
Materials and Design 32 (2011) 2909–2922
Contents lists available at ScienceDirect

Materials and Design

journal homepage: www.elsevier .com/locate /matdes
Integrated shape and material selection for single and multi-performance criteria

Jasveer Singh, Vahid Mirjalili, Damiano Pasini ⇑
Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Canada H3A 2K6

a r t i c l e i n f o a b s t r a c t
Article history:
Received 16 August 2010
Accepted 30 November 2010
Available online 4 December 2010

Keywords:
Material selection charts
Performance indices
Selection for material properties
0261-3069/$ - see front matter � 2011 Published by
doi:10.1016/j.matdes.2010.11.076

⇑ Corresponding author.
E-mail addresses: Jasveer.singh@mail.mcgill.ca (J.

mcgill.ca (V. Mirjalili), damiano.pasini@mcgill.ca (D. P
A shape and material selection method, based on the concept of shape transformers, has been recently
introduced to characterize the mass efficiency of lightweight beams under bending and shear. This paper
extends this method to deal with the case of torsional stiffness design, and generalize it to single and
multi-crieria selection of lightweight shafts subjected to a combination of bending, shear, and torsional
load. The novel feature of the paper is the useful integration of shape and material to model and visualize
multi-objective selection problems. The scheme is centered on concept selection in structural design, and
hinges on measures that govern the shape properties of a cross-section regardless of its size. These mea-
sures, referred as shape transformers, can classify shapes in a way similar to material classification. The
procedure is exemplified by considering torsional stiffness as a constraint. The performance charts are
developed for single and multi-criteria to visualize in a glance the whole range of cross-sectional shapes
for each material. Each design chart is explained with a brief example.

� 2011 Published by Elsevier Ltd.
1. Introduction

In structural design, the most common objectives pertain to
mass, axial stiffness, flexural stiffness, and torsional stiffness. Sev-
eral strategies, developed in the past, are currently used to design
and optimize the geometry of a structural concept with respect to
these objectives. Such methods generally involve a large amount of
computation time, because they often resort to techniques that re-
quire repetitive use of numeric analyses and simulations. Most of
them are effective especially when they are applied at the detailed
design stage, where a structural concept is already selected and the
optimization search is restricted only to certain variables [1–4]. To
overcome these limitations, the selection at the preliminary stage
of design is often based on performance indices and design charts.
A number of models for lightweight design were proposed for gi-
ven loading requirements. For example, Shanley [5] examined col-
umns under compression and introduced a minimum weight
criterion based on a shape parameter governing the efficiency of
alternative shapes. Cox [6] expressed performance of beams under
compression and bending by the ratio of yield stress to the density
of a material. In 1980s, Parkhouse [7] defined the material dilution
factor, or sparsity, to compare different structural concepts to an
equivalent reference cross-section. Based on these premises, Ash-
by, the world-renowned authority in material selection, introduced
a pioneering methodology to search the best material for a given
application [8–10]. Huang and Gibson [11] identifies the optimum
Elsevier Ltd.
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cross-sectional shape for various materials by analyzing the maxi-
mum shape factor limited either by local buckling or by yielding.
Along the lines of Ashby’s material indices, Rakshit and Anantha-
suresh [12] derived new design indices for the trusses. These indi-
ces help in choosing the suitable material for any design of a truss.
Warner [13] introduced constraint indices that aids in co-selecting
shape and material for spatially limited components. Thomas in his
work [14] introduced material architecture indices for composite
multi-functional materials. These indices provide a useful metric
for ranking composite design configurations. All the above men-
tioned works did not consider integrating shape and material for
multi-objective structural optimization, the focus of this paper.

More recently, another method has been introduced to study
the effects of material and shape of structures subjected to geo-
metric constraints [15–17]. This paper extends such a method to
limited torsion stiffness design for single and multi-objective
selection. The main objective of the paper is to generalize the shape
transformer approach for a multi-criteria selection involving bend-
ing, shear and torsion. The paper starts by reviewing the funda-
mentals of the method which is used in Section 3 to formulate
the performance indices for a number of general cases including
single and multi-objective design problems. To demonstrate the
method in these scenarios of selection, Section 4 and 5 examine
problems with prescribed torsional stiffness.

2. Methodology

The shape transformer approach introduced for material and
structural selection hinges on the premise of systematically decou-
pling the effect of shape from that of size. Demonstrated for single-
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objective optimization [15,16], this decoupling eases the way a
change in geometry of the cross-section can be handled to visualize
the optimum solutions (Pareto front) for multi-objective selection.
For a cross-section, the shape, referred as S, is the figure that fits
within the rectangular envelope whose size is specified by the
height and width of the cross-section (Fig. 1). The scheme used
in this paper resorts to envelope multipliers and shape transform-
ers, to quantitatively measure changes in shape and size properties
of a cross-section. These are briefly introduced in the following
sub-sections.

2.1. Envelope multipliers

Size changes between different cross-sections, e.g. Fig. 1a and b
are measured by the envelope multipliers. The relative scaling of
an arbitrary cross-section with envelope sizes B and H, relative to
a reference rectangular envelope with sizes B0 and H0, is described
by the envelope multipliers, u and v, as

u ¼ B=B0

v ¼ H=H0

�
ð1Þ
2.2. Shape transformers

For a given cross-section, a shape transformer (WG) of a geomet-
ric quantity G is defined by normalizing the geometric quantity G
by the same geometric quantity of its envelope GD, such that
WG = G/GD. The shape transformers of area (WA), bending (WI)
and shear (WS) are already defined [15,16]. The shape transformer
introduced in this paper is that of torsion which is defined as,

WJT ¼
JT

JTD
ð2Þ

where JT and JTD are the torsional constants respectively of the
cross-section and of the envelope.

We recall here that this approach classifies shape concepts into
families and classes to ease the comparison of alternative cross-
sectional shapes. A shape family is identified by the name of the so-
lid shape from which a cross-section is derived. A shape class can
be regarded as a subset of a family. Discrimination among shape
classes is defined by the ratio between the size of the internal
opening and the external shape [16,17].

In this paper, the expressions of the shape transformers are for-
mulated for shapes subjected to a given torsional stiffness. For this,
we resort to approximated formulas [18,19] that describe the tor-
sional constants with less than 3% error relative to experimental
results. We consider common classes of two families: the rectangle
and the ellipse (Table 1). In addition to these, we also consider a
number of classes of shapes commonly used in structural design,
e.g. circular sector, pinned shafts, cross shafts and circular segmen-
tal section.
Fig. 1. The envelope (D) and
3. Performance indices for multi-criteria selection charts

The basic procedure for co-selection of shape and material is
outlined in this section through the formulation of design objec-
tives and constraints in terms of shape transformers, envelope
multipliers and material properties. Each objective is described
by a performance index which measures the efficiency of a cross-
section with respect to that objective. In general, we can express
a performance index, P, in terms of design requirement, F, material
properties, M, and geometry, G, such that

P ¼ f ðF;M;GÞ ð3Þ

The shape transformers allows expressing the geometry parameter,
G, in terms of shape properties, S, and size properties, D, of a cross-
section; hence,

P ¼ f ðF;M; S;D|{z}
G

Þ ð4Þ

For multi-objective selection, we first consider two performance
indices, P1 and P2

P1 ¼ f1ðF;M; S;D|{z}
G

Þ ð5Þ

P2 ¼ f2ðF;M; S;D|{z}
G

Þ ð6Þ

For a given shape and material, and functional requirement, the
above objectives and the stiffness constraint (as demonstrated in
Sections 3.1 and 3.2) are only a function of size such that:

P1 ¼ f3ðu;vÞ ð7Þ
P2 ¼ f4ðu;vÞ ð8Þ
v ¼ f5ðuÞ ð9Þ

These equations can be used to express a performance metric as a
function of the other,

P1 ¼ f6ðP2Þ ð10Þ

To use these equations for the development of design charts, we can
follow two approaches.

The first one consists of plotting one objective versus the other
using Eq. (10). This procedure allows exploring the Pareto front of
optimal (non-dominated) solutions as discussed in Section 5.1;
although simple, this strategy has some limitations. First, it does
not visualize the relation between the objective function space
and the decision space, i.e. the design variable space. Second, the
change of performance with respect to any change of constraint
can be difficult to estimate. Third, if more than one constraint is
present, numerical optimization methods should be applied to ob-
tain the Pareto front, a condition that vanishes our aim to gain in-
sight through the visualization of the results of the optimization
problem.
the embedded shape (S).



Table 1
Shape transformers for common shapes (For all shapes, B and H is the breadth and height of the envelope, and t is the thickness).

(continued on next page)
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Table 1 (continued)

(continued on next page)

2912 J. Singh et al. / Materials and Design 32 (2011) 2909–2922



Table 1 (continued)
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The second approach overcomes the above drawbacks, as it
involves the development of a four-quadrant-performance-chart,
as shown in Section 5.2 through an example of multi-objective
design problem for a prescribed torsional stiffness and a geomet-
ric constraint. The strategy is to plot envelope multipliers (u, v)
and objectives (P1, P2) through Eqs (7)–(10) onto its four axes,
to visualize one curve for each combination of shape and mate-
rials in each quadrant. The four quadrants share common axis
and consist of the planes: u versus v, u versus P1, v versus P2,
and P1 versus P2. The first quadrant represents the decision space
and the second quadrant represents the first objective function.
Likewise, the fourth quadrant represents the second objective
function and the third quadrant shows the feasible objective
space for the given set of constraints represented in the first
quadrant.

It is noteworthy that for a single-objective function, e.g. P1, the
four-quadrant-performance-chart reduces to a two quadrant-per-
formance-chart, as discussed in Section 4 for torsional stiffness de-
sign. In Section 4, we also generate efficiency maps similar to those
proposed for bending stiffness design [16], as they can conve-
niently visualize performance limits for each shape family and its
classes. However, they can handle problems with only one selec-
tion criterion. The performance indices are formulated in the fol-
lowing sub-sections for prescribed torsional stiffness. The indices
for some other common cases are given in Table 2.
3.1. Minimizing mass for torsional stiffness constrained design

For limited torsional stiffness design, we consider a shaft of
length l in equilibrium under a torque T, with a twist angle, h.
The general form of the torque, T, can be written as [20],

T ¼ GJT
dh
dz
� Ex

d3h

dz3 þ
1
2

EIn
dh
dz

� �3

ð11Þ

where GJT is the torsional stiffness of a bar with shear-modulus G,
dh/dz is the rate of rotation with respect to the z-axis, E is the
Young’s modulus, w is the warping constant, and In is a section
property referred to as non-linear Wagner constant.

The third term in Eq. (11) is used for plastic analysis of shafts,
whereas the second describes the warping effects of cross-sections.
The former involves non-linear elastic torsion which rarely occurs
in practice and whose effects are negligible in a small deformation
regime. The latter arises in a cross-section with warping-restrained
supports. The warping effect decreases with an increase of the
shaft length, provided the torque is applied far from the warp-
ing-restrained end [18]. Either in the case of free warping bound-
ary conditions on both ends, or in the case of relatively long
beams with length to depth ratio of more than six [18], the last
two terms in Eq. (11) are negligible. Therefore, under such condi-
tions, the torsional stiffness of a shaft of length l can be simplified
to:



Table 2
Performances indices for given design scenarios.

Design objective Formulation of optimization problem in terms of shape
transformers

Single-objective
Minimizing mass for pure bending stiffness constrained design

Minimize P ¼ 1
m
¼ WIEð Þq

WAq

Subject to uv3 ¼ 1
ðE=E0ÞWI

Minimizing mass for shear constrained design
Minimize P ¼ 1

m
¼ 1

uvqWA
¼ G

q
:
WS

WA

Subject to uv ¼ 1
G=G0ð ÞWS

Minimizing mass for bending and induced shear stiffness constrained design
Minimize P ¼ 1

m
¼ 1

uvqWA

Subject to
1� 1

ðG=G0ÞWS uv
1

ðE=E0ÞWI uv3 � 1
¼ 10al2G0

bE0

Minimizing mass for torsional stiffness constrained design
Minimize P ¼ 1

m
¼ ðWJT GÞq

WAq

Subject to u1:55v2:45 ¼ 1
G=G0ð ÞWJT

Multi-objective
Minimizing mass and maximizing flexural stiffness for torsional constrained design

Maximize P1 ¼
1
m
¼ ðWJT GÞq

WAq

Maximize P2 ¼ 1=
6

5aGWSuv
þ 12l2

bEWIuv3

 !

Subject to u1:55v2:45 ¼ 1
G=G0ð ÞWJT

Minimizing mass and maximizing torsional stiffness for bending constrained design
Maximize P1 ¼

1
m
¼ ðWIEÞq

WAq
Maximize P2 ¼ ð0:14ÞGWJT :u1:55v2:45

Subject to uv3 ¼ 1
E=E0ð ÞWI

Minimizing mass and maximizing torsional stiffness for bending and induced shear constrained
design

Maximize P1 ¼
1
m
¼ 1

uvqWA

Maximize P2 = (0.14)GWJT.u1.55v2.45

Subject to
1� 1

ðG=G0ÞWS uv
1

ðE=E0ÞWI uv3 � 1
¼ 10al2G0

bE0

Maximizing flexural and torsional stiffness for geometrically constrained design
Maximize P1 ¼

1
m
¼ 1

uvqwA

Maximize P2 = (0.14)GWJT.u1.55v2.45

Subject to v = f(u)
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k ¼ Tl
h
¼ GJT ð12Þ

In torsion stiffness design, the torsional stiffness, Kreq, is prescribed,
and should be met by the candidate cross-sections. Other design
requirements are usually the length and the boundary conditions
of the shaft, whereas, material and geometry of the cross-section
are often the variables. The torsional constraint can be expressed
in terms of envelope multipliers, shape transformers, and material
properties (see Appendix A), as

u1:55v2:45 ¼ 1
G=G0ð ÞWJT

ð13Þ

Eq. (13) allows us to plot constant stiffness lines for different com-
binations of shape and material on a uv plane, which is the first
quadrant of the performance chart previously described and repre-
senting the decision space. Fig. 2 is an example of this chart, where
three different values of GWJT are plotted to estimate the direction
in which the reference cross-section can be scaled to meet the tor-
sional stiffness requirement. For a given combination of shape and
material, arbitrary scaling of a reference cross-section is obtained
by moving the upper right corner of the envelope along the relevant
stiffness requirement curve. It is worthy to mention here a benefit
of defining shape transformers with respect to size. The stiffness
requirement curve does not change as long as the product of mate-
rial and shape properties remains the same. For example, the con-
stant stiffness curve will remain the same if G is halved and WJT

is doubled.
For given torsional stiffness, the performance index (pertaining

to mass) of a cross-section can be expressed in terms of material,
shape, and envelope multipliers as (see Appendix A),
P ¼ 1
m
¼ ðWJT GÞq

WAq
ð14Þ

where q is the scaling parameter and can be expressed in terms of
envelope multipliers, for u P v, as

q ¼ lnðuvÞ
lnðu1:55v2:45Þ ð15Þ

When a geometrical constraint is applied a priori to the cross-section
size, u and v are known and the scaling parameter, q, is constant. The
performance index is then governed by material and shape proper-
ties alone. To show the effect of the scaling parameter on material
selection for a prescribed shape, three choices of material: Ti, Cu,
and Mg are considered. Table 3 shows that Ti is the best choice of
material for proportional scaling. However, when the design sce-
nario imposes a height constraint, then, Mg is the best option.



Fig. 2. Constant stiffness (torsional) curves on uv plane.

Table 3
An example to demonstrate the effect of imposing three prescribed ways of scaling
candidate cross-sections.

Material E (GPa) G (GPa) q (Mg/m3) G/q G0.41/q G0.64/q

Ti 107 45 4.49 10.03 1.1 2.55
Cu 101 37.5 7.5 5 0.6 1.36
Mg 45 17 1.8 9.44 1.8 3.41
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3.2. Minimizing mass and maximizing flexural stiffness for torsional
constrained design

For the multi-objective case, we need two performance indices.
The first index minimizing mass, as explained in Section 3.1, can be
written as,

P1 ¼
1
m
¼ ðWJT GÞq

WAq
ð16Þ

To derive the second performance index consisting maximizing the
flexural stiffness, consider a cantilever beam under a point load F
which can be modelled as two springs mounted in series. The com-
bined bending and shear stiffness can be written [15] as,

FlK
aGA

þ Fl3

bEI
ð17Þ

where a and b are constants dependent on the boundary and load-
ing conditions, l is the length, A is the cross-section area, and K is
the shear correction factor dependent on the shear stress
distribution.

Eq. (17) represents the second objective, which in terms of
shape transformers and envelope multipliers reduces to

P2 ¼ 1
6

5aGWSuv þ
12l2

bEWIuv3

 !,
ð18Þ
As explained in Section 3.1, the torsional constraint can be written
as

u1:55v2:45 ¼ 1
G=G0ð ÞWJT

ð19Þ

Hence, Eqs. (16), (18), and (19) can be plotted into a four-quadrant-
performance-chart, as illustrated in Section 5.2. A similar procedure
can be followed for the other general multi-objective cases tabu-
lated in Table 2.

For specific cases, the same approach can be used to formulate
performance indices and constraints. For example, consider the de-
sign of a helical spring for minimum mass; the constraint is the
deflection per unit load. The performance index for mass is

P ¼ 1
m
¼ 1

uvqWA
ð20Þ

The constraint of deflection per unit length can be written as

FD2

4GJ
þ F

AG
ð21Þ

where F is the load, D is the outer diameter and A is the area of the
cross-section.

Candidate cross-sections will be those which satisfy the con-
straint Eq. (21) which expressed in terms of shape transformers
and envelope multipliers reduces to,

1� 1
ðG=G0ÞWJT u1:55v2:45

1
ðG=G0ÞWAuv � 1

¼ 0:56
D2 ð22Þ

The performance chart for selecting the optimum combination of
shape and material for the spring can be plotted using Eqs. (20)
and (22). Any additional constraints can be considered by plotting
them in the first quadrant of the four-quadrant-performance chart.

4. Selection charts for single-objective case – mass
minimization for torsional stiffness design

By resorting to the model presented so far, we present in this
section efficiency maps and performance charts for single-objec-
tive selection in torsional constrained design. Shape efficiency
maps are first introduced for selecting shape for a prescribed enve-
lope and then for a scaled envelope. The cases of shape and mate-
rial co-selection follow.

4.1. Shape selection for a prescribed envelope

Similar to bending, we introduce here the efficiency parameter
for torsion stiffness design as the ratio of the shape transformer of
the torsional constant WJT to the shape transformer of the area WA

for a cross-section with prescribed size and material.

kJT ¼ WJT=WA ð23Þ

The ranges of the efficiency parameter are listed in the last column
of Table 1 for different cross-sections. The higher the value of the
efficiency parameter, the lighter and stiffer in torsion is the cross-
section. In bending stiffness design, the efficiency limits are inde-
pendent on the envelope scaling [16,21]. In contrast for torsion,
the efficiency limits are dependent on the scaling of the envelope,
which is governed by the angle a (Fig. 1d). The culprit for this is that
WJT is a function of a as opposed to WI. In most cases, such as in hol-
low rectangles, the performance increases when the envelope tends
to be a square, i.e. a � 45�, but for practical values of a the increase
is less than 5%. Hence, at the conceptual stage of design, WJT (and,
thus, efficiency parameter) could be assumed constant.



Fig. 3. Efficiency map for a prescribed envelope (closed-walled cross-sections)
(numerical results from FEA are also shown).
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Fig. 3 shows the efficiency map for commonly used shape and
families, each characterized by specific efficiency limits. For
closed-wall cross-section, all classes of the ellipse and rectangle
families fall within the limiting curves of the hollow rectangular
envelope (solid black lines). On the other hand, open-walled
cross-section falls outside this domain due to a lower efficiency.
As an example, consider a design requirement of 0.4, the intersec-
tions of the horizontal dotted line and the curves show that the hol-
low rectangular shape is the lightest among the candidate
Fig. 4. Efficiency map for a prescribed envelope (open-walled cross-sections)
(numerical results from FEA are also shown).
cross-sections shown in Fig. 3. Furthermore, the map shows that
as the eccentricity of hollow ellipse increases, its efficiency de-
creases, as shown by the rightward shift of the curves. The lower so-
lid red and black curves are theoretical limiting cases that describe
a cross-section with a stiff core material coated by a material with
lower, almost negligible shear-modulus, G, e.g. foam. As expected,
the efficiency curves show that stiff core materials with low
shear-modulus coating are not efficient in torsion stiffness design.

Points A and B specify the bounds of the validity range of the
thin-walled theory which pertain to cross-section with thickness
ten times smaller than the minimum dimensions of a cross-sec-
tion. Thin-walled theory predictions estimate values of the tor-
sional constant from the origin to point A and B with an error of
less than 2% with respect to thick-walled theory estimations.

Fig. 4 illustrates the efficiency curves for open cross-sections in
limited torsion stiffness design. The range of the shape transform-
Fig. 5. Efficiency map for scaled cross-sections (closed-walled cross-sections),
logarithmic-scale.

Fig. 6. Material and shape co-selection for four typical materials (prescribed
envelope).
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ers for the torsional constant is around 10�3. Unlike in bending
where an I-beam is one of the most efficient shapes, the map
shows that for a given torsional stiffness, the I-beam is quite inef-
ficient. It could also be seen that the Z-beam concept is the best
choice, because it provides the highest value of the efficiency
parameter, kJT.
Fig. 7. Material and shape co-selection for four typical materials (horizontally,
vertically, and proportionally scaled cross-sections).
4.2. Shape selection for scaled cross-sections

Similar to Fig. 3, Fig. 5 is a logarithmic-scale chart for the selec-
tion of scaled cross-sections. Due to the decoupling of shape and
size, this method allows plotting guidelines for shape selection in
any scaling condition. These guidelines can be obtained by taking
the logarithm of the performance index;

log WJT ¼
1
q

log WA þ
1
q

log P ð24Þ

Eq. (24) plotted in Fig. 5 describes an iso-performance line with
slope 1/q and y-intercept 1/qlogP. When the scaling direction is im-
posed by geometric constraints applied to the cross-section size,
such as in tightly constrained structures, q is known and can be
used as the slope of a selection guideline. Given the slope, the
y-intercept will directly give the performance of the shape in
question. Thus, for a given scaling, the higher the y-intercept; the
lighter the cross-section.

In Fig. 5, iso-performance lines, which describe cross-sections
with the same efficiency, are plotted for q = 0.41, q = 0.5, and
q = 0.64 respectively for horizontal, proportional, and vertical scal-
ing. To compare two scaled cross-sections subjected to a specific
geometrical constraint q, a line with slope 1/q should be plotted
passing through the cross-section co-ordinates, (WA, WJT). The
one with higher y-intercept, 1/q logP, performs better than the oth-
ers. As depicted in Fig. 5, for horizontal scaling, elliptical cross-sec-
tion performs better than the rectangular one. However, for a
prescribed envelope, the opposite is true. Hence, illustrating the
performance index on a logarithmic chart simplifies the selection
of a scaled cross-section. It should be noted that these efficiency
maps can only be used if q is constant for all the candidate shapes.
To deal with cases where q can vary, performance charts explained
in Section 4.4 should be used.
4.3. Co-selection of shape and material for a prescribed envelope

The efficiency maps introduced for shape selection can be ex-
tended to assist the co-selection of shape and material. This co-
selection, for non-scaled cross-sections, is governed by the index;

P ¼ WJT G
WAq

¼ k
G
q

ð25Þ

Fig. 6 illustrates a typical example of co-selection of shape and
material using efficiency maps. (qWA, GWJT) specify the co-ordi-
nates of a cross-section on the chart. As an example, the materials
considered in the figure are Ti, Cu, Al and Mg. For each of these,
the stiffness curves for the Rectangle and the Ellipse families are
plotted. The chart shows that a copper beam can meet higher stiff-
ness requirement compared to a magnesium beam. However, when
magnesium can also satisfy the stiffness requirement, it will per-
form better due to its higher efficiency parameter.

As another example, a stiffness requirement of 22 (GPa) is con-
sidered in Fig. 6. Aluminum, copper and titanium beams can satisfy
the stiffness requirements. However, since the efficiency parame-
ter, kG/q, is the highest for the point on the solid black curve clos-
est to the y axis; a hollow rectangular cross-section made up of
titanium is the best choice.
4.4. Co-selection of shape and material for scaled envelope

Co-selection of material and shape for scaled cross-sections is
considered in Fig. 7. For this scenario, we can rearrange the perfor-
mance index in logarithmic-scale to obtain the following iso-per-
formance lines for a given scaling condition;

log GWJT ¼
1
q

log qWA þ
1
q

log P ð26Þ

For a given q, the higher the y-intercept, the lighter the cross-sec-
tion. For instance, q = 0.41, q = 0.5, and q = 0.64 are plotted in
Fig. 7 for horizontal, proportional, and vertical scaling, respectively.
The plot shows that for proportional scaling, an elliptical cross-sec-
tion made up of Magnesium is the lightest among the candidate so-
lid cross-sections. All combinations of shape and material that lie
above the selection guideline perform better than the solid magne-
sium ellipse.

The efficiency charts discussed above are relevant when the
scaling direction (q) is constant. A complementary graphical
selection method is developed here to deal with cases where scal-
ing can be done in all directions. This is a two-quadrant-perfor-
mance-chart (Fig. 8) obtained by following the description given
in Section 3. The right part of the chart consists of constant stiff-
ness curves drawn on uv plane. In the left part, the performance is
plotted against the vertical envelope multiplier (or height of
envelope).

Consider an example of a geometrical constraint shown in the
right part of Fig. 8. The aim is to co-select shape and material.
The candidate materials are steel and aluminum, and the candidate
shapes are rectangle and ellipse. It can be seen from the figure that
Aluminum-Rectangle scaled to point A (Fig. 8) is the most efficient
followed by the Aluminum rectangular cross-section scaled to a
different point B. The third best combination is the steel-ellipse
which is about 15% heavier than the best possible cross-section.

The results of the mathematical model presented in this paper
for torsion were compared with the numerical results obtained
through finite element analysis (FEA) using ANSYS, a commercial
finite element software. The validation was completed for all shape



Fig. 9. Both objectives (flexural stiffness and mass) plotted against each other for solid cross-sections (red – steel; green – aluminum).

Fig. 8. Performance chart for prescribed torsional stiffness considering a geometrical constraint.
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classes listed in Table 1. To avoid crowding the maps, however, the
validation points of two shape classes are included (Figs 3 and 4).
Since the torsional constant is derived from the mesh, the accuracy
of the torsion constant is directly proportional to the mesh size of
the cross-section. The default mesh used by ANSYS yields accept-
able accuracy for elastic analysis. The mesh size was set to the fin-
est level. Concerning the boundary conditions, the cross-section is
assumed to be free to warp to retrieve from ANSYS the numerical
values of the warping constant given by Eq. (11). The maximum
difference between the numeric and analytic results is found to
be 5% which is due to the approximations made in deriving the tor-
sional constant. Nevertheless, this accuracy is deemed acceptable,
especially for the conceptual stage of design. It is worth mention-
ing that shape transformers of bending and shear were previously
validated [15–17] .
5. Selection charts for multi-objective case – mass minimization
and flexural stiffness maximization for torsional stiffness
design

The fundamental difference between single and multi-objec-
tive optimization is the number of optimal solutions. In single-
objective optimization, there is only one optimum solution,
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whereas in multi-objective optimization, several trade-off solu-
tions between conflicting objectives exist. Among these optimal
solutions, none can be considered to be better than the other
and thus are known as non-dominated solutions, namely Pare-
to-optimal solutions [22].

Methods to handle MOO problems can be loosely classified in
two categories. Within the first one, there are classical approaches
which involve specifying a priori a preference vector that scalarizes
an objective vector into a single composite objective function.
These are referred as preference-based methods, which are highly
subjective to the user definition of a reliable preference vector that
converts multi-objective optimization into a single-objective opti-
mization yielding only one optimal solution. The second category
of methods to handle MOO involves finding firstly all non-domi-
nated solutions and then using higher level information to choose
one of the obtained solutions. These methods are referred as a pos-
teriori approaches; they are appropriate to give a broad view of the
available alternatives, without the need to define a preference vec-
tor in advance.

In this paper, a posteriori approach is adopted to visualize
non-dominated solutions of a MOO problem where the design vari-
ables are the geometric properties, i.e. shape and size, and the
material attributes. In contrast to the penalty function method
adopted by Ashby [19] for material selection, the artificial/pseu-
do-weight method [22] is used here as it can also capture concave
Pareto front. The procedure is explained through the following
example.

Consider a rod, an element that forms the basic unit of most of
the complex structures. One end is assumed to be fixed to simplify
the study (though it could be easily extended to a simply sup-
ported beam). The objectives are to minimize its mass and maxi-
mize its flexural stiffness while complying with given torsional
stiffness and a manufacturing constraint (for example height/
breadth < 3). The candidate materials are Steel and Aluminum.
The shapes considered, here, are from the rectangle family, ellipse
Fig. 10. Both objectives (flexural stiffness and mass) plotted against each other for shap
describes solid cross-sections, which are at the upper boundaries of each shaded domain
the lower limiting curves of each shape family domain.
family, and triangle, since these are commonly used shapes. We
formulate the MOO problem as,

Minimize
1
P1
¼ WAq
ðWJT GÞq

Maximize
1
P2
¼ 6

5aGWSuv þ
12l2

bEWIuv3

 !

Subject to u1:55v2:45 ¼ 1
G=G0ð ÞWJT

v < 3u

9>>>>>>>>>>=
>>>>>>>>>>;

ð27Þ

The values of a and b [18] are 1 and 3 respectively for this case. For
the values of shape transformers for bending and shear, the reader
is referred to [15,16], whereas the values of the shape transformers
for torsion are listed in Table 1. The length of the rod is given as
.032 m. The analysis is divided into two cases: first, when the enve-
lope is allowed to scale in any direction; second, when the envelope
is constrained.

5.1. Co-selection of shape and material for a freely scalable envelope

For a given combination of shape and material, the objectives
and constraints are only function of the envelope multipliers (u,
v). This allows plotting both objectives against each other, as ex-
plained in Section 3. Fig. 9 shows the plot for the selected candi-
date solid shapes and materials whereas the visualization of
boundaries for shape families is illustrated separately in Fig. 9.
Each point on a curve, 1/P1 = f (1/P2) represents a candidate
cross-section differing in shape, size and material. The plot in
Fig. 9 is divided into four sectors with respect to the baseline
steel-squared cross-section at the center. The solutions in the sec-
tor C are both lighter and stiffer, thus the best. Those in the sec-
tors A and D are better by one objective. Those in sector B are
heavier and less stiff, thus the worst. To further narrow down
the optimal solutions, we draw a Pareto front as a dashed line.
e families. P2 refers to flexural stiffness and P1 to mass. As reported in Table 1, C = 0
; C = 1 represents the ideal case of very thin hollow cross-sections, which represent
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The solutions nearest to this front are optimal trade-off cross-sec-
tions. Although case-specific, a designer will be inclined towards
the cross-sections in sector C (as demonstrated in Fig. 9) which
illustrates that vertically scaled Aluminum-Triangle is the best
choice.

A rational approach to select the final optimum solution from
the Pareto set is to impart artificial/pseudo-weight vector to each
solution. Consider, for example, the Pareto-optimal set of the ver-
tically scaled steel rectangle (sector A), which corresponds to a
0% preference of the first objective and a 100% preference of the
second objective. This preference values can be associated to pseu-
do-weights by assigning a weight vector (w1, w2) = (0, 1). Likewise,
this strategy can be used to assign pseudo-weight vector to each
solution by estimating their location on the Pareto front. The
weight factor can be written as,
wi ¼
f max
i � f

f max
i � f min

i i

 !, XM

j¼1

f max
j � fj

f max
j � f min

j

 !
ð28Þ

where f min
i and f max

i denote the minimum and maximum values of
the ith objective function among the Pareto-optimal solutions.

When the trade-off among objectives is known, this knowledge
can be used to choose one of the non-dominated solutions, which
will closely match the information conveyed by the artificial
weight vector. For instance, if a similar trade-off between two
objectives is required, the solution closer to a weight vector (0.5,
0.5) should be chosen. In Fig. 9, this choice is illustrated by the ver-
tically scaled Aluminum triangle. Other weight factors pertaining
to the Pareto solutions are shown in brackets for the Aluminum
triangle.
Fig. 11. Four-quadrant-performance-chart de
To handle shape families, we follow the same approach, as
shown by the pseudo-weight vectors added as coordinate points
on the Pareto Front of Fig. 10 for the candidate families. Whereas
Fig. 9 shows the triangular cross-section to be the best among so-
lid ones, Fig. 10 shows a Pareto front divided into three regions,
each described by alternative combinations of material and shape
families. In particular, the Aluminum-Rectangle part represents
the optimum candidates if flexural stiffness is preferred; the Alu-
minum-Ellipse part if mass weighs more; and the Steel-Rectangle
one if both objectives are of the same importance. In the first
case, the hollow steel-rectangle family (vertical part of the Pareto
Front) is the best choice closely followed by the hollow Alumi-
num-Rectangle. In the second case, the hollow Aluminum-Ellipse
family (lower part of the Pareto Front) is the best selection
followed by hollow Steel-Ellipse. In the third case where both
objectives are given equal weights, the hollow Aluminum-
Rectangle family (central part of the Pareto Front) is preferable.
Fig. 10 helps also estimate the relative performance of thin walled
cross-sections with respect to solid cross-sections. The upper
boundaries of each colored-region represent solid cross-sections
described by C = 0, as defined in Table 1; C = 1 are ideal cross-sec-
tions with vanishing thickness.

It is noteworthy to mention that to solve the multiobjective
optimization problem, other classical approaches could have been
used, as opposed to the artificial/pseudo-weight method. For
example, assigning a priori weight factors to each objective is an
alternative, which might have two drawbacks. First, it might not
able to capture the whole Pareto Front even if a uniformly spaced
set of weight vectors is assigned, as demonstrated by Deb [22]. Sec-
ond, it cannot handle concave Pareto frontier.
monstrating the Pareto front (red curve).



J. Singh et al. / Materials and Design 32 (2011) 2909–2922 2921
5.2. Co-selection of shape and material for a constrained envelope

Consider a problem in which different constraints are applied to
the envelope, which is not free to be scaled. For example, these
geometrical constraints might be:

v ¼ 1:5; 0 < u < 0:9
v ¼ �0:82uþ 2:24; 0:9 < u < 1:75
u ¼ 1:75; 0:8 < v < 0

ð29Þ

To handle such a geometric constrained design, we resort to the
four quadrant-performance chart (Section 3) which involves plot-
ting the constraints on the uv plane. Regardless of the number of
constraints, this approach visualizes the relation between the deci-
sion space of the design variables and the objective space of the
objective functions. As explained in Section 3, the first quadrant
represents the decision space in which each constraint, e.g. geomet-
ric, manufacturing, flexural stiffness, torsional stiffness, mass,
strength, or/and cost, can be plotted. To plot these constraints, they
need to be expressed in terms of shape transformers and envelope
multipliers. This is explained with the example of a cost (of mate-
rial) constraint. The total cost of a material used in a mechanical
component can be written as;

Total cost / mass� cost=mass ð30Þ

Let ci be the cost per unit mass for material Mi. and C be the maxi-
mum allowable material cost. Assuming length as fixed, Eq. (30) can
be expressed as

area� ci � qi < C ð31Þ

And in terms of shape transformers and envelope multipliers, the
above constraint reduces to,

WAuvciqi < C ð32Þ

Eq. (32) represents a design constraint that can be plotted in the
first quadrant of the four-quadrant-performance chart. Likewise
by following the procedure explained in Section 3, different con-
straints can be plotted in the other three quadrants. For instance,
consider the example of the rod design (Section 5.1) where the geo-
metric constraint was expressed by Eq. (29). Two constraints, i.e.
torsional constraint and geometric constraint, can be plotted in
the first quadrant of Fig. 11. The projections of the relevant points
from the decision space to the third quadrant provide solutions in
the objective space. Each point of the green1 bubbles represents a
candidate solution satisfying the prescribed set of constraints. Visu-
alized in red, the Pareto frontier is the envelope of all non-dominated
solutions. The solutions lying either on or near the Pareto front offer
the best compromise as opposed to the others. Fig. 11 shows that
only three combinations of shapes and materials can meet the pre-
scribed design constraints. Among them, steel-ellipse is the optimal
choice if the designer decides a posteriori to assign an approximate
equal weight to both the objective functions. Obviously, other pref-
erence would lead to different optimal trade-off. Finally, to deter-
mine the final cross-section details, e.g. size, the projections of the
optimum trade-off points in the third quadrant can be traced back
to the first quadrant. Similarly, a designer can impose any additional
constraints in the design variable space and assess their impact on
the Pareto front of the objective function space.

6. Conclusion

In this paper, the method of shape transformers has been used
to formulate performance indices and develop design maps for the
1 For interpretation of color in Figs. 3, 5–11, the reader is referred to the web
version of this article.
co-selection of shape, size and material in single and multi-objec-
tive design. The proposed scheme has been exemplified by consid-
ering the case of torsional stiffness design. Formulated for torsional
stiffness requirement, the shape transformers have been used to
generate multiple performance charts that help visualize the per-
formances of different shapes. It has been shown that shape trans-
formers allow capture the efficiency limits that different
combinations of shape and material can achieve. From a compari-
son of open- and close-walled cross-sections, it appears that the
latter are in average 1000 times stiffer than the former. The maps
also show that for a fixed envelope, a hollow rectangular shape is
more efficient than a hollow circular cross-section in torsional
stiffness design. However, the results are different for other geo-
metric constraints.

The method of shape transformers has also been extended to
deal with multi-criteria selection of material, shape, and size. In
general, the main challenge of multi-criteria selection methods is
the ability to visualize simultaneously both the decision space
and objective space. We have achieved this by proposing a four-
quadrant-performance-chart that systematically establishes a vi-
sual relation between design variables and objective function
spaces. This method is particularly suitable at the concept stage
of design where numerical methods may prevent the user from
visualizing and gaining insight into optimal trade-off among de-
sign alternatives. Finally, the mathematical model used to formu-
late the performance indices gives results that are 5% below
those obtained with finite element analysis and are, thus, accept-
able for the preliminary stage of design.

Appendix A. Formulation of the performance index for mass in
torsion stiffness design

Let P0 be the performance index (mass) for the reference cross-
section (solid square). Then, the performance index, P1 for any arbi-
trary cross-section with respect to a reference cross-section can be
written as

P1

P0
¼ m0

m1
¼ q0

q1|{z}
Material

A0

A1|{z}
Geometry

ð33Þ

In terms of shape transformers and envelope multipliers, it can be
expressed as

P1

P0
¼ q0

q1

A0

A1
¼ q0

q1

1
WA

1
uv

� �
ð34Þ

Also, the ratio of the torsional stiffness of two cross-sections can be
expressed in terms of Shape transformers;

JT1

JT0
¼ JT1

JTD1

� �
JTD1

JT0

� �
¼ WJT1

JTD1

JTD0

� �
ð35Þ

where JTD1 is the torsional constant of the rectangular envelope
which encloses the shape of cross-section, JTD0 is the torsional con-
stant of the reference cross-section. Since the shape and the enve-
lope of a solid square are the same, JT0 is equal to JTD0. The ratio
of JT1/JTD1 is the shape transformer for torsion and JTD1/JTD0 repre-
sents the effect of scaling.

According to Roark’s stress and strain formulas [18], the tor-
sional stiffness of a rectangular cross-section is given by

JTD ¼
BH3

16
16
3
� 3:36

H
B
þ 0:28

H
B

� �5
 !

ð36Þ

where B and H are the width and the height of the rectangle, respec-
tively. The ratio of torsional constants of two envelopes expressed
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by Eq. (36) is not a handy formula. Thus to simplify the formulation,
we resort on the method of shape transformers in bending, where
the second moment of area is expressed as a product of B and H,
i.e. I = f (BH3); here, we would aim at finding an analogous expres-
sion, which will ease the derivation of the performance index.
Similar to the bending case, such a function is searched to be of
the type

JTD ¼ f ðB;HÞ ¼ aBb1 Hb2 ð37Þ

where a, b1, and b2 are the variables to be calculated. The maximum
error between the original and approximate function should be less
than 5%. Optimum values of a, b1, and b2 to minimize the error be-
tween Eqs. (36) and (37) has been found by formulating a minimi-
zation error problem which will yield the following expression

JTD ¼ ð0:15ÞB1:55H2:45 ð38Þ

Using Eq. (38) and the definition of the envelope multipliers u and v,
the relative torsional constant of two envelopes, JTD1/ JTD0, is given
by

JTD1

JTD0
¼ B1

B0

� �1:55 H1

H0

� �2:45

¼ u1:55v2:45 ð39Þ

Thus, Eq. (35) can be expressed as,

JT1

JT0
¼ JT1

JTD1

� �
JTD1

JTD0

� �
¼ WJTðu1:55v2:45Þ ð40Þ

Combining the stiffness requirement, i.e. JT0G0 = JT1G1, and Eq. (40)
gives

G0

G1
¼ JT1

JT0
¼ JT1

JTD1

� �
JTD1

JTD0

� �
¼ WJTðu1:55v2:45Þ ð41Þ

Rearranging the terms, the torsional stiffness constraint can be
written as

1
WJT

G0

G1

� �
¼ ðu1:55v2:45Þ ð42Þ

Based on Eq. (42), the envelope multipliers, u and v, can be found,

u ¼ 1
WJT

G0

G1

� �a

;v ¼ 1
WJT

G0

G1

� �b

ð43Þ

where

1:55aþ 2:45b ¼ 1 ð44Þ

Finally, the ratio of performance indices can be stated as,

P1

P0
¼ m0

m1
¼ q0

q1

1
WA

1
uv

� �
¼ q0

q1

1
WA

1

1
WJT

G0
G1

� �aþb

¼ q0

q1

WA0

WA1

WJT1G1

WJT0G0

� �aþb

ð45Þ

where a and b are obtained by taking natural logarithm from both
sides of Eq. (43), and are given by,
a ¼ lnðu1:55v2:45ÞðuÞ; b ¼ lnðu1:55v2:45ÞðmÞ ð46Þ

The ‘‘a + b’’ term in Eq. (45) is referred to as the scaling parameter, q.
Using Eq. (43), the scaling parameter, q, can be expressed in terms
of envelope multipliers, u and v, as

q ¼ aþ b ¼ lnðu1:55v2:45ÞðuvÞ ¼ lnðuvÞ
lnðu1:55v2:45Þ ð47Þ

Hence, a unique performance index can be assigned to each cross-
section, and can be expressed in terms of material, shape, and size
properties as,

P ¼ 1
m
¼
ðwJT GÞq

wAq
ð48Þ
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