence, in the case of pure torsion, we consider the
material to be isotropic with a shear modulus of G∠,T .

r1 =
[
0T

4 −
√

3a/6 − l − f 0
]T

r2 =
[
0T

2 2π/3 (a/2 +
√

3l +
√

3f)/2 (
√

3a/6 + l + f)/2 0
]T

r3 =
[
0T

2 −2π/3 −(a/2 +
√

3l +
√

3f)/2 (
√

3a/6 + l + f)/2 0
]T

r4 = 06

s1 = [0 0 π g − d − s1 −h − d 0]T

s2 = [0 0 π g − s2 −h 0]T

s3 = [0 0 π/2 c/2 s3 −
√

3a/6 − l 0]T = s9 = s15

s4 = [0 0 π/2 −c/2 s4 −
√

3a/6 − l 0]T = s10 = s16

s5 = [0 0 0 s5 − g −h 0]T

s6 = [0 0 0 s6 + d − g −h − d 0]T

s7 =
[
0 0 −π/3

√
3(h + d)/2 − (g − d − s7)/2 (h + d)/2 +

√
3(g − d − s7)/2 0

]T
s8 =

[
0 0 −π/3

√
3h/2 − (g − s8)/2 h/2 +

√
3(g − s8)/2 0

]T
s11 =

[
0 0 2π/3

√
3h/2 + (g − s11)/2 h/2 −

√
3(g − s11)/2 0

]T
s12 =

[
0 0 2π/3

√
3(h + d)/2 + (g − d − s12)/2 (h + d)/2 −

√
3(g − d − s12)/2 0

]T

s13 =
[
0 0 π/3 −

√
3(h + d)/2 − (g − d − s13)/2 (h + d)/2 −

√
3(g − d − s13)/2 0

]T
s14 =

[
0 0 π/3 −

√
3h/2 − (g − s14)/2 h/2 −

√
3(g − s14)/2 0

]T
s17 =

[
0 0 −2π/3 −

√
3h/2 + (g − s17)/2 h/2 +

√
3(g − s17)/2 0

]T
s18 =

[
0 0 −2π/3 −

√
3(h + d)/2 + (g − d − s18)/2 (h + d)/2 +

√
3(g − d − s18)/2 0

]T
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TABLE V
CROSS-SECTIONAL PROPERTIES OF THE

COMPLIANT LINKS OF THE SBA

Fig. 9. Squeezed-film damping of the SBA proof mass.

The numerical values of the foregoing elastic properties are
given in Table V, as reported in [26]. The geometric prop-
erties of the beam cross sections, also gathered in Table V,
were computed from the formulas J = βwt3, with β = 0.258,
IY = wt3/12, IZ = w3t/12, and A = wt, whereas the shear
correction factors are αY = αZ = 6/5 for rectangular cross
sections [27]. This permits the computation of the stiffness
matrix as defined in (28).

C. Dissipated Energy

It is assumed that all energy dissipation comes from air
friction within the 2.5-µm gap between the proof mass
and the handle wafer. Following the same method as in
Section III, a Couette flow is assumed for in-wafer-plane proof-
mass translations, while the air flow produced by proof-mass
rotations and other rigid-link displacements are neglected. As in
Section III, we may yet assume that an out-of-wafer-plane
proof-mass translation generates a Poiseuille flow beneath it,
but the triangular geometry of the proof mass prevents us from
using the solution for rectangular plates. In order to obtain
a rough estimate, let us assume a Poiseuille airflow beneath
the proof mass that is orthogonal to the closest triangle edges,
as shown in Fig. 9. Consider now the small element of area
underneath the proof mass that has a width dq and a total
length of a/

√
3 − y, where y is the coordinate of the element

intersection with the Y -axis. We may assume that the damping
due to this small element is given by the formula for rectangular
plates that have one side much larger than the other [18], i.e.,

dcZ = 96η(dq)(a/
√

3 − y)3/(π4p3) (52)

where p = 2.5 µm is the gap between the proof mass and the
handle wafer. Projecting the element width dq onto the Y -axis
yields the relation dq =

√
3dy/2, which, upon substitution in

(52), allows for a summation over the upper branch of the
triangular proof mass that leads to the integral

cZ/3 =
48
√

3η

π4p3

a/
√

3∫
0

(a/
√

3 − y)3dy

=
48
√

3η

π4p3

a/
√

3∫
0

y3dy

where

cZ =
4
√

3ηa4

π4p3
(53)

thereby obtaining the desired result.
As the result, matrix C of (30) takes the symbolic and

numeric values

C = diag
([

0T
21 ηA4/p ηA4/p 4

√
3ηa4/(π4p3)

]T)
C = diag

([
0T

21 3.12 × 10−4 3.12×10−4 8.19×102
]T)

× N · s/m.

D. Estimated Dynamics

The first modes of the SBA are computed from (35), which
yields the results of Table VI. Because of the 24 DOF of
the compliant mechanism, these results are somewhat more
intricate. The first two frequencies differ only by round-off
error, their associated modes involving motions of all four rigid
links. For acceleration measurement, we are interested only in
proof-mass motions, which are represented here by vector λi,4.
Apparently, from Table VI, the first two modes correspond to
in-wafer-plane motions of the proof mass, with, in one case, a
parasitic in-wafer-plane rotation. This parasitic motion is not
due to round-off errors but rather to silicon anisotropy. One
must bear in mind, however, that the rotational component of
λi,4 is expressed in radians, whereas the translational com-
ponent is expressed in meters. Hence, for instance, a 100-µm
displacement of the proof mass along the direction of the first
mode results in a parasitic rotation of 7.88 rad or to relative
position errors of the vertices of the proof mass of 0.788 µm.
This result is thought to be acceptable; we may safely say
that the fundamental frequency corresponds now to the two
sensitive directions. In turn, the third natural frequency appears
to be dominated by rotations, except for a small nonnull value
at the Z-axis translational direction of the proof mass. In fact,
mode λ3 may be visualized as a rotation of the proximal rigid
links about their associated Xi-axes—which are parallel to
their corresponding edge of the triangular proof mass—and
a translation—for the most part—of the proof mass along
the Z-axis. Hence, we see that the natural frequency of the
parasitic out-of-wafer-plane motion is now higher than that
of the sensitive axes, which is, apparently, an advantage of
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TABLE VI
MODAL ANALYSIS OF THE SBA

the SBA mechanical architecture over that of the ADXL150
accelerometer.

In order to evaluate the effect of damping over the
accelerometer, matrix H(s) is computed according to (36). As
in Section III, we apply d’Alembert’s principle of inertia forces
to the dynamic system, taking the inertia forces acting on the
rigid links as input forces of (33), the outputs are the proof-
mass displacements. In particular, upon applying successively
pure accelerations along the X-, Y -, and Z-axis directions, we
obtain the complex frequency responses hX(ω), hY (ω), and
hZ(ω), respectively, of translations of the proof mass in each
of these directions. The magnitudes and phase angles of these
frequency responses are shown in the Bode plots of Fig. 10.
The lower sensitivity of the proof-mass displacements to
Z-axis accelerations than to the X- and Y -axis accelerations
is confirmed from Fig. 10(a). One may also observe a good
isotropy for in-wafer-plane accelerations and a bandwidth of
approximately 100 rad/s.

E. Measured Dynamics

The mechanical structure of the SBA was tested by applying
to it short impulse accelerations in the negative direction of
its Z-axis, as shown in Fig. 8. The “free” resonations of the
structure were then recorded using a vibrometer. A schematic

Fig. 10. Frequency response of the SBA. (a) Magnitude. (b) Phase angle.

and a picture of the test bench are shown in Fig. 11. In this
setup, the shaker (Brüel and Kjaer Mini-Shaker 4810) is driven
by a regular sound amplifier (Harman Kardon HK3300), which,
itself, takes its input from a signal generator. A typical time-
history of the shaker impulse input voltage is shown in Fig. 12.
The resulting motions of the SBA rigid links are recorded by
the vibrometer (Polytec PSV-400), which sheds a laser beam
vertically down on the sample. The laser beam is programmed
to scan 382 points on the SBA, according to the mesh shown
in Fig. 13. Point velocities are measured by the vibrometer, and
thence, a frequency-domain distribution of the point velocities
of the accelerometer architecture is computed and recorded by
the controller (Polytec OFV–5000).

The Polytec controller returns a frequency-domain distribu-
tion of the velocities of the scanned points {Sj}382

j=1, along with
their phase correspondence with a reference signal. As shown in
Fig. 11(a), in the test bench, the shaker input voltage was used
as the reference signal. From these results, the complex velocity
frequency response vj(ω) of each point may be computed.

The point-displacement frequency response dj(ω) may then
be obtained as

dj(ω) = vj/(ωi) (54)

where i ≡
√
−1. On the other hand, point-acceleration fre-

quency response aj(ω) is given by

aj(ω) = ωivj . (55)
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Fig. 11. SBA test bench. (a) Schematic representation. (b) Photograph.

Fig. 12. Typical voltage impulse applied at the shaker input.

Fig. 13. Points scanned by the vibrometer.

Let us now define the sets F and P of the indexes of the points
pertaining to the accelerometer frame and proof mass, respec-
tively, as shown in Fig. 13. From this, we may reference the
proof-mass point-displacement response magnitudes with the

Fig. 14. Comparison between the SBA model and the experimental results.
(a) Magnitudes. (b) Phase angles.

rms value of the frame point-acceleration response magnitudes.
This yields the normalized displacements

d̄j(ω) =
dj(ω)√

1
n

∑
k∈F |ak(ω)|2

j ∈ P (56)

where n is the cardinality of F . Finally, we obtain an overall
magnitude response of the proof mass by taking the rms value
of the displacements of its 60 scanned points. Symbolically,
we have

d̄rms(ω) =
√

1
m

∑
j∈P

∣∣d̄j(ω)
∣∣2 (57)

where m = 60 is the cardinality of P . On the other hand, the
meaning of an overall phase diagram of the proof-mass point
displacements is less apparent, and therefore, it was decided
to leave them separate. Hence, the phase angle φ̄j(ω) of point
j ∈ P is readily computed as

φ̄j = arctan

[
�
{
d̄j(ω)

}
�
{
d̄j(ω)

}
]

. (58)

The resulting frequency response is shown in Fig. 14(a) and
(b), along with the modeled frequency response, which was
already shown in Fig. 10. Notice that the 60 phase angles φ̄j ,
j ∈ P are shown in Fig. 14(b). As shown in these figures, the
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measured frequency response is fairly close to the ones given
by the transfer functions hX(ω) and hY (ω). The modeled and
measured peak frequencies are 53.2 and 46.3 Hz, respectively.
This difference may be due in part to the rough approxima-
tion of the damping coefficient, which appears to have been
underestimated.

V. CONCLUSION

Although the assumptions put forward in this paper are
common in elastodynamics modeling, the mathematical tools
used are not. In particular, screw theory allows for a sound,
broad-scope, and simple formulation of the dynamic model
of a lumped MEMS. The general framework in which the
proposed method is developed is important for the evaluation
of large numbers of variants with different topologies, numbers
of degrees of freedom, etc. Moreover, the simplicity of the
resulting model formulation is thought to be of crucial impor-
tance, since the usefulness of a symbolic solution is generally
dictated by its level of intricacy. A major factor contributing to
the simplicity of the dynamic model obtained is the parameters
chosen for the representation of rigid-link rotations in space. As
shown in (5), for small displacements, the time rates of these
parameters are approximately equal to the rigid-link angular
velocity, which simplifies the model formulation. The resulting
symbolic models should yield information on the relations
between the design parameters and the design objectives. This
is thought to be particularly important in MEMS design, e.g.,
for assessing the scalability of a design, the effect of constraints
on certain dimensions due to microfabrication limitations, the
overall feasibility of certain actuation schemes, estimating par-
asitic displacements, etc.

The model was applied to the relatively simple mechanical
architecture of the already-existing ADXL150 accelerometer,
and the estimated dynamic properties of the device were com-
pared to published data, which confirmed the accuracy of the
proposed model. The dynamic model was then applied to the
SBA, an accelerometer that comprises 4 rigid and 18 compliant
links. The modeled and measured dynamic properties of the
mechanism were compared, which corroborated the previous
results. Furthermore, the two case studies showed that the
proposed formulation can streamline both symbolic and nu-
meric calculations when the complete system dynamics is to
be modeled.

An example of a potential application of this method to
MEMS synthesis comes from the expression of the stiffness
matrix obtained in (28), which is completely decoupled. Indeed,
K appears as a product of matrices R, A, and B, containing the
information on the rigid-link poses, the mechanism topology,
and the compliant-link stiffness properties, respectively. This
should prove useful for the synthesis of lumped-compliance
micromechanisms. As an example, one could impose the rigid-
link poses and the compliant links used for a particular MEMS
and then treat the topology A as a design variable. Another
potential application of this method could come from its com-
bination with the model proposed in [28]. In this reference, the
authors modeled the dynamics of a compliant micromechanism
subjected to nonlinear external forces by approximating its

displacements with a time-varying linear combination of its
modes. These modes are computed from a linear dynamic
model similar to that of (33), except that the compliant links are
discretized rather than treated as continua. Treating the compli-
ant links as Euler–Bernoulli beams—or any other compliance
model—and expressing the system state in terms of rigid-link
poses, twists, and twist-rates minimizes the number of general-
ized coordinates of the associated model. Since computing the
stiffness matrices of Euler–Bernoulli beams is a linear process,
and because the dimension of the associated nonlinear eigen-
value problem is minimized, this method should streamline the
computation of the mechanism dynamic response.
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