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Abstract

®

CrossMark

In the past few decades, several concepts for morphing wings have been proposed with the aim
of improving the structural and aerodynamic performance of conventional aircraft wings. One of
the most interesting challenges in the design of a morphing wing is represented by the skin,
which needs to meet specific deformation requirements. In particular when morphing involves
changes of cord or curvature, the skin is required to undergo large recoverable deformation in the
actuation direction, while maintaining the desired shape and strength in the others. One
promising material concept that can meet these specifications is represented by lattice materials.
This paper examines the use of alternative planar lattices in the embodiment of a skin panel for
cord and camber morphing of an aircraft wing. We use a structural homogenization scheme
capable of capturing large geometric nonlinearity, to examine the structural performance of
lattice skin concepts, as well as to tune their mechanical properties in desired directions.

Keywords: morphing structures, lattice materials, nonlinear mechanics, multiscale mechanics,

adaptive structures

(Some figures may appear in colour only in the online journal)

1. Introduction

With the aim of improving the performance and the efficiency
of current aircraft design, various concepts for wing morphing
have been recently proposed. Compared to conventional wing
designs, the benefits of a morphing wing include improved
aerodynamic efficiency, along with reduced structural weight
and noise emission (Wlezien et al 1998, Stanewsky 2001).
Morphing components are currently used in unmanned aerial
vehicles (Gomez and Garcia 2011) and advanced wind tur-
bine blades (Daynes and Weaver 2012), where aerodynamic
efficiency is critical. In general, they are amenable in sectors
subjected to a softer regulation, as opposed to manned flight,
and in applications open to foster new solutions. Given the
number and the diversity of approaches described in

0964-1726/15/037006+11$33.00

literature, no attempt is made here to summarize them; yet, we
point the interested readers to thorough reviews on the subject
(Sofla et al 2010, Barbarino et al 2011, 2014, Kuder
et al 2013).

In this introduction, we limit ourselves to mention some
recent studies that develop or apply strategies relevant to the
method used in this paper. For example, (Santer and Pelle-
grino 2009) used a load path-based topology optimization
technique to design the internal structure of a compliant wing
leading edge. Previtali and Ermanni (2012) introduced a
method that uses the wing eigenmodes for the optimal design
of a morphing wing. A number of other studies focused on
controlling compliance in the wing cores. For twist morphing,
(Raither et al 2013) proposed to tune the shear stiffness of the
wing box with temperature changes that in turn control the

© 2015 I0OP Publishing Ltd  Printed in the UK
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Figure 1. (a) Camber and cord variation achieved via wing morphing
material properties.

modulus properties of hard polyvinyl chloride. Spadoni and
Ruzzene (2007) explored the potential of a chiral core aerofoil
for a variable camber morphing wing. Other recent studies
have specifically focused on the design of the wing skin, with
a good review of such efforts available from Thill et al
(2008). The skin of morphing wings poses some interesting
design challenges. With reference to figure 1(a), when large
variations in cord or curvature are required, the skin should be
able to provide high compliance in the wing plane as well as
exhibit high stiffness and strength in the out of plane direc-
tion, so as to maintain the required shape under the action of
the aerodynamic loads. In addition, the high compliance of
the skin is desirable to limit the power and the mass of the
actuators (Wereley and Gandhi 2010). Powered by recent
technologies that allow the accurate manufacturing of repe-
titive microstructures at a very small scale (Ortona et al 2012,
Vaezi et al 2013, Hengsbach and Lantada 2014), lattice
materials have been often flagged as a promising design
solution for morphing applications. For example, (Olympio
et al 2010, Olympio and Gandhi 2010a, 2010b) evaluated the
elastic properties of skin panels with various micro-archi-
tectures of the cellular core. Thill and others (Thill et al 2010)
suggested the use of a corrugated composite panel for the
design of a morphing trailing edge. Corrugated cores as a
support for highly deformable elastomeric skin have also been
studied by (Dayyani et al 2014). Chen et al (2013) designed
and tested a fibre reinforced flexible skin with highly auxetic
behaviour.

In most of the works cited above, a particular attention is
given to design solutions involving materials with a lattice
architecture. The properties of cellular materials have been
described in detail, mainly with closed-form expressions, by
Gibson et al (1982), Gibson and Ashby (1982). More
recently, numeric homogenization techniques have been
proposed to accurately study the mechanics of lattice
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. (b) Reference boundary conditions are imposed to determine the skin

materials (Arabnejad and Pasini 2013). In this paper, a
numeric multiscale scheme capable to capture the geometric
nonlinearity of an architectured medium is used to derive the
macroscopic constitutive relationships of a morphing skin
made of a lattice. From the analysis of a representative
volume element (RVE) subjected to a given macroscopic
deformation field and periodic boundary conditions, the
components of the stress field are obtained and assigned to a
homogeneous uniform material which has deformation work
equivalent to that of the lattice. The method is here applied to
appraise and compare the skin performance of alternative
lattice topologies for wing skin morphing.

2. Material requirements for the skin of morphing
wings with large curvature and cord variations

This section describes the material requirements to design a
skin panel for a morphing wing. We first emphasize that
alternative approaches exist to achieve wing morphing, each
tailored to meet specific aspects, such as global wing con-
figuration, attitude or lift control, each with specific require-
ments for the materials. This paper focuses on lift control
solutions that require large variations of the cord and the
curvature of the airfoil. As a reference, figure 1(a), we
examine a rectangular flapless wing, whose camber and cord
are controlled by the morphing of the trailing edge. In this
configuration, the aerofoil skin must essentially undergo
membrane deformation in the skin-plane, and withstand the
aerodynamic pressure in the out of plane direction. For cord
changes, the upper and lower surfaces generally undergo
deformation of identical sign, whereas for camber changes,
the surface deformation has opposite sign. This regime
imposes the skin to withstand both large tensile and com-
pressive recoverable deformations. In addition, we note that
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Figure 2. Multiscale scheme. At every integration point of the macroscopic model, the first Piola—Kirchoff tensor, P, is evaluated—yvia a
finite element model of the RVE—as a function of the macroscopic displacement gradient, G, after periodic boundary conditions are imposed

on the RVE.

shape changes are controlled by actuators usually installed in
the wing body. To reduce both the power requirements and
the impact of the actuation forces on the rest of the wing
structure, the skin material is required to be very compliant in
the direction of actuation. Another requirement is that
throughout the actuation the skin should exhibit low in-plane
Poissons ratio, a behaviour that reduces the loads transmitted
in the transverse directions to the rest of the wing. In sum-
mary, the material specifications for the skin design of a
morphing wing that aims at achieving large variation of cord
or curvature can be abridged as follows:

(1) high macroscopic in plane compliance in the direction
of actuation to minimize actuator’s power and overall
structural mass of the wing;

(2) large recoverable macroscopic elastic deformation to
allow the shape changes required by the aerodynamics;

(3) zero in plane Poisson’s ratio to ensure that no undesired
forces are generated in the span-wise direction and to
reduce the overall structural mass of the wing;

(4) high bending stiffness to ensure no shape variation
occurs under the action of the aerodynamic pressure;

(5) minimal structural mass of the skin panel.

The requirements listed above are generally in conflict
for any homogeneous material and for ordinary composite
materials. For example, a polymeric rubber, which is naturally
very compliant, could satisfy criteria 1 and 2, but very likely it
could not satisfy the other criteria. On the other hand, com-
posite materials can provide a high level of anisotropy, but
their tolerance to large deformation is quite limited. In this
paper, we focus on the design of materials with lattice
architecture for morphing skins. For a preliminary design, the
first design step involves the selection of the topology class,
either stretching or bending dominated (Deshpande
et al 2001). The former is statically determinate in its pin-
jointed version, and is capable to withstand any macroscopic
load responding with axial forces in the struts. The latter, on
the other hand, is statically indeterminate in its pin-jointed
configuration, and thus presents modes in the lattice elements

that are dominated by bending. The bending dominated lattice
is macroscopically very compliant and can accommodate
large macroscopic deformation at the expense of relatively
small strain in the solid material. On the other hand, bending
dominated lattices are comparatively very stiff and strong for
the loads that produce axial forces in the elements. This
shows that the macroscopic response of the material can be
tuned by the proper selection of the cell topology and the
lattice parameters. In principle, a lightweight lattice that is
extremely stiff for some loading conditions, and compliant in
others, can be tuned to undergo large macroscopic deforma-
tion fulfilling the entire set of requirements for a morph-
ing skin.

3. Methodology

Components made out of lattice materials are characterized by
a substructure obtained from the tessellation of a unit cell
along independent periodic directions. If the scale of the
component is significantly larger than the scale of the lattice, a
direct approach involving the modelling of each cell is
impractical. This strategy would result in considerably large
models, which are likely to be unmanageable. An alternative
is the substitution of the discrete model with an equivalent
continuum (Noor 1988). At the cost of losing minor local
details, we can obtain a substantial reduction of the compu-
tational effort with still accurate results. We adopt here a
multiscale approach to predict macroscopic deformation
response of a lattice. As illustrated in figure 2, the stiffness of
the material at the macroscopic level can be determined by
assuming that the lattice microstructure behaves as a uniform
continuum. At the microscopic level, we first calculate the
deformation energy of the lattice, and then use the virtual
work principle to determine the components of the homo-
genized stress field. For solid materials, a functional relation
is assumed between the stress and strain tensors. For lattice
materials, since the response depends on the properties of the
microstructure, this relation cannot be directly expressed as a
functional dependence. In particular, for a material subjected
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Figure 3. Sample topologies: (a) hexagonal lattice, (b) chevron lattice. The thick red lines represent the unit cell elements; a; and a, are the
tessellation vectors; 7; is the coordinate vector of node i; L, and L, are respectively the length of the horizontal and inclined members; ¢ is the

angle between the horizontal and the inclined members.

to large deformation emerging from microscale geometric
nonlinearity, such relationship depends on the lattice config-
uration. Yet, we can formulate a boundary value problem to
calculate the lattice strain energy, and to express it as a
function of the macroscopic strain. The components of the
macroscopic stress field are then obtained by differentiating
the macroscopic strain energy with respect to the components
of the macroscopic strain field. Hereafter, we briefly sum-
marize the main aspects of the method, applied here to obtain
the macroscopic constitutive relations for the in plane defor-
mation of the skin. A complete description can be found in
(Vigliotti and Pasini 2012a, 2012b, Vigliotti ef al 2014).

Let us consider a finite element model of a RVE of the
lattice, which is defined as the subset of structural elements
that are capable to generate the entire lattice after replication
along periodic directions. Let s be the array of the nodal
degrees of freedom of the RVE, the corresponding array of
the nodal forces, F(s), can be calculated by a finite element
analysis of the RVE. The first order variation of the strain
energy, due to a change of the macroscopic strain, can be
obtained by applying the principle of the virtual work as
follows

dw = /BjdG,-j dv = F7ds. (1)

WRVE

In the above equation, P; and G;; are respectively the
components of the macroscopic first Piola—Kirchoff (1PK)
stress tensor and of the macroscopic displacement gradient, ds
is the variation of the nodal displacements corresponding to
dGj;. Assuming that Pj; and G;; are uniform over the RVE, we
obtain the following expression for the macroscopic stress
tensor

1 ow 1

= 7 = FTﬁ
Vrve 0G;  WRve

. 2
. &)
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To calculate the derivatives on the right hand side of
equation (2), we introduce the following kinematic
assumptions:

(1) the periodic directions of the lattice change according to
the macroscopic displacement gradient;
(ii) the lattice remains periodic during deformation.

Table 1. Compatibility and periodic equilibrium conditions for the

sample lattices: G is the displacement gradient; a; are the periodic

vectors defined in figure 3; F; are the nodal displacements and are the
nodal forces.

Hexagonal lattice Chevron lattice

s3; =8, + Ga;
s4 =8, + Ga,

Compatibility s3 =8, + Ga;
s¢ =S, + Ga,

s7 =584 + G(a, — a))

Periodic equilibrium Fr =0 F=0
F+FE+F=0 Fs=0
FE+FE+F=0
FF+F =0

We remark that assumption (i) applies only to the peri-
odic directions; no further hypothesis restricts the displace-
ment of the internal points of the RVE, whose configuration is
determined by imposing equilibrium. To illustrate how the
array % s determined, consider, as an example, the lattices

i
in figure 1(b).

As we can observe, assumption (i) introduces constraints
among the displacement of the nodes located on the RVE
boundary. We name them compatibility equations. Since
these nodes are necessarily corresponding along the periodic
vectors, their relative displacements are given by the defor-
mation of the periodic directions. On the other hand from
assumption (ii), we can write the equilibrium equations of the
RVE, under the action of the surrounding elements. These
equations are written in terms of the nodal forces of the
prescribed RVE, and we name them periodic equilibrium
conditions. With reference to the lattices in figure 3, the
kinematic and the equilibrium conditions can be formulated
as shown in table 1, where a; and a, are the periodic direc-
tions of the lattice.

As we can observe, the compatibility equations allow us
to express the displacements of all the nodes of the RVE in
terms of G and of the displacement of a subset of the nodes of
the RVE, which we call independent nodes. A possible choice
of the independent nodes are nodes 2 and 3 for the hexagonal
lattice (figure 3(a)), and 1, 5, 2, and 7 for the chevron
(figure 3(b)). Since the number of equilibrium equations is
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always equal to the number of independent nodes, the pro-
blem is closed; given the components of the displacement
gradient, we can then determine the corresponding config-
uration of the RVE. If no bifurcation point is present along the
load path, such configuration is unique. More in general, it is
possible to show (Vigliotti et al 2014) that the nodal dis-
placement of the RVE, and the periodic equilibrium equations
can be expressed as follow

s = Bos + BsG, (3)
BiF(s) =0, 4)

where By and G are matrices that depend only on the
topology and connectivity of the lattice. After substituting
equation (3) in (4), and recalling the statement of the virtual
work (2), we can obtain the following expression for the
macroscopic stress tensor and its Jacobian:

P= BLF(s), (5)
RVE
oP 1 08 T oF 08
— =—|By— +Bs| —|By— +Bg|, (6
oG vRVE( Y9G G) as( Y5G G) ©)

where :—é is given by the equation that follows, and ()*
denotes the Moore—Penrose pseudo inverse.

< +
& =B %) B e ™

The methodology described in this section permits to
model a component in lattice material by means of dis-
placement-based finite element analyses. For a displacement
gradient G, at each integration point of the macroscopic
structure, equations (3) and (4) enable to find first the con-
figuration of the RVE, and equations (5) and (6) can be used
to evaluate the 1PK tensor and its Jacobian for any given G.

In the formulation described above, all the boundary
conditions are on the components of G, which ensures the
existence of a solution. Nonetheless it is also possible to pose
the inverse problem, that is to consider boundary conditions
given on the P tensor and solve for G. In the following
sections, we consider mixed boundary conditions, where
certain components of P and G are prescribed and others are
free. In this case, the solution can still be found by solving a
nonlinear problem by means of the Newton—Rhapson
method, which iterates on the not prescribed, components of
G, and defines the residual on the components of G, whose
values are constrained. In this case special, proper care should
apply, as bifurcation points might appear due to the local
buckling of the lattice elements.

4. Mechanical properties of skin panels in lattice
material

This section presents a methodology to design lattice mate-
rials for skin panels undergoing large cord and curvature
changes. As a reference case, a plate subject to the boundary
conditions shown in figure 1(b) is considered; in this case the

macroscopic strain and stress fields of the plate are uniform
and given by’

AL
Gy = == = constant,
Ly

Gi1=Gy=Gy=0,
P3=PB3=Py,=HR3=PF;=0.

Since the skin panels of an aerofoil are essentially planar, and
the morphing is limited to the plane of the skin, we focus on
extruded lattices, as shown in figure 4. Via the method
described in the previous section, the macroscopic con-
stitutive relations can be obtained for any choice of lattice
parameters and with the assumption that the properties of the
solid material are given. We observe that the size of the lattice
in direction X3, coincides with the thickness of the skin panel
and is thus a macroscopic parameter; on the other hand, the
in-plane dimensions of the lattice, i.e. the length and the
thickness of its elements, are microscopic parameters, speci-
fied at a length scale smaller than the macroscopic dimension
of the panel. With reference to figure 4, let L; be the typical
length of the walls in the plane of the plate, t be the wall
thickness in the same plane, and z be the out of plane height
of the walls corresponding to the macroscopic thickness of the
plate. For these conditions, we assume the following relation
holds: + < L; < z. In the present study, the lattice walls are
modelled as three-dimensional plates; thus for the macro-
scopic deformation modes that remain in the plane of the skin
panel, the strain energy is essentially stored as pure bending
in the walls, whereas for the deformation modes out of the
plane X; — X5, which correspond to the macroscopic bending
of the plate, the strain energy is stored as membrane shear in
the walls.

An essential parameter of a morphing skin panel is its
bending stiffness, which is proportional to the thickness of the
plate. As an indicator of the macroscopic bending stiffness of
a skin plate made of a lattice material, we select the macro-
scopic shear stiffness of the lattice in the direction out of the
plane X; — X,, that is we consider the components of the
r;lacroscopic material stiffness tensor, equation (6), such that

e PP
E with i, j € {1, 2}.

We remark that in the design of a morphing skin panel
we are mainly interested in the actuation forces necessary to
obtain a given deformation per a unit surface of the panel. In
the context of this paper, instead of comparing skin panels of
given thickness, we compare panels for given bending stiff-
ness, a key requirement to design a morphing wing panel. For
each lattice, we consider a reference macroscopic thickness of
the skin in the X3 direction, Z, such that the following holds

ELZGELZ; =y*=1x 107, where E, is the Young’s modulus
s 35 L1

of the solid material.
In addition, as a measure of the actuation forces, and of

the actuation work, in the sections that follow we consider the
.. Z % Py z . .
quantities P} = %Li and P5, = -~ We note that since L, is
s L1 s 1

3 We recall that the displacement gradient and the 1PK tensor are not
symmetric, thus G; # Gj; and F; # P;.
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Figure 4. Sample lattices: (a) classical hexagonal lattice, (b) auxetic hexagonal lattice, (c) chevron lattice. We observe that the lattices with
auxetic behaviour are obtained from classic honeycombs by letting ¢ € ]7/2, z[. We also observe that the two hexagonal configurations

coexist in the chevron lattice.

Table 2. Initial stiffness terms normalized with respect to the Young modulus, E, of the solid material.

ok 1 B 1 oR; 1 o 1 o 1
0Gy, E; 0Gy, E; 0Gy, E; 0G3; E; 0G3 E;
Ri=0 Gi=0 G;=0 Gi=0 G=0
Classical 230 x107® 8.25x10™* 8.17x1072 8.88 x10™3 1.48 x1072
hexagonal
Classical 228 x1075  1.64 x1072 -1.63 x1072 294 x1072 4.47 x1073
hexagonal
Chevron 3.29 x10™®  3.29 x107¢ 0 2.05 %1072 6.41 x1073

a prescribed quantity for the lattices examined in this study,
the quantity P is an actual adimensional measure of the

actuation tension for panels of given shear stiffness. P allows
to calculate the effective compliance of the panel for the
actuation deformation mode among configurations featuring a
given shear stiffness. In addition, we observe that with the
above definition of P, the actuation energy per unit surface of
the skin panel is given by the following

W=Ez / P5, dG.

Following the reasoning above, we define the effective
relative density of the skin panel as p* = pLil where p is the
geometric relative density of the material, defined as the ratio
between the volume occupied by the solid material and the
volume of the RVE. p* is a quantity governed both by the
geometric and elastic parameters of the unit cell only, whereas
the term Lil introduces a correction that accounts for the shear
stiffness of the lattice material. Finally, we observe that the
quantity p* is such that the volume of the solid material per

unit surface of the skin panel is given by p*L;.

4.1. Analysis of selected lattice topologies

In this section we compare the mechanical responses of the
topologies shown in figure 4 under uniaxial stretching. The
linear elastic properties of the hexagonal lattices, in both
classic and auxetic configuration, were studied in detail in
Olympio and Gandhi (2010b), who expressed the macro-
scopic stiffness as a function of the lattice geometry. In their
study, a family of lattice topologies, named accordion, were

suggested. This family includes, as substructure, both auxetic
and non-auextic honeycomb unit cells, resulting in zero initial
macroscopic Poisson ratio. The chevron topology analysed
here presents a similar feature, as it includes two sections with
equal Poisson’s ratio but opposite sign. This topology has
been also studied in (Douglas et al 2014) in the context of
expandable vascular stent, and it was recognized as particu-
larly suitable for the cases where large uniaxial deformations
are required. In their study the authors isolated an RVE of the
stent and analysed the stress distribution with focus on the
formation of plastic hinges, which allow the stent to retain its
shape after expansion. In this study, on the other hand, we
derive the macroscopic constitutive relations for the lattices in
figure 4 including the nonlinear response caused by the finite
displacements of the lattice elements. We assume the solid
material remains linear, since we require all deformations to
be completely recoverable. We will show that under a large
stretching, a lattice with zero macroscopic Poisson’s ratio in
the reference configuration, e.g. the chevron lattice
(figure 4(c)), can hold elastic instabilities, which perturb the
lattice equilibrium and cause the loss of their neutrality.

For all the lattices analysed in this section, we assume:
Ly=10"%m, Ly/L, = 0.5, E; = 70 GPa, L/t = 30. Table 2
reports their stiffness in the initial configuration for alternative
macroscopic constraint conditions. The first column of the
table shows the lattice stiffness in direction X, for uniaxial
stress conditions, i.e. the lattice is free to deform in the other
directions upon a deformation applied in direction X,. As we
can observe, each lattice has a very small stiffness, similar in
value. The second column of the table reports the pertinent
stiffness under planar uniaxial strain conditions, i.e. the lattice
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deformation in direction X is prevented, if the deformation is
applied in direction X, and the lattice is not constrained in
direction X5. As we can observe, in these conditions the
hexagonal lattices are two to three orders of magnitude stiffer,
whereas the stiffness of the chevron lattice is unchanged. In
particular, the initial Poisson’s ratio of the chevron lattice is
zero, which leads to the decoupling of the loads in the
directions X; and X. In contrast for the hexagonal lattices, the
Poisson’s ratio has a finite value, which prevents deformation
in direction X and brings an increase in the lattice stiffness.
The third column of the table reports the direct cross term for
the plane X; — X, of the initial material stiffness matrix, i.e.
the marginal stress increment in direction X; corresponding to
the deformation in direction X,. This term is an effective
measure of the coupling between the directions X; and X, for
a uniaxial stretch of the lattice. For the hexagonal lattices, this
term has a value of the same order of magnitude, or larger, of
that of the direct stiffness in direction X,. On the other hand, it
is zero for the chevron lattice, where the direction X; and X,
are decoupled. Finally, the last two columns in table 2 report
the macroscopic shear stiffness of the lattice for deformation
out of the plane X; — X»; they represent the bending stiffness
of the skin panel.

To compare the skin properties for given bending stiff-
ness, we first evaluate the homogenized out of plane shear
stiffness of the lattice material for each configuration as

. oB; opy e .
¥ = mln( S B )Wlthl,] € {1, 2}; then we choose a skin
an} ()Gj,j

thickness, 7, such that ELLE = y*. As shown in figures 5(a)
s L1

and (b), the hexagonal lattice in both the configurations is
very compliant for uniaxial stress, but rather stiff for uniaxial
stretch. We also observe that the reaction force in the direc-
tions orthogonal to the applied stretch, has the same order of
magnitude of the applied tension, or larger, for the case of the
classical hexagon. In addition, we remark that for stretching
above 20%, simulations could not be carried out further, due
to appearance of catastrophic collapse modes in some lattice
struts, subjected to high compressive forces. On the other
hand, the chevron lattice is very compliant with reaction
tensions essentially negligible even for very large deforma-
tion. Hence for a morphing wing skin, cell topologies that are
particularly promising have an architecture (within the RVE)
that features subsections with both negative and positive
Poissons ratio, such as the chevron lattice.

5. Design space of the chevron lattice

In this section, we analyse the shear response of the chevron
lattice in different configurations and plot its design space for
given geometric parameters. In particular, we let the ratio
between the horizontal and the inclined members vary in the
range L,/L, € [0.25, 4]. To do so we keep L, constant, and
we consider two values of the initial angle between the
members, namely ¢ = 15° and ¢ = 30°. Figure 6(a) shows
the plot of the shear stiffness of the plate,

. (R @ . . .
7= mln( As , ﬁ), for unit plate thickness, i.e. before the

homogenization correction. As we can observe for small
value of L,/L;, the stiffness of the material is dominated by
the length of the horizontal member and it is constant. For
larger values of Ly/L;, as the length of the inclined member
increases, the lattice becomes increasingly compliant for the
out of plane shear in direction 2, and the overall shear stiff-
ness of the plate decreases. As a result, the reference thickness
of the skin increases to ensure the normalized macroscopic

bending stiffness of the plate to be constant and equal to y*.
Figure 6(b) shows the plot of the geometric relative density of
the lattice material, and figure 6(c) shows the effective relative
density of the plate, which includes the correction for the
thickness of the plate, as dictated by the shear stiffness. As we
can observe, even if the geometric relative density of the
lattice material decreases for an increase of the aspect ratio of
the unit cell (figure 6(b)), the effective relative density of the
skin material (figure 6(b)) raises. The reason for this is that to
increase the panel thickness is necessary to compensate the
reduction of the macroscopic shear stiffness (figure 6(a)). It is
also interesting to observe in figure 6(c) the merging of the
curves for ¢ = 15° and ¢ = 30° after a certain value of
L,/L,. In particular above L,/L; ~ 3 and regardless of ¢, the
combined variations of shear stiffness and relative density
reach a given value of the effective relative density.

Figures 7(a) and 8(a) show the normalized actuation
tension required to obtain a 40% uniaxial deformation of the
skin, respectively in extension and in compression. The
chevron lattice becomes progressively compliant for higher
L,/L,, since the bending stiffness of the inclined member
decreases for longer length, L,. In addition, lower values of
the shear stiffness are obtained for lattices with higher L,, a

trend indicating that y* can remain constant only if the skin
thickness increases. As a result, the net actuation force
increases. Whereas this response is more evident for ¢p = 30°,
an increment is also observed for the case of ¢ = 15°.

Figures 7(b) and 8(b) show the ratio between the applied
force, P5,, and the reaction force in direction 1, at 40%
deformation in extension and in compression respectively.
For small values of L,/L;, the reaction forces are negligible
both for ¢ = 30° and ¢ = 15°. Yet, with the increase of the
slenderness of the inclined members, the equilibrium at the
joints between the horizontal and the inclined members
becomes unstable; hence, a bifurcation point appears to allow
joint rotation. As a result, inclined members experience a rise
of bending moments, which in turn produce reaction forces in
the direction orthogonal to that of the applied deformation,
thereby leading to a loss of the lattice neutrality.

Figure 9 shows the curves of the tension deformation
along with the deformed shape of the lattice for the case
L,/Ly = 4.0. The development of instabilities in a lattice
subject to macroscopically tensile loads, as a result of small
misalignments, or deviations, from equilibrium, is an inter-
esting case, identified and described in detail by Zaccaria et al
(2011); Bigoni et al (2012). In the case ¢ = 30°, bifurcation
occurs for smaller values of L,/L;, whereas the ratio R/
reaches lower values than those for ¢ = 15°, for which is
between 4 and 5. Figures 7(c) and 8(c) show the maximum
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compression and in tension for the largest value of the deformation. The picture shows the occurrence of structural instabilities in a lattice
subject to macroscopically tensile loads, as a result of small misalignments during loading.

nominal deformation in the solid material of the lattice. This
quantity specifies the allowable limit for the macroscopic
deformation of the skin, and it should be compared with the
elastic limit of the material of the lattice. The figures show

that the microstructure of the lattice is very effective in
translating in plane stretches into bending and large rotation
of the lattice members that keep actuation forces and solid
material deformation quite low. In addition, the lattice can
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yield macroscopic deformation in the order of 40%, while
limiting the microscopic deformation of the material
below 5%.

For the material choice of a morphing wing skin, there is
no single best that meets the design specifications; rather, an
optimal solution is to be found from case to case. In fact, large
values of L,/L; ensure low actuation tension and small strain
in the solid material (see figures 7(a), (c) and 8(a), (c)). On the
other hand, these values also produce an heavier skin and
larger forces in the transverse direction, an outcome that calls
for a stronger and heavier wing-box structure. Furthermore,
there is no ideal angle for the inclined members; lower values
of ¢ increase compliance, but heavier lattices or stronger
coupling between the actuation and the constraint directions
are possible by controlling the value of L,/L;. In general, the
final concept design for a lattice skin needs to take into
account the actual properties of the solid material, the overall
geometric dimensions of the wing, and the strength of the
structure surrounding the morphing flap. An approach to find
trade-off lattice concepts can be developed in a future work to
optimally reconcile the conflicting requirements of a morph-
ing wing skin.

6. Conclusions

In this paper, we use a homogenization method to analyse the
mechanical properties of a lattice morphing skin undergoing
large deformation. As reference cases, we examined the
properties of hexagonal honeycombs, both in the classical and
in the auxetic configuration, and the properties of a chevron
lattice. We have shown that the chevron lattice is capable to
maintain high compliance in the actuation direction; in
addition for large actuation strokes, the chevron lattice can
keep the deformation in the actuation direction decoupled
from the deformation in the in-plane orthogonal direction.
The multiscale method used here has enabled to formulate
macroscopic constitutive relations of the lattices, and to
appraise the performance limits for a range of the lattice
parameters. Capable to account for the geometrical non-
linearities induced by finite strains, the method allows to
identify the occurrence of static instability even in lattices
macroscopically subjected to tensile external loads. The
method also enables to predict the macroscopic response of a
given lattice from the analysis of a uniform medium; hence, it
can be readily integrated within an optimization framework
that includes a model of the entire wing.
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