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Experimental determination of Philodendron melinonii and Arabidopsis thaliana tissue
microstructure and geometric modeling via finite-edge centroidal Voronoi tessellation
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Plant petioles and stems are hierarchical cellular structures, displaying structural features defined at multiple
length scales. One or more of the intermediate hierarchical levels consists of tissues, in which the cellular
distribution is quasirandom. The current work focuses on the realistic modeling of plant tissue microstructures.
The finite-edge centroidal Voronoi tessellation (FECVT) is here introduced to overcome the drawbacks of the
semi-infinite edges of a typical Voronoi model. FECVT can generate a realistic model of a tissue microstructure,
which might have finite edges at its border, be defined by a boundary contour of any shape, and include
complex heterogeneity and cellular gradients. The centroid-based Voronoi tessellation is applied to model the
microstructure of the Philodendron melinonii petiole and the Arabidopsis thaliana stem, which both display
intense cellular gradients. FECVT coupled with a digital image processing algorithm is implemented to capture
the nonperiodic microstructures of plant tissues. The results obtained via this method satisfactorily obey the
geometric, statistical, and topological laws of naturally evolved cellular solids. The predicted models are also
validated by experimental data.
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I. INTRODUCTION

Plants and their organs frequently exhibit excellent me-
chanical features that can inspire the development of novel
technology and products. The study of their constituent
materials, structural attributes, and physical properties is thus
increasingly interesting to scientists and engineers. A plant
organ is generally composed of an assembly of cellular tissues
which make up its microstructure and largely govern its
physical properties. Each tissue has evolved to meet specific
functional requirements that guarantee plant survival in a given
environment. The way in which multiple tissues are geometri-
cally tessellated within an organ helps determine mechanical
performance and is important for achieving optimal structural
support. It has been demonstrated that the shape, size, and
spatial distribution of cells governs the physical, biological,
and structural properties of a cellular material [1,2]. Hence,
the ability to realistically model the cellular microstructure of
a plant tissue is crucial to the understanding of its mechanical
behavior [3].

Cellular structures in plants may appear quasiregular and
periodic. For example, cork and balsa wood are almost as
regular as honeycomb [4]. This type of structure can be
modeled using a repeated unit cell with a given geometric
shape. While important for analyzing the microstructure
of periodic cellular solids, this method cannot account for
the structural variations and imperfections inherent to most
natural cellular solids. An alternative technique, the Voronoi
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tessellation, can be used to generate an accurate representation
of a nonperiodic microstructure [5–7]. In previous works,
however, the actual cellular distribution of a natural structure
has not been considered in the generation of the virtual
model. In fact, the nucleation points of the Voronoi cells were
generated randomly, thereby yielding a structure that differed
significantly from the actual cell distribution of a real plant
tissue. Nevertheless, the structural analyses of these Voronoi
models delineated the dependence of the mechanical properties
on the randomness of nonperiodic microstructures.

A Voronoi tessellation is a partition or tiling of a d-
dimensional space into d-dimensional polyhedral cells. Such
technique has been applied in numerous fields including
biology, meteorology, metallurgy, crystallography, forestry,
ecology, geology, geography, computer science, and engineer-
ing [8–10]. Because of its capacity to capture the randomness
of a cellular pattern, this technique can be applied to model a
plant tissue, with its irregular cell shapes and sizes. A Voronoi
tessellation requires a partition of a given d-dimensional space
such that the distances between the points of a cell and
its center are minimized. Voronoi tessellation is extensively
used to model grain geometry for the characterization of the
properties of polycrystalline aggregates [11] and intergranular
cracks [12]. Mattea et al. [13] and Roudot et al. [14] pioneered
the use of Voronoi tessellation to model the microstructure of
fruit tissues. However, neither group was able to generate a
representative geometrical model that resembled the actual
tissue micrograph. Both groups aimed only to capture the
randomness of the fruit tissue microstructure without neces-
sarily producing a model that accurately represents the real
tissue. Mebatsion et al. [15] applied a Voronoi algorithm
to model the parenchyma tissue of different apple cultivars.
They developed virtual models using centroid-based Voronoi
tessellation (CVT) and Poisson Voronoi tessellation (PVT),
the latter model bearing a closer resemblance to the actual
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fruit parenchyma. Also in this work, however, the technique
is unable to differentiate between the actual cells and the
extracellular spaces that are present in the tissue. Moreover, the
cells are more elliptical in fruit parenchyma compared to those
in plant petiole and stem. Mebatsion et al. later developed a
new modeling technique, the ellipse tessellation, which was
able to generate a more accurate representation of the fruit
parenchyma [15,16].

This work is a part of a larger project which aims at not
only modeling the microstructure of plant tissues but also
characterizing their mechanical properties [17], the subject
of future work. The need to develop a realistic geometric
model of the plant tissues is crucial to understanding tissue
mechanics since certain mechanical properties are governed by
the architecture and structural distribution of the tissue. Given
that stem and petiole tissues are morphologically different
from fruit parenchyma, the Voronoi tessellation, specifically
the CVT, can be an appropriate modeling tool. However,
in a recent publication, Ntenga and Beakou [18,19] tried to
analyze the structure, morphology, and mechanical properties
of Rhectophyllum camerunense (RC) plant fiber using a
conventional Voronoi diagram. Due to inherent drawbacks in
the Voronoi (CVT) model, semi-infinite edges were present
at the boundary of the fiber, making the model unsuitable for
finite element analysis (FEA). To overcome this challenge,
Ntenga and Beakou developed a virtual model coupled with
a java-based image-processing program, IMAGEJ. This method
can be used to model an arrangement of cells bounded by an
irregular shape; however, one requirement for its application is
that the edges at the sample boundary need to be reconstructed
to obtain straight line edges.

The conventional CVT has the drawback that it yields
semi-infinite edges at the boundary. As a result, the mechanical
response of a microstructure with an irregular shape contour
is impossible to calculate. The main objective of this work
is the development of a comprehensive CVT-based technique
for generating geometric models that possess finite edges at
the sample boundary. The method is applied to model the
tissue microstructure using the image data of two species,
the dicot Arabidopsis thaliana and the monocot Philodendron
melinonii, which have inherently different tissue architecture
with regards to the placement of vascular tissue, as well
as the production of atypical aerenchyma by P. melinonii.
The method introduced here allows the modeling of a mi-
crostructure defined by a boundary of any irregular or regular
shape. It is here applied to model microstructures defined by
a boundary of either wedge-shape, or circular, or rectangular
form, displaying a highly nonperiodic cellular gradient. The
results are partially validated by topological laws as well as
experimental data.

II. MATERIALS AND METHODS

Although this work focuses primarily on the geometrical
modeling of plant tissues, the ultimate goal is to capture the
contribution of tissue microstructure to the structural behavior
of petioles and stems. Hence, while the technique presented
here is a generalized way to model plant microstructure, the
models have been generated with the aim of capturing the
mechanics of these organs through FEA.

FIG. 1. (Color online) (a) Maturing Arabidopsis thaliana plant.
(b) Micrograph of transversely sectioned Arabidopsis stem stained
with toluidine blue. Pith (Pi), xylem (Xy), phloem (Ph), endodermis
(En), cortex (Co), and epidermis (Ep) tissues are visible. Scale
bar = 300 μm.

A. Model plant species

Arabidopsis thaliana, shown in Fig. 1, is a flowering plant
that has become very popular as a model organism in genetics
and molecular biology [20]. It is a terrestrial plant, whose
primary inflorescence stem grows to a height of about 30 cm.
The small size, brief life cycle, and high fertility of Arabidopsis
make it amenable to rapid and large-scale experimentation.
Furthermore, the availability of thousands of mutant lines
makes it relatively trivial to grow plants that display subtle
architectural differences.

Philodendron melinonii is a relatively rare tropical plant
that is substantially larger in size, with petioles measuring
up to 1 m in length (Fig. 2). These petioles must support
large, heavy leaves against physical stresses such as wind and
precipitation. Aside from being lightweight and very stiff,
P. melinonii petioles display two unusual structural adapta-
tions: an aerenchymatous core and a broad, flat groove along
the apical surface. Aerenchymatous tissues are normally found
in the roots of aquatic plants, where they aid in gas exchange.
In their study of two related species, Hejnowicz and Barthlott
[21] reason that aerenchymae such as these primarily serve a
structural role, reducing the density and energetic cost of these
large petioles. The apical groove, meanwhile, gives the petiole
a peculiar D-shaped cross-section which may contribute to its
mechanical anisotropy. We examine these two species, whose
cellular structures are very dissimilar, to demonstrate the broad
applicability of FECVT in tissue modeling.

B. Growth conditions, sample preparation,
and image acquisition

Arabidopsis thaliana seeds were planted on solid AT media
[22] and stratified at 4 ◦C for 2–5 days. They were grown at
22 ◦C under continuous light before being transplanted onto
soil after 7–10 days. Stem segments were harvested at ∼5
weeks. Short segments from below the shoot apical meristem
were fixed in 0.5% glutaraldehyde, dehydrated, and embedded
in Spurr’s resin as described in Western et al. [23]. These were
cut into 1000-nm sections which were then stained with 1%
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FIG. 2. (Color online) (a) Adult Philodendron melinonii plant.
(b) Micrograph of transversely sectioned P. melinonii petiole stained
with toluidine blue. Aerenchyma (Ae) and vascular bundles (Vb) are
visible, as are three tissue layers: epidermis (Ep), parenchyma, and
aerenchymatous parenchyma. Scale bar = 1 mm.

toluidine blue O in 1% sodium borate. Images were acquired
with a Leica DM6000B microscope using OPENLAB [Fig. 1(b)].
In order to obtain high-resolution images of stems, individual
stem sections had to be photographed in pieces (e.g., one
photograph for the top half of the stem section and a second to
capture the bottom half of the section). These photographs
were digitally stitched together to form composite images
using Adobe Photoshop.

Fresh Philodendron melinonii petioles were collected from
the Montreal Botanical Garden. Small slices of petiole
were fixed in formaldehyde : acetic acid : alcohol (FAA),
dehydrated, and embedded in Paraplast Plus as described by
Ruzin [24]. These were cut into 8-μm sections and stained
with 0.05% toluidine blue O in sodium citrate. Sections were
imaged as above [Fig. 2(b)].

C. Voronoi tessellation technique

Given two points p1 and p2, their Voronoi regions in the
plane are the two regions on either side of the perpendicular
bisector of the line segment joining p1 and p2 [Fig. 3(a)]. This
bisector is the boundary edge of the Voronoi region. A Voronoi
microstructure is constructed based on a set of randomly
generated points called Voronoi sites. The cell boundaries are
drawn such that any point within the enclosed polygon is closer
to its Voronoi site than to the Voronoi sites of the surrounding
polygons. The Voronoi tessellation thus divides a space into

FIG. 3. (Color online) (a) Schematic illustrating the creation of
two Voronoi domains through the perpendicular bisector (solid line)
of the line segments joining p1 and p2. (b) 2D Voronoi region
generated for 50 randomly generated Voronoi sites.

as many regions as there are Voronoi sites [Fig. 3(b)]. Usually
in a two-dimensional space, two methods are used to generate
a Voronoi diagram. One is known as PVT, where points are
randomly distributed in space according to the Poisson point
process. The second one is the CVT, where the centroids of
the cells are used to construct the Voronoi diagram.

In a CVT, the associated generating points are centroids
(center of mass with respect to a given density function) of the
corresponding Voronoi cells. For a given domain D ⊆ RN and
a density function ρ(x) defined for x ∈ D, the center of mass
or centroid zc of D is given by

zc =
∫
D

xρ(x)dx∫
D

ρ(x)dx
. (1)

If an object has uniform density, its center of mass is the
same as the centroid of its shape. When the centroids of the
cells and Voronoi sites coincide, the resulting diagram is called
CVT.

D. Generation of a conventional CVT

1. Image segmentation

To model the microstructure, we need to calculate the
centroids of the cells present in a micrograph. This begins
with the segmentation of a color micrograph of plant tissue.
Segmentation refers to the process of partitioning a digital
image into multiple segments [25]. The goal of this process is
to simplify both the representation of an image and its analysis.
It helps to distinguish the cells and the cell boundaries from
the background. The simplest method for image segmentation
is known as “thresholding.” Based on an optimum threshold
value, thresholding converts a color or gray-scale image into
a binary (black and white) image. Thresholding is performed
here using Otsu’s method [26], a well-known algorithm for
global thresholding. The interclass variance of black and white
pixels of the binary image is minimized to compute a global
threshold value, which is a normalized value between 0 and 1.

2. Edge detection

Since plant tissue microstructures exhibit graded cellularity
as well as complex heterogeneity, thresholding is not sufficient
to identify the cells in a micrograph. An edge detection
algorithm is used in conjunction with thresholding to obtain
the cellular distribution accurately. The Canny edge detection
algorithm, which uses double thresholding, is applied here
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because it can detect true but weak edges [27]. In this
algorithm, the noise is first removed to smooth the image. Next,
the edge detector finds the image gradient to highlight regions
with spatial derivatives. The regions are tracked and the pixel
that is not at the maximum is suppressed. The gradient array is
then reduced by hysteresis, which is used to trace the remaining
pixels that have not been suppressed. The hysteresis uses two
thresholds and is set to zero (nonedge) if the magnitude is
below the first threshold. The edge is created if the magnitude is
above the high threshold. However, if the magnitude is between
the two thresholds, it is set to zero unless there is a path from
this pixel to a pixel with a gradient above the higher threshold.
As a result, the shape of the cell can be detected more precisely.

3. Calculation of centroids

The calculation of centroids depends on the region of
interest [28], a region of nonzero pixel value, which is 1 for a
binary image. Based on x and y coordinates of the pixels, the
first-order moments of the cells are computed. Since we are
working with a digital image, the moment equation is modified
into the following algebraic form:

mpq =
n1∑

i=1

n2∑

j=1

x
p

i y
q

j f (i,j ), (2)

where (xi,yj ) is the coordinate of the i,j th pixel, f (i,j ) have
value 1 if the i,j th pixel is in the shape and 0 otherwise.
Considering the region of interest, which is completely
enclosed in a rectangular region G of size n1 by n2 pixels,
i varies from 1 to n1 and j varies from 1 to n2 in the function
f (i,j ). For a two-dimensional (2D) region, p + q denotes the
order of moment, where p and q are integers.

The coordinates of a cell are

x̄ = m10

m00
and ȳ = m01

m00
, (3)

where the zeroth moment, physically, is equal to the area of
the region.

FIG. 4. (Color online) Arabidopsis stem modeled with the con-
ventional Voronoi tessellation. The unrealistic semi-infinite edges
appearing at the boundary of the figures are a limitation of this method.

4. Generation of CVT

After determining the centroids of the cells, which are the
Voronoi sites, the Voronoi tessellation is constructed based on
the QuickHull algorithm [29]. The outcome is a CVT (Fig. 4)
with semi-infinite edges at the boundary. Furthermore, while
there may be a clear boundary in the micrograph, there is no
specific boundary in the corresponding Voronoi model. The
semi-infinite edges complicate finite element analysis because
the boundary conditions, applied at an infinite distance, are
not realistic. This problem is especially difficult to correct in
models with irregular shape contour.

E. Finite-edge centroidal Voronoi tessellation (FECVT)

Conventional CVT is not sufficient to represent a mi-
crostructure with an arbitrary shape contour. To remove
the infinite edges from the boundary, the centroids of the
outermost cells should be determined. For each centroid, the
distances between the centroid and the surrounding Voronoi
sites (centroids of the surrounding polygons) are calculated
and the minimum distance is determined. An imaginary point
is created such that the distance between itself and the centroid
is half of the minimum distance. The imaginary point is
thus created for each of the selected centroids. The purpose
of generating the imaginary points is to create a boundary
using convex hull algorithm [29]. If a finite planar set of
points is given, the convex set of minimum area, which
contains the original set, is known as the convex hull. In
computational geometry, especially in computer graphics and
image processing, the set usually consists of n points (in two
or higher dimensions). In two dimensions, a convex hull is
the minimal polygon that encloses all the given points. Based
on the set of imaginary points and the convex hull algorithm,
a boundary is imposed, after which a Boolean subtraction
is realized. With this Boolean operation, the semi-infinite
edges are truncated and the vertices of the truncated edges
are reconnected to form the final boundary. Hence, the semi-
infinite edges are removed, and straight line edges are obtained
to create cell boundaries. The finite-edge centroidal Voronoi
tessellation (FECVT) technique is thus capable of capturing
the microstructure of an image with an arbitrarily shaped
boundary contour.

III. RESULTS AND DISCUSSION

Arabidopsis, a dicotyledon, displays a complex stem struc-
ture consisting of several tissue layers [Fig. 1(b)]. The core

FIG. 5. (Color online) FECVT model of the entire cross section
of Arabidopsis stem.
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FIG. 6. (Color online) FECVT model of a wedge section of the
Arabidopsis stem. Scale bar = 100 μm.

of the stem is composed of pith, a foamlike tissue composed
of large, thin-walled parenchyma cells. Surrounding this core
is a ring of fibrous xylem and interfascicular fibers, which
functions as the stem’s main structural support. Outside this
layer lie the phloem, the endodermis, and a thick layer of
cortical cells. An epidermal monolayer then surrounds the
entire stem. Although six types of tissues were identified,
the cross section of the inflorescence stem of Arabidopsis
thaliana displays mainly three layers of tissues. The outer
layer consists of epidermis (Ep), cortex (Co), primary phloem
(Ph), the middle layer is comprised of primary xylem (Xy)
and interfascicular fiber tissue (if any), and the inner layer
represents pith (Pi). These layers of tissues are used to
define the stem’s mechanical architecture and response to
mechanical perturbation [30]. The goal of the present work
is to capture the cellular distribution within a plant petiole or
stem; the results will be used in a future work to find out the
structural effects of the cellular microstructures, determining
the overall mechanical properties. The overall aim is to
understand how the natural cellular microstructure affects
the overall mechanical properties of a hierarchic cellular
structure. Since the method captures the cellular variations
in its virtual model, it is representative of the original cellular
structure. This relatively complex microstructure was modeled
using the FECVT method (Fig. 5). The FECVT model
represents the stem realistically, in a sense, capturing the
geometry of the cellular tissues. Using higher magnification to
capture more structural detail, a wedge-shaped portion of the
Arabidopsis stem was also modeled using the FECVT method
(Fig. 6).

P. melinonii, a monocotyledon, displays relatively simple
structural organization [Fig. 2(b)]. The interior of the petiole

FIG. 7. (Color online) FECVT model of an extract of the cross
section from a P. melinonii petiole.

is composed almost entirely of parenchyma cells. There is
a steady gradation in cell size, with the outermost cells
being the smallest and the innermost cells being the largest.

FIG. 8. (Color online) Cellular area distribution of tissue images
and corresponding FECVT and PVT models of entire Arabidopsis
stem (a), partial Arabidopsis stem, (b) and a section of P. melinonii
petiole (c).
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FIG. 9. (Color online) Frequency distributions of the polygon side of the FECVT and PVT models for the entire Arabidopsis [the solid
green (gray) and the downward diagonal], partial Arabidopsis [the solid red (dark gray) and the checker board] stem, and a portion of the cross
section of the P. melinonii [the solid aqua (light gray) and the upward diagonal] petiole. The average number of sides in the FECVT models
varies from 5.91 to 5.96; for the PVT models, on the other hand, it ranges between 5.86 and 5.92.

Vascular bundles, which contain stiff xylem cells, are scattered
randomly throughout this parenchymatous tissue. Once again,
an epidermal monolayer surrounds the entire structure. The
FECVT model of the P. melinonii petiole is shown in
Fig. 7. Since experimental data are used to formulate the
mathematical model, the accuracy of the model appears to
depend on the quality of the micrograph. Both the Arabidopsis
and P. melinonii tissue micrographs are used to generate the
respective FECVT models. The FECVT method, thus, can
capture the detail of cellular distribution if the micrograph
of the tissue microstructure is vivid and clear. However, the
polygons at the boundary of an FECVT model may differ in
shape and size from the boundary polygons of a conventional
CVT. We note here that the aerenchyma cells in the FEVCT
model partially match the real tissue, since each of the
aerenchyma cells is represented by more than one cell. As
a result of the staining process, the cells were stained with
toluidine blue O, and thus the aerenchyma cells were also
colored. Hence, during the image processing, each aerenchyma
appeared to be broken up into multiple cells. The boundaries
of these cells can be easily removed manually to form larger
aerenchyma cells. This will be done in a future work, when a
finite element analysis of the tissue is carried out.

The application of the Canny edge detection algorithm
significantly enhances the accuracy of detecting the cell bound-
aries. In the previous works [15,19], the tissue microstructures
were less complex in terms of variation of cell shape and
size and did not display an intense cellular gradient. On
the other hand, the microstructures examined in this work
are highly nonperiodic and heterogeneous [Figs. 1(b) and
2(b)], displaying remarkable cellular gradients. In the virtual
geometric models, the FECVT method shows its ability to
capture this complex heterogeneity and the graded cellularity.

The statistical characteristics are shown in Figs. 8–13. In
Fig. 8, both the original micrographs and the virtual models
(i.e., FECVT and PVT models) are considered, whereas in the
other figures, the characteristics are shown only for the virtual
models. The cell areas of the Arabidopsis and P. melinonii
tissues are determined using the image micrographs, and the
area distributions are used to validate the FECVT models. In
the original micrographs, the cell areas are calculated using
digital image processing based on the pixel information. The

FIG. 10. (Color online) Polygons of fewer sides are surrounded
by the polygons of more sides for different FECVT and PVT models.
In naturally evolved cellular structures, the few-edged cell has a
tendency to be in contact with several-edged cells and vice versa
[33,34].
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FIG. 11. (Color online) Aboav-Weaire law
for 2D topology. A linear relation between the
mean cell sides to the neighboring cell sides
for a random cellular structure. The upper three
equations in bold represent FECVT models and
the lower three equations represent PVT models.

cell areas from the different images and their corresponding
FECVT and PVT models are statistically compared in Fig. 8.
It is reflected in this figure that the variations of cell area
distributions of the FECVT and PVT models are subtle. The
cell area distributions for both the models conform to the
distributions of the corresponding image area. By contrast,
in a conventional Voronoi model with semi-infinite edges, the
areas of the virtual cells differ significantly with respect to
the original images since the boundary cell areas are large
due to semi-infinite edges. Figure 9 depicts the frequency
distribution of polygon shapes in different FECVT and PVT
models. Although both the FECVT and PVT methods create
cells with more than ten edges, we do not see such cell shapes in
the original micrographs. However, in contrast to PVT models,
the FECVT models are inclined to be hexagon dominated
where five-sided polygons are counterbalanced by seven-sided
polygons. The FECVT models display geometric randomness,
but they strongly tend to follow Euler’s law, which relates
the number of vertices V , edges E, and faces F of cells. As
a consequence of Euler’s law, an irregular honeycomb with
an edge connectivity of 3 should have, on average, six sides
per face. For a honeycomb with regular hexagonal cells, the
average number of sides is 〈n〉 = 6; in these centroidal Voronoi
models, 〈n〉 varies from 5.91 to 5.96 while for the PVT models,
〈n〉 varies from 5.86 to 5.92. Comparing the average cell sides
between the two types of models, the FECVT models have the
tendency to follow Euler’s law more strongly.

Biological tissues, soap bubbles, and polycrystalline grains
are natural examples of random, space-filling cellular net-
works. Despite large differences in length scales and formation
processes, all these cellular networks evolve to a steady state
with a similar structure. In most systems, the pinning of
boundaries by surface grooving leads to stagnation of grain
or tissue growth. This can be characterized by measuring
the spatial distribution of cell sizes, shapes, and their ge-
ometric correlations. There is a strong correlation between
the microstructural geometry and the structural properties of
space-filling networks. The interdependence between topol-
ogy, geometry, and physical dynamics of the spherulitic
grain size-shape arrangement in semi-crystalline polymeric
cellular networks has been shown both experimentally and

theoretically [31,32]. In naturally evolved cellular structures,
the few-edged cell has a tendency to be in contact with
many-edged cells and vice versa [33,34]. Since the FECVT
models represent plant tissues, they are expected to follow this
spatial distribution. In Fig. 10, we observe that polygons with
fewer sides tend to be surrounded by polygons with more sides
and that this holds true for all the models generated by both
the FECVT and PVT methods. We expect similar trends for
both types of models, since only the distribution of the points
is different in the Poisson Voronoi tessellation. Aboav-Weaire
[33,35] established a linear relationship between the mean cell
sides and the neighboring cell sides for an infinite random
cellular structure. This correlation is empirical and is satisfied
by a large number of naturally grown cellular structures.
According to the Aboav-Weaire law, on average, the sum of
the number of sides of the cells immediately adjacent to an
n-sided cell, nm(n) is linear in n such that

nm(n) = (6 − a)n + (6a + μ2), (4)

where μ2 is the second moment of the P (n), the probability
distribution of the number of edges and a, a system constant,
is a measure of nearest neighbor correlation that depends on
the topology. Generally, in biological structures, a is in the
order of 1 [36,37]. The second moment is defined as μ2 =∑

n P (n)(n − 〈n〉)2, where 〈n〉 is the average with respect to
the same distribution, P (n), and whose variance, var(n) =
(〈n2〉 − 〈n〉2) is a measure of topological disorder. However,
for finite networks with 〈n〉 �= 6, the topological model yields
the relation

nm(n) = (〈n〉 − a)n + [〈nm(n)〉 − 〈n〉2 + 〈n〉a]. (5)

A wide range of experiments conducted on various natural
structures have demonstrated that their cellular geometries
obey the above correlations [33,36–38]. In Fig. 11, the
tessellated models for both the FECVT and PVT methods
display a linear relationship between the mean sides of the
polygonal cells and the surrounding cells. For the FECVT
models, a ≈ 1, whereas for the PVT models, a ≈ 1.3. The
parameter a quantifies the deviation of the slope from the
average number of sides. Hence, the FECVT method is
apparently an appropriate tool for generating virtual models
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FIG. 12. (Color online) Comparison of the parameter 〈nm(n)〉,
for the FECVT models, obtained through the modified Aboav-Weaire
law [Eq. (4)] for 2D finite networks, and the probability distribution
of the polygonal cells for the respective models. The consistency of
the parameter 〈nm(n)〉 is shown.

of plant tissues. Furthermore, the consistency of the Aboav-
Wearie law for finite networks [Eq. (5)] is verified, calculating
〈nm(n)〉 using P (n) of the FECVT models shown in Fig. 9.

FIG. 13. (Color online) Relations between the average area of
cells and the number of polygon sides for the FECVT and PVT
models. The linear relationship between cell size (area) and shape,
stated in Lewis’s law, holds true for biological tissues and various
cellular networks.

Using the results for a, 〈n〉, and the intercept shown in Fig. 11,
〈nm(n)〉 is calculated from Eq. (5). The results are consistent
for both the Arabidopsis and P. melinonii tissues and are shown
in Fig. 12.

Another useful statistical measure, Lewis’s law, states that
the average area of a polygon with n sides 〈An〉 should be a
linear function of the number of sides n, which holds true for
various cellular networks and biological tissues [33,34,39–41]:

〈An〉 = 〈A〉[1 + λ(n − 6)], n � 3 (6)

where λ is a constant and usually, λ = 1/4 for a Voronoi
tessellation [42]. Mombach et al. [43] investigated five
different epidermal vegetable tissues and found the values of λ

in the range of 0.16–0.23. Figure 13 shows the correlation
between the sizes and shapes of the cells for the FECVT
models and the corresponding PVT models. In the virtual
tissues (Voronoi models) generated by both of the methods,
as expected, the average area 〈An〉 of the n-sided cells varies
monotonically with varying n. In the FECVT models, λ varies
from 0.27 to 0.33, whereas in the PVT models, λ varies from
0.23 to 0.43. Speculatively, we can say λ is influenced by
the dispersion of cell areas as well as the number of cells.
The values of λ for the FECVT models are close to its usual
value [42].

Topologically, the shape of the Voronoi polygons is con-
sidered to be a random variable. The polygons cannot be
defined and distinguished by their sizes or any other metric
measures alone. For this reason, we can use topological entropy
as a measure of randomness, i.e., a statistical measure of a
disordered pattern. The topological entropy St is defined as
St = −∑

n pn ln(pn), where St � 0 and pn is the probability
of finding n-sided polygons within a Voronoi diagram. For
perfectly regular and periodic patterns, the topological entropy
is zero. It increases with the increasing randomness of the
polygons in a region of interest [8]. The image entropies of
the whole and partial Arabidopsis micrographs are 2.1624 and
1.8456, respectively, while the corresponding FECVT models’
entropies are 1.8187 and 1.6658, respectively. In contrast with
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FECVT, the PVT models’ entropies are 1.5995 and 1.6421,
respectively. The image entropy is calculated from a gray-scale
image derived from a color micrograph. The entropic variation
between the image and its model is partly due to the conversion
of the image to gray scale and also to the original quality
of the micrograph. For the high-magnification wedge-shaped
micrograph, the image entropy and FECVT model entropy are
closer to each other. Cell boundaries tend to appear sharper
under higher magnification, which allows the corresponding
FECVT model to be as random as the natural microstructure.
In case of the P. melinonii petiole, the image entropy and
the FECVT, and PVT models entropies are 1.7141, 1.6223,
and 1.6191, respectively. The difference between the image
entropy and model entropy is narrower for P. melinonii due to
the larger number of cells and the higher image quality. How-
ever, for both species, FECVT model entropies are close to the
corresponding image entropies comparing with PVT models.
These statistical analyses demonstrate the applicability of the
FECVT method to a range of different tissue microstructures.
We emphasize, however, that the accuracy of the model in
capturing the microstructure is highly dependent on the quality,
resolution, and magnification of the micrograph.

IV. CONCLUSION AND FUTURE WORKS

The goal of this work is to generate a Voronoi model that
can realistically capture the microstructure of plant tissues. To
demonstrate the effective application of the FECVT method,
two distinct and complex nonperiodic structures displaying
graded cellularity have been modeled. The predicted FECVT
models are partially validated by topological laws as well as
experimental data and compared with PVT models. A number
of statistical and topological analyses manifest the appro-
priateness of the FECVT method in modeling plant tissues.

Furthermore, the purpose of this work is not only constructing
Voronoi diagrams but to give a realistic representation of plant
cellular tissues. The FECVT method can be used to capture
the microstructure of any shape in which the tissues display
complex heterogeneity and graded cellularity. The use of an
edge detection algorithm augments the ability of the FECVT
method to capture these types of geometries. The model can
be generated using MATLAB without the assistance of any other
image processing software and can be integrated directly with
FEA software (ANSYS) without the need for preprocessing.
Additionally, the FECVT method can generate a model with
finite edges, making it easier to study the mechanics of the
structure using FEA. The geometric models are representative
of the structures they mimic and allow us to computationally
model the elastic properties of a cellular tissue with higher
accuracy. The geometrical representation of a tissue can help
enhance our understanding of how microstructure determines
mechanical properties. It can also help us to develop predictive
models of known mechanical behavior.
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