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The paper presents a multiscale procedure for the linear analysis of components made of
lattice materials. The method allows the analysis of both pin-jointed and rigid-jointed
microtruss materials with arbitrary topology of the unit cell. At the macroscopic level,
the procedure enables to determine the lattice stiffness, while at the microscopic level
the internal forces in the lattice elements are expressed in terms of the macroscopic strain
applied to the lattice component. A numeric validation of the method is described. The pro-
cedure is completely automated and can be easily used within an optimization framework
to find the optimal geometric parameters of a given lattice material.
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1. Introduction

Cellular materials are a broad range of natural and arti-
ficial materials characterized by an abundance of microv-
oids confined in cells. The macroscopic characteristics of
a cellular material depend not only on the shape and vol-
ume of the voids, but also on the material and cross section
of the cell walls. As a subset of cellular materials, lattice
materials are characterised by an ordered periodic micro-
structures obtained by replicating a unit cell along inde-
pendent tessellation vectors. For a given density, lattice
materials are tenfold stiffer and threefold stronger than
foams, which, due to their stochastic arrangement of cells,
lie below the lattices in the matreial charts (Ashby, 2005).

Recent developments in additive manufacturing enable
to build lattice materials with a high level of quality at
affordable cost (Yang et al., 2002; Stampfl et al., 2004).
Such techniques provide material designers with a supe-
rior degree of control on the material properties and allow
them to tailor the material performance to meet prescribed
multifunctional requirements. For instance, desired
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macroscopic stiffness, strength, and collapse mode can be
attained in given directions by properly selecting the geo-
metric parameters of the microstructure. Unusual mechan-
ical behaviour, such as negative macroscopic Poisson’s
ratio, can be obtained by selecting auxetic topologies of
the lattice (Lakes, 1987). In the aerospace sector, lattice
materials can be applied for the design of morphing wings
for next generation aircrafts (Spadoni, 2007; Alderson and
Alderson, 2007; Gonella and Ruzzene, 2008). In the bio-
medical field, lattice materials have been proposed for ad-
vanced bone-replacement prosthesis, where the
microtruss can be designed to resemble the inner architec-
ture of trabecular bones, allowing seamless bone-implant
integration, with reduced stress-shielding and bone
resorption (Murr et al., 2010).

Reliable constitutive models are necessary to accurately
predict the properties of lattice materials and exploit fully
their potential. If the microscopic dimensions of the lattice
are small compared to the macroscopic dimensions of the
component, the number of degrees of freedom of a detailed
model becomes extremely large and a direct approach
involving the individual modelling of each cell is not
practical.

An abundance of literature exists about constitutive
models for cellular and lattice materials. In a work
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discussing alternative approaches for the analysis of large
periodic structures, Noor (1988) emphasized that model-
ling the discrete structure as an equivalent continuum is
the most promising strategy. He also outlined a method
to evaluate the elastic constants of the surrogate contin-
uum based on the isolation of the repeating cell and the
use of the Taylor series expansion to approximate the dis-
placement field inside the cell. His conclusion is that the
Cauchy strain tensor can be used for the analysis of pin-
jointed lattices, while for rigid jointed lattices the micropo-
lar strain theory should be adopted.

In their comprehensive work on cellular materials, Gib-
son and Ashby (1988) estimated the stiffness and the
strength of hexagonal and cubic lattices considering only
bending in the cell walls. Their analysis focuses on a single
cell under uni-axial load conditions and models the cell
walls as either beams or plates. Zhu et al. (1997) applied
a similar approach to model the tetrakaidecahedral topol-
ogy, the cell shape usually assumed by foams, and obtained
the Young’'s and shear moduli as a function of the relative
density.

Wang et al. (2005) analysed the behaviour of extruded
beams with cellular cross section, subjected to combined
in-plane and out-of plane loadings. The in-plane macro-
scopic stiffness of the beam cross section was derived for
a number of bidimensional lattices, considering a single
cell subjected to shear and compression along different
axes. The elastic constants of the lattices were determined
through a detailed analysis of each case, the pertinent
loads were applied to the unit cell, and the lattice stiffness
was calculated from the resulting nodal displacements
(Wang and McDowell, 2004). Kumar and McDowell
(2004), on the other hand, used the micropolar theory to
estimate the stiffness of rigid-jointed lattices. The rota-
tional components of the micropolar field were used to ac-
count for nodal rotations. The displacements and rotations
within the unit cell were expressed by a second order Tay-
lor expansion about the cell centroid; then, the micropolar
constitutive constants were determined by equating the
expressions of the deformation energy of the micropolar
continuum and of the discrete lattice. The analysis was
limited to unit cell topologies that included a single inter-
nal node only. Lately, Gonella and Ruzzene (2008) analysed
the wave propagation in repetitive lattices by considering
an equivalent continuous media; the generalized displace-
ments field of the unit cell was expressed by a Taylor series
expansion around a reference node; the equivalent elastic
properties were obtained by direct comparison of the wave
equations of the homogenized model, and of a uniform
plate under plane-stress. The method was illustrated with
specific reference to the regular hexagonal and re-entrant
honeycombs. The same authors, in a more recent paper
(Gonella and Ruzzene, 2010), noted that the order of the
Taylor series expansion is limited by the number of bound-
ary conditions that can be imposed on the unit cell, and
limits the accuracy of the continuous model; the authors,
thus, proposed an alternative approach using multiple cells
as repeating units to improve the capability of the contin-
uous model in capturing local deformation modes. Another
approach was recently presented by Hutchinson and Fleck
(2006), who resorted to the Bloch theorem and the

Cauchy-Born rule to analyse pin-jointed lattice materials
with nodes only on the boundary of the unit cell. Elsayed
and Pasini (2010a) expanded this method introducing the
dummy node rule, for the analysis of pin-jointed lattices
with elements intersecting the unit cell envelope. The
same authors used this approach for the analysis of the
compressive strength of columns made of lattice materials
(Elsayed and Pasini, 2010b).

This paper presents an alternative method for the anal-
ysis of both pin-jointed and rigid-jointed lattices. The pro-
cedure is based on a multiscale approach, where the
macroscopic properties of the lattice are determined by
expressing the microscopic deformation work as a function
of the macroscopic strain field. In contrast to previous ap-
proaches relying on the Taylor series or the Cauchy-Born
rule for the approximation of the displacements within
the repeating cell, this method do not make any kinematic
assumption on the internal points, but only on the bound-
ary points of the cell. In addition, our approach does not re-
sort to micropolar theory for the determination of the
lattice nodal rotations; rather the rotational degrees of
freedom (DoFs) of the cell nodes are evaluated enforcing
periodic equilibrium conditions on the unit cell. At the
microscopic level, after expressing the nodal DoFs of the
unit cell as a function of the components of the macro-
strain field, the internal forces in the lattice members are
determined to verify whether the solid material of the cells
fails. The procedure is illustrated with reference to three
bidimensional topologies, namely the triangular, the hex-
agonal and the Kagome lattice. The method is vaildated
by comparing the displacements of a finite lattice to those
of an equivalent continuous model for prescribed geome-
try of the component, applied loads and boundary
conditions.

2. The multiscale approach

A lattices consists of a regular network of structural ele-
ments connected at joints; they are obtained by the replica
of a unit cell along independent periodic vectors. Fig. 1
shows the sample lattices under investigation in this
paper.

A multiscale structural problem can be solved by setting
two boundary value problems, one at the component level,
and the other at the microscopic level; the solution can be
found by defining proper relations between the micro and
macroscale models. Fig. 2 summarizes the steps followed
in setting up the multiscale framework. The procedure is
general and can be used to account also for non linear lat-
tice behaviour, such as geometric non linearity, due to the
re-orientation of the lattice elements during loading. We
follow the approach outlined by Kouznetsova et al.
(2002). At the macroscopic level (1), the components of
the Cauchy strain tensor are obtained from the displace-
ments of the continuous medium, uy. We note here that
although the macroscopic strain distorts the lattice, after
deformation the microtruss remains periodic, and the de-
formed tessellation vectors comply with the macroscopic
strain (2). At the microscale, the equilibrium problem of
the unit cell (3-4-5) can be solved by imposing a kinematic
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Fig. 1. Sample lattice topologies: a; and a, are periodic translational vectors; dotted lines represent cell boundaries and thicker lines the unit cell elements.
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Fig. 2. The multiscale scheme.

and a static condition on the boundary of the cell. The rel-
ative displacements of the boundary points have to respect
any change in the tessellation vectors, and the forces of the
boundary nodes have to balance the forces imposed by the
surrounding cells. Upon solving the equilibrium, the nodal
DoFs, u,,, and the deformation work, W,,, of the unit cell
can be determined. Since Cauchy stress and strain are work
conjugate, the macroscopic stress tensor can be evaluated
as shown in step (6). The equilibrium of the structure can
then be solved by application of the Virtual Work Principle
(7-8). We note that at the microscopic level, once the rela-
tion between macroscopic stress and nodal displacements
of the unit cell is found, the internal forces in each element
of the lattice can be obtained from the macro-strain com-
ponents, as illustrated in Section 4.

3. Lattice macroscopic stiffness

The periodic nature of the lattices allows obtain the po-
sition of all the nodes of the infinite lattice, starting from
the position of the nodes of the unit cell as follows:

Vli eN

D) =r,+la
r()=n+la and k=1...J

(M
where ry is the position of the kth node of the unit cell; ri(1)
are the positions of the nodes corresponding to ry; a; are
the translational vectors; i€ {1,2} for 2D and i< {1,2,3}
for 3D lattices; J is the number of nodes of the unit cell.
As |; spans the integer field, ./°, and k spans the unit cell
nodes, (1) refers to each node of the lattice.

The unit cell nodes can be divided into two classes: (i)
the internal nodes, which only connect elements of the

same cell and have no correspondent node in the cell and
(ii) the boundary nodes, which join elements of neighbour
cells and have necessarily at least one correspondent cell
node on the opposite boundary. The position of each node
of the lattice can then be obtained from a subset of the unit
cell nodes, the independent nodes. We note that all internal
nodes are independent, since no other node of the same
cell can be obtained through a translation along any com-
bination of the periodic vectors. For each cell topology,
alternative choices of the boundary independent nodes
are possible.

With reference to the triangular lattice (Fig. 1(a)), the
position of nodes 2 and 3 can be obtained from the position
of node 1, as r, =r; +a; and r3 = r; + ay, thus the triangular
lattice has no internal nodes and one independent node.
For the hexagonal lattice (Fig. 1(b)), it results r; =r; +a;
and r4 =1, + a, and the following independent nodes can
then be defined: nodes 1, that is internal, and node 2. Like-
wise for the Kagome lattice (Fig. 1(c)) a possible choice of
independent nodes is nodes 1, 2, and 3, where node 1 is
internal; thus it results: r4,=1r, — a; and r5 =r; — a,.

Under the action of a uniform macroscopic strain field,
the lattice will deform. The deformed periodic directions
can be related to the components of the macroscopic strain
tensor by means of the following (Asaro and Lubarda,
2006):

= (I+ea;, (2)

where I is the unit tensor and € is the Cauchy strain tensor,
whose components are

o 1 /ou; 811]‘
61]75(8_)94_6_&). 3)
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The position r}, of the kth node of the deformed lattice will
be given by the following:

() =1 +Laj =1, + (I + €)a;. (4)

Finally, the displacements of all the nodes of the lattice can
be expressed as a function of the displacements of the
independent nodes of the unit cell and of the components
of the strain field as follows:

d (1) =r0)-nd) =dc+lea;. )

With reference to the unit cell, we introduce the array d
containing all the DoFs of the unit cell nodes, and the array
dy containing only the DoFs of the independent nodes.
Through Eq. (5), d can be expressed as a function of dg
and of the strain components, collected in the array e, as

d = Bod, + Bce, (6)

where By is a block matrix of zero and unit matrices, and B,
is a block matrix mapping the relative displacements of the
dependent nodes to the components of the macroscopic
strain field. In the bidimensional case, the array of the com-
ponents of the macroscopic strain field has three elements.
Adopting the engineering notation for the components of
the deformation field gives

€= [EX’ 6}’7 ny]v (7)

where y,, = 2€,.

With reference to the triangular lattice, since the only
independent node is node 1, the displacements of node 2
and 3 can be expressed as

e ®
from which d, dy, By and B, are written as

d, I 0
d=|dy|, By=|I|, do=[dy], B.=|B., |, (9

d3 I B53

where I is a diagonal matrix and the sub-matrices B,, and
B., map the DoFs of nodes 2 and 3 to the components of
the strain field. Section 5 illustrates in detail how the ele-
ments of B, are determined.

For the hexagonal lattice, following the distinction be-
tween dependent and independent nodes it results

d; =d, + eay,

1
d,=d; + ea, (19

from which the following By and B, matrices are obtained

d; I 0 0
d2 01 d] 0
= B = = Be_
a=la| B0 1| %= |a) B,
d4 0 I BE4
(11)

For the Kagome lattice, we can write

d;=d, + €ay,
d5 :d3 — €aq,

which yields the following:

d, 100 0
d, 010 d, 0
d=|d;|, Bo=[0 0 I|, dy=|d,|, B.=|0
d, 010 d; B.,
ds 001 B.,
(13)

The array do in Eq. (6) will be determined by imposing
the self-equilibrium condition on the nodal forces of the
unconstrained unit cell.

By means of the finite element method, the nodal forces
of the unit cell, f, can be expressed in terms of the nodal
DoFs as

f =K, d, (14)

where K, is the unit cell stiffness matrix, and d, is the ar-
ray of its nodal DoFs. After deformation, all nodal forces
must be zero in the infinite lattice because no body forces
are applied to the lattice. This condition can be expressed
in terms of the nodal forces of a single cell as

Aof =0, (15)

where A, the equilibrium matrix, is a block matrix, whose
entries are either unit or zero matrices; it depends on the
unit cell topology and the periodic directions.

With reference to the triangular lattice, the equilibrium
condition for the node 1 is that the sum of all the forces,
due to the edges connecting in node 1, is zero. Because of
the periodicity, the sum of the forces due to edges c and
d is equal to the sum of the forces due to edges 1 and 3,
and the sum of the forces due to edges a and b is equal
to the sum of the forces due to edges 2 and 3. Therefore,
a condition for the equilibrium of node 1 can be expressed
in terms of the nodal forces of the unconstrained unit cell
as

f]+f2+f3 =0. (16)

Following a similar reasoning, two identical equations are
obtained for the other nodes. Therefore, the matrix Ao for
the triangular lattice is the following:

A=[I T 1. (17)

With reference to the Hexagonal lattice, the equilibrium
conditions are

(i) f;=0,
(ll) fz +f3 + f4 = 07

the above can be justified as follows: (i) node 1 is internal
and f; is the sum of all element forces acting on it; equa-
tion (ii) follows to satisfy the periodicity condition, which
requires that (a) the force due to edge a on node 2 be equal
to the force due to edge 2 on node 3, and (b) the force due
to edge b on node 2 be equal to the force due to edge 3 on
node 4. The resulting equilibrium matrix is

1 000
Ao = . 1
0 {0 I 1 L} (19)

(18)
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Similar reasoning applies to the Kagome lattice, for
which the following relations hold

i) £ =0,
(i) f,+f,=0, (20)
(iii) f5+f5=0,

where: (i) node 1 is internal; (ii) node 2 connects edge 1
and edge 2, whose sum is f,, and edge a and edge b, whose
sum is f4; (iii) node 3 connects edge 2 and edge 3, whose
sum is f3, and edge c and edge d, whose sum is fs. For the
Kagome lattice, the equilibrium matrix is

100
Ab=|0 1 01 0. (21)
00 1

By examining the way in which these matrices are built,
we can verify that Aq = B]. Thus, combining Egs. (14) and
(15), the equilibrium equation can be written as

Ao K, d=B{ K, d=0. (22)

Using expression (6) for d, we obtain the following
B, K, (Body+B.e)=0 (23)

from which the displacements of the independent nodes
can be found in terms of e. From (23), the following linear
system of equations results in the unknown do:

B{K,.B, dy = -B{K,B; e. (24)

Since both the lhs (left-hand side) and rhs (right-hand side)
of the above equation belong to the column range of B{Ky.,
a solution will always exist. Yet, since K, is the stiffness
matrix of the unconstrained unit cell, its null space is not
empty, and the solution to (24) is not unique; rather, the
solution is given by an affine subspace defined by any par-
ticular solution of (24) and the null space of the matrix
(Strang, 1988). In Section 3.1, we show that all solutions
produce identical expressions for the deformation work
and the macroscopic stiffness matrix, which are then
unique.

Furthermore, we observe that Eq. (24) represents the
equilibrium of the unit cell constrained by the surrounding
cells. Its rhs is the residual on the equilibrium Eq. (15),
with sign changed, resulting from the macroscopic strain
field, if the independent DoFs, d,, are kept fixed. The lhs
of the equation represents the residual on the equilibrium
equation when the independent DoFs are not null, and no
strain is applied to the lattice. Thus, given an arbitrary
macroscopic strain field, the solutions of equation (24)
are the independent DoFs that guarantee the equilibrium
of the cell with its surrounding. Finally, substituting do
and e in Eq. (6), we obtain the DoFs of the unit cell nodes
that both comply with the macroscopic strain field and
guarantee the equilibrium of the unit cell with its
surroundings.

The particular solution to Eq. (24) is given by the
following:

do=— (BEKHCBO)%gKUCBe e=Dye (25)

where ()" is the Moore-Penrose pseudoinverse. The dis-
placements of all nodes of the unit cell can be obtained
by substituting Eq. (25) into (6), which results in

d=(BDo+B,)e=D,e. (26)

Since e has three components, D, will have three columns.
Each column represents the DoFs of the nodes of the unit
cell, corresponding to the unit strain, for each strain com-
ponent. Thus, the array D, effectively links the components
of the macroscopic strain to the DoFs of the unit cell nodes,
for an arbitrary strain. Furthermore, D, allows express the
specific lattice deformation work as a function of the mac-
roscopic strain components as

W= %eTDZKUCDee, (27)

uc

where S, is the area of the unit cell. Since the linearised
Cauchy stress and strain are work conjugate Slaughter
(2002), it results o; = 2%, which enables to express the

. oG . .
components of lattice macroscopic stiffness tensor as
E 7()0’1]' h h
ijhk = 76, such that

K= lDZKHCDE. (28)
SLIC

We note that three matrices are required to obtain ma-
trix D, specifically: (i) the stiffness matrix of the uncon-
strained unit cell, K,, easily obtained by means of
standard finite element procedure; (ii) the block matrix
B} which defines the periodic boundary conditions, and it
depends on the periodic translational vectors and on the
cell topology; similarly (iii) B. expressing the relative dis-
placements of the boundary nodes as a function of the
components of the macroscopic strain field. Once these
matrices have been assembled, the macroscopic stiffness
of the lattice can be calculated by means of Egs. (25) and
(26). Thus the evaluation of the lattice stiffness for alterna-
tive geometric properties of the cell edges can be com-
pletely automated, and integrated within an optimization
framework (Vigliotti and Pasini, 2011).

3.1. Uniqueness of W and K

As described earlier, the system of Eq. (24) has always a
solution, although not unique. In this section, we show that
all solutions of (24) produce the same mechanical work
and, consequently, the same macroscopic stiffness matrix.

Since the null space of the matrix BEKUCBO is not empty,
the general solution to Eq. (24) is an affine subspace given
by

do=DK+pu Vpc Null(B(T,KucBo)7 (29)

where DK is a particular solution, and u is any element of
Null(BngBo). Substituting the above in (26) it gives
d =By(Doe + u) + B.e =D, e + By u, (30)

thus the expression for the deformation work is
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1
W=y (pTBg + eTl)g) K.c(Dee + Bop)

_ 1 (eTDzKucDee + u'BjK,Bou + 2 e'DK, By, y).

2 Suc
(31

Since the following holds:

"B K, Bopt =0
B0 ucBolt = KuBop =0, (32)

Ky =K,

it follows that the last two terms in the parenthesis on the
lhs of Eq. (31) are both zero. This proves that the expres-
sion of the deformation work does not depend on u; there-
fore any solution of Eq. (24) will produce the same
expression for the deformation work and the macroscopic
stiffness matrix of the lattice.

4. Lattice internal forces

By means of the macroscopic stiffness obtained through
Eq. (28), we can model lattice materials as uniform materi-
als. After solving the structural equilibrium for a given
component, the stress and strain of the equivalent uniform
medium can be calculated. Being homogenised values,
these figures do not represent the load on the solid mate-
rial of the lattice. As a result, they cannot be used to assess
the material resistance. To evaluate the load on the solid
material, first, the nodal DoFs of the lattice have to be cal-
culated by means of Eq. (26) as a function of the macro-
scopic strain. Then to assess the resistance at the
microscopic level, the stress and strain in the cell elements
can be determined by means of the unit cell model, and
compared with the strength of the solid material.

For instance, if the edges of the lattice are modelled as
Euler-Bernoulli beams, the edge stretching, s, and curva-
ture, y, are given by Zienkiewicz and Taylor (2005)

U, — Uy
L

01 + 0 Uy — U 201 + 0, V1 — U
X:x<6 2 -12 I >—<2 L +6 2 ),
(33)

where x is the abscissa along the element, varying from 0
to L, the element length; u; are the axial components of
the nodal displacements; »; are the transverse compo-
nents; 0; are the nodal rotations (Fig. 3). The normal force
and the bending moment are, thus, given by

N

N=EAs,
34
M = ESIZZ X7 ( )
N2
V4 62 o
0, /L/'

Fig. 3. Degrees of freedom of a lattice element.

where E; is the Young’s modulus of the solid material of the
lattice, A and I, are the cross section area and the second
moment of area, respectively.

5. Analysis of selected lattice topologies and model
validation

The procedure described in the previous section is here
applied to the lattice topologies reported in Fig. 1.

According to Gibson et al. (1982), for low density mate-
rials, cell walls behave as slender beams, and can be mod-
elled as Euler-Bernoulli beams, neglecting shear. The
stiffness matrix of the unit cell, K,., can then be obtained
by assembling the stiffness matrices of the single elements.
Since this words is restricted to a linear analysis, we can
separate the stiffness matrix into the bending and stretch-
ing contributions, and obtain the following expressions of
the strain energy due to bending and stretching:

Wy =1d" Ky, d,

35
W, =1d" Ky, d, 59

where K,, is the stiffness matrix for the axial deformation,
and Ky, is the stiffness matrix for the bending. The total
deformation work of the unit cell is given by the
W=W,+ W,

We note that the method presented in this paper is
general. Although here the lattice edges have been mod-
elled as Bernoulli beams, the cell walls can also be mod-
elled with other type of elements, such as Timoshenko
beams or plane membranes, as required by the structural
function.

5.1. Numerical validation

To validate and assess the accuracy of the procedure de-
scribed in the previous section, a finite rectangular plate
made of lattice material is examined under prescribed
loads and constraints. In one case, the lattice of the plate
is modelled edge by edge using beam elements. In the
other case, the rectangular plate is modelled with a uni-
form material of equivalent stiffness. The displacements
of the free sides of the two models are then compared for
each of the lattice topologies considered in this paper.
The boundary conditions and the two load cases (Fig. 4)
have been specified as follows:

e On the constrained side, the nodes are pinned on both
the continuous and the discrete model;

e On the side where the load is applied, the nodes are
constrained to remain aligned, and the load is applied
on one node only;

e The remaining sides are free.

Since the lattice stiffness is evaluated for a uniform
macroscopic strain applied to the infinite lattice, the dis-
placements of the detailed model will deviate from those
of the equivalent model in the areas where the boundary
conditions are applied, and the strain gradients are stron-
ger. As shown by Phani and Fleck (2008), a lattice with fi-
nite dimensions develops a transition zone in the
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Fig. 4. Boundary conditions and applied loads of the rectangular plate (“Detail” in Figs. 6, 8 and 10).

Table 1

Cross-section and material properties of each truss element.
Cross-section Material
A 70.12 E 7 x10*
I, P % v 0.3

proximity of the boundaries, the boundary layer, where the
lattice deformations are not uniform. In these regions, the
wavelength of the macroscopic strain field becomes com-
parable to the length of the lattice edges; thus, in these
zones the quality of the approximation of the continuous
model tends to deteriorate.

The displacements of the continuous and discrete mod-
els are compared both quantitatively and qualitatively. The
discrete model is chosen as a baseline, and the percentage
differences between the two models have been evaluated
interpolating the displacements of the continuous model
at the position of the nodes of the discrete model. For each
lattice topology, the maximum errors are given in a
Table at the end of each section. For a qualitative assess-
ment of the deformed shapes, the plots of the areas en-
closed in the small rectangles at the top-left corner of the
domains shown in Fig. 4, have been superimposed. We
investigate the effect the length of the cells edges on the
accuracy of the estimated stiffness. For this purpose, two
lattices of different cell size have been considered for given
outer dimensions of the rectangle. In each case, the lattice
edges have been modelled with a single beam. The lattice
with smaller cell size included a higher number of cells
and of DoFs. The comparison between the models shows
that the resulting estimate of the stiffness increases if the
size of the cell decreases with respect to the size compo-
nent. As expected, the accuracy of the results thus im-
proves when the lattice is relatively closer to the
asymptotic approximation of an infinite media.

The commercial software Ansys rev 12.1 (ANSYS, Inc.) is
used for the numerical simulations. In particular, for the
detailed model, the BEAM3 element, which models a bi-
dimensional Bernoulli beam, has been used for the cell ele-
ments, whose material properties and geometry parame-
ters are reported in Table 1. For the continuous model,
plane-stress PLANE182 elements have been used with unit
thickness. The PLANE182 element has only translational
degrees of freedom and allows the input of an arbitrary
material stiffness matrix.

5.1.1. Triangular lattice

The unit cell and the translational vectors for the trian-
gular lattice are illustrated in Fig. 1(a). The translational
vectors are a; =L %@] and a, =L [1,0], the area of the
unit cell is Syc = |a; x a| = [* 4.

As mentioned earlier, the displacements of the depen-
dent nodes can be expressed as a function of the displace-
ments of the independent nodes and of the components of
the deformation field. Eq. (8) can be written in terms of the
DoF of node 2 and 3 as

dzx = dlx + €xlqx +%’/xyaly d3x = d1x + €xx + %nyazy
dy, = di, +37,,01x + €01y d3, = di, +37,,0 + €0z
dzu = dlu d3u = dlu'
(36)

The elements of the sub-matrices B, and B., of Eq. (9) can
thus be expressed by writing Eq. (36) in matrix form, as

@, 0 F ;07
Bel = 0 I, ﬂ% =L 0 ? 411
0O 0 O 0 0 O
- o (37)
a, 0 % 1 00
B,=10 a, “% =L|0 0 1
L0 0 O] 0 0O

After evaluating the matrix By, as described in Section 3
and B,, as described above, it is possible to evaluate the
matrix D, by means of Egs. (25) and (26).

All calculations can be performed symbolically by
means of dedicated software packages. The expression of
D, is reported below

0001 00100

DI=L{0 0 O 2 00 0 0f. (38)

0
000 1 00

i 0

1
2
As mentioned earlier, the columns of D, represent the va-
lue of the nodal displacements and rotations correspond-
ing to unit strains; they can be used to plot the deformed
lattices, corresponding to each unitary strain state, as
shown in Fig. 5.

Through Egs. (27) and (28), we obtain the expressions
for the deformation work and for the macroscopic stiffness
matrix as
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Fig. 5. Deformation modes of the triangular lattice with rigid joints.

Table 2
Eigenvalues of the stiffness matrix and strain energy ratios for triangular
lattice.

€1 €3 €3
A 2V3EA V3E(AL +121;) V3E(AL +121;;)
L & s
W, 0 121, 121,
We AL AL

Table 3
Normal forces and bending moments of the triangular lattice.
Edge Internal force
1 N = EAe,
M = Bl (1 - %)
2 N=EA[fex+3ey — By
M =El, [(%i - i—zﬁx)ex + (i—?x - %) € + (L%x - %)“/xy]
3 N:ESA[%EX+%€y+§'})xy}

M= ESIZZ[(%%( —%)ex + (%7%%()@ + (L%x - %)yxy]

Table 4
Errors of plate models wrt lattice models, triangular lattice.

V3 E /A
W= s Kz (yﬁy +3€; + 36 + 26,@)
121
22 (1 + o) )| (39)
3(AL2 n 4122) ALZ — 121, 0
Ko SE 2 2
53| AV -12l 3(AL 44l 0
0 0 AL? 121,

(40)

The stretching and bending contributions to the strain en-
ergy are given by the following:

V3EA

Ws==77- (yﬁy +3€ +3€ + Zexey)7 an)
3V3 El
W, = TSZZ (V,%y + (€& — Ey)2>.

The triangular lattice is isotropic, and the eigenvectors of
its macroscopic stiffness matrix are: €;=[1,1,0],
€:=[1,-1,0], €, =[0,0,1]. Table 2 reports the eigenvalues
of the stiffness matrix and the ratios %’; corresponding to
each eigenvector.

As shown in Table 2, for the hydrostatic stress, €;, no
bending energy is present and the lattice is only subject

Model DoF Normal load err. Shear err. to stretching. In the other cases, since is o[l,,] = 0[A%] and
. 5
Beam Plate uerr (%) wverr(%) uerr(%) wverr (%) for slender beams is 0[A] < o[L?], it results
5967 800 0.1 1.12 0.75 2.14 Wy, 121, A
58905 800  0.02 0.79 0.60 1.63 W= o<1 (42)
W, A2 12
+ nodes of the continuous model 1 L +nodes of the continﬁous model -
Av,mvmuu:.vggg:ﬁ%{#‘.’#ﬁ ] VAV AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV/ |

AVAVAVAVAVA AVAVAYY
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(b) Shear load, lattice and plate models

Fig. 6. Deformed plate (“Detail” in Fig. 4) made of triangular lattice with rigid joints.
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Fig. 7. Deformation modes of the hexagonal lattice with rigid joints.

Table 5
Eigenvalues of the stiffness matrix and strain energy ratios of the hexagonal
lattice with rigid joints.

€1 €3 €3
pA 2EA 16V3EAL; 4V3EAl;
VaL A 1211 AL 1211
Wy 0 AL? AL
W 12; 12,
Table 6
Normal forces and bending moments of the hexagonal lattice.
Edge Internal force
1 N = EA[AL136l: ¢ | A’_12L;
ST 2A% 124, X T 24174241, Y

_ 6AL-12Ax »,
M= Elz A2 121, 1%

2 N=E A[ A2 AL? 4241, 12v3L, . }
I PYTEEE YT € T oar7; 241, & T 1241 1%y
_ 6v3Ax-3V3AL 3V3AL-6V3Ax 6Ax—3AL -
M= Esl”[ A2l O AT ok Az T
3 N—=E A[ AL AL% 4241, 12V3L }
— € 2 e, _ 2«
SO 2 24, % T A 24n, Y T SA 24l 1%V

— 3V3AL-6/3x 6v/3Ax-3V3AL 6Ax—3AL
M= ES’”{ A2l X + A2l Y +AL2+121H Txy

Table 7

Errors of plate models wrt lattice models, hexagonal lattice.
Model DoF Normal load err. Shear err.
Beam Plate u err (%) verr (%) u err (%) verr (%)
5418 800 6.25 1.83 1.81 2.02
45018 800 1.40 0.26 1.15 1.43

Thus the bending is always negligible with respect to
stretching.

Once the nodal displacements have been found, the
load in the lattice cell walls are determined through Eq.
(34). Table 3 lists the normal forces and bending moments
acting on each element for arbitrary strain components, at
any point of the element.

The expressions in Table 3 allow verify if material fail-
ure occurs at the microscopic level. Once the structural
problem is solved by using the homogenised representa-
tion of the material, and the components of the macro-
scopic strain field are retrieved, the expressions in
Table 3 allow evaluate the force on each cell element and
compare it with the beam strength.

Table 4 shows the maximum errors on the horizontal, u,
and vertical, v, displacements of the two models; the de-
formed shape for the plate and the smaller beam model
are illustrated in Fig. 6.

As can be observed, the maximum error is 2.14%; fur-
thermore the accuracy delivered by the plate model im-
proves as the size of the lattice edges decreases with
respect to the size of the component.

5.1.2. Hexagonal lattice

The unit cell and the translational vectors of the Hexag-
onal lattice are shown in Fig. 1(b). The periodic directions
are a; =1L %,? and a, =1L %,—@ : while the area of
the unit cell is S, = %Lz. The By and B, matrices for the
hexagonal lattice are given by Eq. (11). The sub-matrices
B., and B, are

(@, 0 3] (3 0
B83 = 0 aly u% =L 0 \/Ti % ]
L0 0 0] L0 0 O
[a;,, 0 27 1o =8 *3)
X 2 2 4
B,=10 2, % =Llo 77\6 }1
L0 0 0] L0 O 0

by means of Eq. (25) it is then possible to determine D, for
the hexagonal lattice

3
A 0 0000 % 00 % 0 0
T _ | AP 1201 V3L 3L
D= |42 0 0000 0 3o 0 3o
3 /3]
0 F5- 0000 B ¥ 0 2 L 0
(44)

The deformed lattices corresponding to pure strains are
shown in Fig. 7. The expression of the deformation work
and the macroscopic stiffness matrix are

- EA
43 (AL3 + 12122L)

x[AL2(6X+ey)z+122(zy§y+3e§+3e;—2exey)], (45)
AL* +361, AL*-121,, 0

AL*-121,, AI*+36I, O
0 0 241,

l(:L EA

2V3 L(AL2 + 12122)
(46)
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+ nodes of the continuous model

(a) Normal load, lattice and plate models (b) Shear load, lattice and plate models

Fig. 8. Deformed plate (“Detail” in Fig. 4) made of hexagonal lattice with rigid joints.

Table 8 Table 9
Eigenvalues of the stiffness matrix and strain energy ratios of the Kagome Normal forces and bending moments of the Kagome lattice.
lattice with rigid joints.

Edges Internal forces

€ € €3 1and 4 N:ESA[%€X+%€y7JT§yXy}

‘ G AL 0ls) L) M =El {(ﬁ—ﬂx)e +(3—“§x—§)e +539

w, 0 6l,, 6l,, sz | UL~ 212 X 21% L)y "o /XJ’X}

W AL AL 2and 6 N=EAe,

M =Elg[-Fe+ 56+ (3 #%)0)]
3and5 N:ESA{%+3%+@

The above expression for the macroscopic stiffness of the
hexagonal latl:t)ice coincides with the ﬁlildings of Gonella M =Bl (3 )+ (- 3o+ (shx - 4)7]
and Ruzzene (2008). Following the steps described in Sec-
tion 5, and using Eq. (35) the expressions for the bending
and the stretching strain energy for the hexagonal lattice stiffness matrix and the ratios # corresponding to each
are found as a function of the strain field components, as eigenvector. For hydrostatic stress, since the contribution

4\/§A2EsIZZL<6§ 266+ 7% + e§>

Wy 3
(Ar” + 121,
AE(Az(ex + €))L + 24AL,(6, + €)1 + 1441 (365 — 26,6+ 272, + 365))
W, = 3
2V3L (AL2 + 12122)

The hexagonal lattice is also isotropic, and the eigenvec- to the lattice stiffness due to edges bending is again null,
tors of its stiffness matrix are identical to those of the tri- the strain energy is stored in stretching only. In the other
angular lattice. Table 5 shows the eigenvalues of the cases, it can be noted that the deformation energy is

A

X
7N/
() € > 0,€y =72y =0 (b) €y > 0,65 = Y3y =0 (€) Yoy > 0,6, =€, =0

-

N

Fig. 9. Deformation modes of the Kagome lattice with rigid joints.
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Table 10
Errors of plate models wrt lattice models, Kagome lattice.
Model DoF Normal load err. Shear err.
Beam Plate u err (%) verr (%) u err (%) verr (%)
6936 800 0.22 0.02 1.30 1.55
27,921 800 0.05 0.02 0.39 0.41
L 0 0 00 ¥ 0 -2
D;=| 0 -4 0 00 -200 2 0
-~ § -p00 § 0} | -4

mainly stored as bending, being % = % > 1, as expected
since the lattice is bending dominated. We note that the
eigenvalue corresponding to the hydrostatic stress is much

higher than the others. With reference to f it results
o 241,

AP 121,

Thus, even if the deviatoric or shear stress components are
small, the deformation in those directions will be domi-
nant, and the lattice with fail according to the modes ¢,
or €3. Table 6 lists the normal forces and bending moments
on each lattice element; Table 7 reports the displacement

error of the plate model with respect to the lattice model;
and Fig. 8 illustrates the deformed shapes.

(47)

5.1.3. Kagome lattice

Fig. 1(c) shows the unit cell and translational vectors of
the Kagome lattice; the periodic translational vectors are
a; =L [1,v3] and a; =L |1,—v/3|; the area of the uc is
Suc = 2V/31%; while B, and B, are given by Eq. (13). For
the B, and B,, sub-matrices it results

a 0 % 1 0 8
B,=10 a %|=L|0 -v3 1!
0 0 0 0 0 O
@, 0 10 2
By=-10 a, | =-L|o v3 ! (48)
0 0 0 0 0 0

Similarly to the hexagonal lattice, the following expres-
sion can be found for the D, matrix

The corresponding expression for the deformation work
and the material stiffness matrix are

\/§E5 2 2 2 2
W= 1600 [A (yxy +3€, +3€, + 2€X6y>L
+z (Viy + (& — ey)z)]7 (50)
3 (AL2 + 2122) AL2 — 6, 0
K= V3E 2 2
=P | A’-6l, 3 (AL + 2122) 0
0 0 AL* + 61,
(31)

The above expression for the macroscopic stiffness of the
Kagome lattice, in the hypothesis of pin jointed elements,
I, =0, is in agreement with the results obtained by Hutch-
inson and Fleck (2006). With reference to the deformation
work, the stretching and bending contributions are given
by

+ nodes of the continuous model

~_7 ‘ILVA'A

) 0.0.0.0

(a) Normal load, lattice and plate models

+ nodes of the continuous model

-

AR VARV ARV RV VARV .
XX XXX XXX
xxxxxx{&v“

(b) Shear load, lattice and plate models

Fig. 10. Deformed plate (“Detail” in Fig. 4) made of Kagome lattice with rigid joints.
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V3AE (3 +3¢€ + 3¢ + 26,6, )

: 161 ’
(52)
3V3EL:(7, + (6 - 6)°)
W, = T .

The eigenvalues of the stiffness matrix are still the same as
those of the previous cases. Table 8 gives the expression of
the % ratios for the Kagome lattice.

Table 9 reports the internal forces for the Kagome lat-
tice; due to the symmetries of the unit cell, the forces in
the corresponding edges of the unit cell are equal. Fig. 9
shows the lattice deformed shapes for the case of the Kag-
ome rigid-jointed lattice. In Table 10 the differences be-
tween the beam and the plate models are reported; for
the Kagome lattice, Fig. 10 shows the deformed lattice un-
der two different load conditions.

6. Conclusions

A linear multiscale procedure for the analysis of lattice
materials has been described and validated in this paper.
The method allows determine the macroscopic stiffness
of both pin-jointed and rigid-jointed lattices with arbitrary
cell topology. The method permits also to obtain the inter-
nal forces acting on each member of the lattice. The proce-
dure focuses on the linear analysis of planar lattices and it
is applied to three cell topologies: the triangular, the hex-
agonal and the Kagome. Further work is required to extend
the analysis to tridimensional lattices with open and
closed cell as well and to include the modelling of geomet-
rical non linearity due to the lattice reorientation under an
applied load.

For each topology, analytical expressions have been
determined for the macroscopic in-plane stiffness con-
stants and for the internal forces in the lattice edges. The
results are in agreement with those found in the literature
for the hexagonal and the Kagome lattice. To validate the
procedure, the model of a rectangular portion of a discrete
lattice has been compared with the model of a homoge-
neous rectangular domain of equivalent macroscopic stiff-
ness, for prescribed dimensions, constraints and applied
loads. The comparison of the displacements at the free
boundaries has shown that the procedure described in this
paper delivered a correct estimation of the stiffness of the
lattice.

The methodology allows readily express the lattice
properties as a function of the cell parameters. Therefore,
it can be easily integrated in an optimization framework
for the optimum design of lattice materials.
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