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Abstract

This paper presents a general solution to the material performance index for the bending strength design of beams. In general, the
performance index for strength design is qq

f =q where rf is the material strength, q is the material density and q is a function of the
direction of scaling. Previous studies have only solved q for three particular cases: proportional scaling of width and height (q = 2/3),
constrained height (q = 1) and constrained width (q = 1/2). This paper presents a general solution to the exponent q for any arbi-
trary direction of scaling. The index is used to produce performance maps that rank relative material performance for particular
design cases. The performance index and the performance maps are applied to a design case study.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The minimisation of mass is a common objective in
the design of structures. Low mass can help produce
low cost, high technical performance and reduced envi-
ronmental impact. One way of minimising mass is to de-
fine a material index and select a material with the most
optimum value of the index. Shanley [1], Cox [2], Park-
house [3] and Charles and Crane [4] were some of the
first authors to define material indices for minimising
mass. Ashby and Weaver [5–7] have more recently re-
fined the methodology. In general, the performance in-
dex for strength design is given by

p ¼ rq
f=q; ð1Þ
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where rf is the material strength, q is the material den-
sity and q is a function of the direction of scaling.

For a particular structural problem, the lightest mate-
rial is identified by maximising the value of the perfor-
mance index, p. Previous studies on strength design
have produced solutions for q for three specific cases:
proportional scaling of width and height (r2=3

f =q) con-
strained height (rf/q) and constrained width (r1=2

f =q)
[8]. However, a cross-section can be scaled in an infinite
number of directions and there is a need for designers to
be able to calculate the material index for any direction
of scaling.

This paper presents a general solution to the expo-
nent of the performance index q for any arbitrary
direction of scaling. The paper considers the case of
bending strength of beams. When the direction of scal-
ing is known in a particular design problem, the value
of q and hence performance index can be calculated.
The performance index is used to produce maps that
rank the relative performance of different materials.
The design maps help the designers to visualise the
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Nomenclature

A cross-sectional area
B width (m)
D cross-section envelope dimensions (B H)
E Young�s modulus (GPa)
F functional requirements
H height (m)
I second moment of area (m4)
L length (m)
m mass (Mg)
M material properties
Mf moment failure requirement

p performance index
q power of the performance index
S shape of the cross-section
u linear multiplier of the widths
v linear multiplier of the heights
P load (N)
Z section modulus (m3)
ym furthest distance of a cross-section fibre from

neutral axis
q material density (Mg/m3)
rf material strength in bending (MPa)
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effect of the direction of scaling in material selection. In
the last section of the paper, the performance index
and the performance maps are applied to a design case
study.
2. Scaling of cross-sections

2.1. Different directions of scaling

Fig. 1 shows different directions of scaling of a gen-
eric cross-section. When the height to depth ratio is
kept constant, the cross-section is proportionally scaled
along direction Z from point A to point B. A horizon-
tal direction of scaling in direction X means that the
Fig. 1. Scaling of a beam cross-section in different directions.
Directions X, Y, Z are horizontal, vertical and proportional scaling
respectively. I, J, K are examples of scaling in arbitrary directions.
height remains constant. If there is vertical scaling in
direction Y, then the width remains constant. The
directions X, Y, Z are just three directions of scaling.
However, there are an infinite number of directions
for scaling a cross-section. For example, the directions
I, J and K shown in Fig. 1 are three arbitrary direc-
tions of scaling.

In strength design, the performance indices that indi-
cate optimal material for horizontal, proportional and
vertical scaling are known. However, the expression of
p is unknown when there is an arbitrary direction of
scaling, such as directions I, J, K as shown in Fig. 1.
The main objective of this paper is to find a general solu-
tion rq

f=q to select the best material for a cross-section
scaled in any direction such as I, J, K.

The direction of scaling of a cross-section can be
specified by two linear multipliers, u and v, where u is
the change in width and v is the change in height of
the cross-section. For example, v = 1 describes a hori-
zontal scaling and u = 1 describes a vertical scaling. Pro-
portional scaling of the cross-section (direction Z) is
described by u = v.
2.2. Reasons for scaling

Structural design generally involves geometrical con-
straints on the design space and this restricts the direc-
tions in which a section can be scaled. Geometrical
constraints exist because the components in modern sys-
tems and equipment are tightly integrated and a limited
allocation of space is given to structural members [9,10].
Fig. 2 shows three common examples of geometric con-
straints on the cross-section of a rectangular beam. In
the design of floor structures, there is often a height con-
straint which imposes a horizontal direction of scaling as
shown in Fig. 2(a). In the design of a wall structure, a
width constraint forces the cross-section to be vertically
scaled as shown in Fig. 2(b). In tightly constrained elec-



Fig. 2. Geometric constraints on the cross-sections of a beam: (a) height constraint, (b) width constraint, (c) negative slope constraint.
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tromechanical structures it is not uncommon to have a
geometrical constraint which results in a scaling direc-
tion at an inclined angle as shown in Fig. 2(c).

In addition to geometrical constraints, there may be
other reasons for scaling in certain directions, such as
availability of certain shapes or because of a certain type
of loading. For example, proportional scaling is appro-
priate when bending loads are applied to a cross-section
in more than one principal direction. In this case, a uni-
form increase (proportional scaling) of the section size is
the best type of scaling for minimising mass.
Fig. 3. The variables M, S and D describe the material, shape and
space variables of a cross-section.
3. Methodology

In order to derive a general solution to the material
performance index, rq

f =q, a new approach for modelling
the mass-efficiency of a structure is adopted as defined
by Pasini [11,12]. In the next section, we first introduce
the variables used to model the geometry of a cross-sec-
tion. Then we illustrate how these variables influence the
solution of the performance index.

3.1. Variables for modelling geometry

The methodology introduces two variables to de-
scribe the geometry of a cross-section: D and S. The var-
iable, D, models the rectangular envelope of a section
and specifies the sizes of that cross-section. The variable
S models the shape of a cross-section within the enve-
lope, D. Analytical definitions of S have been defined
by Pasini [11]. One advantage of the method is that
the separate contributions of material and shape can
be systematically identified.

In addition to the geometric variables (D and S), the
designer also has to select the material attribute vari-
ables, M. Therefore, a designer maximises the perfor-
mance by selecting the variables: M, S, and D subject
to the constraints of the problem. In Fig. 3, M, S and
D are shown for two cross-sections. This example shows
that S and M change while D remains constant because
the cross-sections are not scaled.
3.2. The performance index

In general, the main task of the designer is to choose
the best combination of the variables M, S and D in or-
der to maximise performance for a given set of require-
ments, F. The variables must be compatible with the
geometric constraints, such as those applied to the enve-
lope, D. If the performance index p is a measure of mass
efficiency, then the performance of a structure is a func-
tion f( ) of at least four groups of parameters

p ¼ f ðF ;D; S;MÞ: ð2Þ
This paper examines the selection of the optimum

material for structures which meet a given failure mo-
ment requirement. The general expression of the perfor-
mance index rq

f=q is presented for scaled cross-sections
with the same shape. We assume that the structures
are beams subjected to bending and that the materials
are homogenous, isotropic and obey Hooke�s law. The
bending failure moment is assumed to be the moment
that causes the onset of yield. In the case of composites,
the yield point may be the same as the ultimate tensile
strength and so when comparing results in this paper,
account should be taken that the failure mode for com-
posites may be more severe. The focus of this paper is
the selection of materials to minimise mass. However,
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the principles illustrated in this paper could be applied
to case studies where the performance criterion is that
of minimising cost.
4. Solution of Eq. (1)

The aim of the following analysis is to find a general
function q = f(D) for rq

f =q which can be applied for any
scaling direction.

4.1. Scaling of the section modulus

In order to produce a general solution for the perfor-
mance index it is necessary to define how the section
modulus scales as a function of u and v. For a given
material and set of design requirements, the mass m

and the bending moment Mf which causes failure in a
cross-section are given by

m ¼ qAL; ð3Þ

Mf ¼ rf Z; ð4Þ
where q is the density, A is the cross-sectional area, L is
the length of all the structures, rf is the material strength
and Z is the section modulus, i.e. Z = I/ym with I second
moment of area and ym the furthest distance of the outer
fibre from the neutral axis.

Consider two beams, 1 and 2, with different materials,
M1 6¼M2, but the same cross-section shape, S1 = S2 and
the same length L1 = L2. In this analysis, the shape of
the cross-section is assumed to be a rectangle and there-
fore the shape completely fills the envelope. As described
in Section 2.1, the direction of scaling between two
cross-sections is expressed by the multipliers u and v.
The values of u and v are given by

u ¼ B2

B1
;

v ¼ H2

H1
;

(
ð5Þ

where B and H are the width and the height of a cross-
section.

The ratio of the masses m1 and m2 of the beams, 1
and 2, of the same length L, is

m1

m2

¼ q1

q2

A1

A2

: ð6Þ

Since mass is minimised by maximising the performance
index (Eq. (1)), combining Eqs. (5) and (6) gives the ra-
tio of the performance indices for beams 1 and 2

p2

p1

¼ m1

m2

¼ q1

q2

1

uv
ð7Þ

In order to identify individual performance indices, p1

and p2, it is necessary to eliminate u and v from Eq.
(7). Therefore, we now seek expressions for u and v in
terms of the design requirement. In strength design, both
structures are required to meet the same moment failure
requirement, Mf, and therefore

rf 1Z1 ¼ rf 2Z2 ð8Þ
and

Z1

Z2

¼ rf 2

rf 1

: ð9Þ

The multipliers u and v can also be used to define the ra-
tio of the section modulus as follows:
Z2

Z1

¼ uv2 ð10Þ

Eq. (10) is now used to solve Eq. (7) for different direc-
tions of scaling.

4.2. Horizontal scaling: v = 1

When the height of the two structures is constrained,
v = 1, and from Eq. (10) the variable u is given by

u ¼ Z2

Z1

: ð11Þ

The ratio of the performance indices, Eq. (7), is given by
combining expressions (9) and (11)

p2

p1

¼ q1

q2

Z1

Z2

¼ q1

rf 1

� �
rf 2

q2

� �
: ð12Þ

From Eq. (12) it can be seen that the material index is
p = rf/q which is consistent with previous results of
Ashby [8] and others.

4.3. Vertical scaling: u = 1

When the width is constrained u = 1, and deriving v

from Eq. (10) gives

v ¼ Z2

Z1

� �1
2

: ð13Þ

Eqs. (9) and (13) are combined with Eq. (7) to give the
following ratio of the performance indices

p2

p1

¼ q1

q2

Z1

Z2

� �1
2

¼ q1

ðrf 2Þ
1
2

 !
ðrf 1Þ

1
2

q2

 !
: ð14Þ

From Eq. (14) it can be seen that the performance index
is p ¼ r1=2

f =q, which is consistant with previous results of
Ashby [8] and others.

4.4. Arbitrary scaling, u 6¼ 1 and v 6¼ 1

For arbitrary scaling conditions u 6¼ 1 and v 6¼ 1. We
seek a solution such that

p2

p1

¼ q1

q2

Z1

Z2

� �q

¼ q1

ðrf 2Þq
� �

ðrf 1Þq

q2

� �
; ð15Þ

where q = f(D) is yet to be determined.
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For u 6¼ 1 and v 6¼ 1 we write

u ¼ Z2

Z1

� �a
;

v ¼ Z2

Z1

� �b
:

8><
>: ð16Þ

Deriving the exponents a and b from Eq. (16) and using
Eq. (10) gives

a ¼ lg
Z2
Z1

� �u ¼ lg uv2ð Þu;

b ¼ lg
Z2
Z1

� �v ¼ lg uv2ð Þv:

8>><
>>: ð17Þ

We now use Eq. (16) to rewrite Eq. (10) as

Z2

Z1

¼ uv2 ¼ Z2

Z1

� �aþ2b

: ð18Þ

The exponent q is given by

q ¼ aþ 2b ¼ log uv2ð Þuv ¼ ln uv
ln uv2

: ð19Þ

Eq. (19) represents the general solution to the exponent
q of the performance index rq

f=q for the strength design
of beams. As shown in Eq. (19) q is a function of the
scaling parameters u and v and hence is a function of
the direction of scaling.

Fig. 4 shows a plot of results of q = f(u, v). These re-
sults are consistent with the previously determined re-
sults of q = 2/3, q = 1 and q = 1/2 for proportional
scaling, constrained height and constrained width
respectively. The figure shows that for two curves
uv2 = 1 and uv = 1, q is unbounded (i.e. q = ±1) and
zero respectively.
Fig. 4. Solution of q (Eq. (19)) for all directions of scaling.
The results give an indication about the relative
importance of the strength and density of a particular
material and for different directions of scaling. When a
cross-section is scaled for low values of q (such as a
width constraint where q = 1/2), then the density is rel-
atively more important than the strength. In contrast,
when the scaling is such that q P 1 (such as a horizontal
or negatively sloped constraint as illustrated in Fig.
2(c)), strength is relatively more important compared
to density. This shows that the direction of scaling has
a very important effect on material selection.

Fig. 4 shows examples of arbitrarily scaled rectangu-
lar sections of different materials. The diagram shows
how scaling of a cross-section changes the value of q

and hence changes the material index. The diagram is
split into regions for convenience so that a designer
can immediately observe significant changes in the value
of q. If a reference structure A, for instance, has a cross-
section of unit dimensions, and is rescaled so that
u = 0.55, v = 1.5, point A moves to point K and
�1 < q < 0. Alternatively, if point A moves to point
J, then 0 < q < 1/2. In both cases, q can be obtained
from Eq. (19) and the material index can be calculated.

In the following section we show that materials with
high rf, such as steel, perform relatively better for high
values of q. In addition, we present useful q ranges
where one material provides lower mass compared to
others.
5. Material performance maps

The general solution to the performance index (Eqs.
(1) and (19)) enables a comparison to be made between
the performance of different materials for any direction
of scaling. Examples of a full range of solutions for the
performance index for three materials are shown in Fig.
5 with the material data shown in Table 1. The perfor-
mance index has been plotted as a function of the scaling
parameter q using values of rf and q. When the direction
of scaling is known in a design task, q can be calculated
from Eq. (19) and the relative performance of different
materials can be immediately determined from Fig. 5.

The intersection points of two curves in Fig. 5 repre-
sent values of the scaling parameter q where different
materials perform equally. Thus when q > 1.28, steel
cross-sections have a better performance index than
CFRP and GFRP cross-sections. When the scaling
parameter q < �0.05, all GFRP rectangular cross-sec-
tions provide the best performance compared to steel
and CFRP.

The parameter q is the scaling parameter. The rela-
tionship between u and v can be found by inverting
Eq. (19) so that

v ¼ u
ð1�qÞ
ð2q�1Þ: ð20Þ



Fig. 5. Performance of three materials for a range of values of q. (CFRP = carbon fibre reinforced plastic; GFRP = glass fibre reinforced plastic.)

Table 1
Materials properties

Material Bending failure
strength rf (MPa)

Density q (Mg/m3)

Steel 990 7.9
CFRP 300 1.7
GFRP 100 1.8

Fig. 6. Material performance ma
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Curves of special q values for which two materials have
the same performance index can be plotted and then
limiting material regions mapped. These special values
of q are plotted in Fig. 6 using Eq. (20). Fig. 6 shows re-
gions where the performance of one material is relatively
better compared to the others. For example, in strength
design all the rectangular cross-sections manufactured
p for Steel, CFRP, GFRP.



Table 2
Design data for case study

Failure
strength

Density Length End
load

Moment failure
requirement

rf (MPa) q (Mg/m3) L (m) P (KN) Mf (KN m)

CFRP 300 1.7 1 50 50
Steel 990 7.9 1 50 50
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from steel provide the best performance index in the re-
gion where q > 1.28. In the case where �0.05 < q < 1.28,
CFRP is always the best material, however GFRP is the
second best choice only for �0.05 < q < 0.65, as shown
in Fig. 5. Alternatively all cross-sections scaled so that
they lie in the GFRP region always provide minimum
mass compared to steel and CFRP. The design case gi-
ven in the next section will show an application of the
material performance maps.
6. Design case study

We now apply the performance index and the mate-
rial performance maps to a practical case study shown
in Fig. 7. A 1-metre cantilever beam has to be designed
to support an end load of 50 KN without failing. Two
candidate materials are considered: steel and CFRP.
Both materials are constrained to have a rectangular
cross-section. The size of the CFRP section is
10 · 10 cm in both cases. Two geometrical constraints
on the design space are examined. One involves a height
constraint with q = 1. The second involves a sloped con-
straint at an angle of 38� with q = 1.44. These conditions
Fig. 7. The cantilever and its cross-sections in two different geometrically
constraint (h = 38, q = 1.44).
are shown in Fig. 7. Tables 2–4 present the data of the
study.

6.1. Material performance map

The limiting regimes for the height constraint are
illustrated in Fig. 8. In this case q = 1 and, for a given
failure moment, a steel rectangular cross-section lies
within the region where CFRP is better. Therefore
CFRP provides lower mass for the horizontal height
constraint.

The limiting regimes for the sloped constraint
(q = 1.44) are illustrated in Fig. 9. The same CFRP sec-
tion 10 · 10 cm is compared with a steel rectangular
cross-section. The sloped constraint dictates the direc-
tion of scaling. Fig. 9 illustrates that this constraint
constrained conditions: (a) height constraint (h = 0, q = 1), (b) slope



Fig. 9. Material performance map for a sloped constraint, h = 38�.Fig. 8. Material performance map for a height constraint.

Table 3
Results for the height constraint (h = 0�, q = 1)

Width Height Width
multiplier

Height
multiplier

Power of
performance index

Performance
index

Mass Mass
saving

B (cm) H (cm) u v q p ¼ rq
f

q m (Mg)

CFRP 10 10 3 1 1.00 176.5 0.017 29%
Steel 3 10 1.00 125.3 0.0237

Table 4
Results for the sloped constraint (slope h = 38�, q = 1.44)

Width Height Width multiplier Height multiplier Power of performance index Performance index Mass Mass saving

B (cm) H (cm) u v q p ¼ rq
f

q m (Mg)

CFRP 10 10 0.105 1.7 1.44 2225.9 0.017
Steel 1.05 17 1.44 2687 0.014 17%
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intersects the region where steel performs better than
CFRP. This is in contrast to the first case, and the steel
cross-section has lower mass than CFRP. The reversed
ranking of steel and CFRP for the two constraints con-
sidered can be seen from Fig. 5 which shows that steel
performs better than CFRP when q > 1.28.

The numerical results based on the general solution
of the performance index are reported in Tables 3 and
4. For a horizontal constraint CFRP gives a mass saving
of 29%. However, when there is a sloped constraint steel
gives a mass saving of 17%. This case study demon-
strates that the direction of scaling can have a very sig-
nificant effect on the optimal choice of material. In
particular, high-density materials like steel can perform
surprisingly well in a confined space. This observation is
consistent with the results of other related work [13,14].
7. Conclusion

Geometric constraints on the design space restrict the
direction of scaling in material selection. Therefore,
designers need a generalised material index that can cope
with any arbitrary direction of scaling. The performance
index for the bending strength design of beams has been
previously only derived for proportional, horizontal and
vertical scaling. In this paper we have adopted a method-
ology that can model the scaling of a cross-section when it
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is scaled in any arbitrary direction. The new methodology
has enabled the general solution for the performance in-
dex for strength design to be determined.

Results of the general solution of the performance in-
dex have been plotted for steel, CFRP and GFRP. The re-
sults give an indication about the relative importance of
the strength and density of a particular material and for
different directions of scaling. When a cross-section is
scaled for low values of q (such as a width constraint
where q = 1/2), then the density is relatively more impor-
tant than the strength. In contrast, when the scaling is
such that q P 1 (such as a horizontal or negatively sloped
constraint), strength is relatively more important com-
pared to density. This shows that the direction of scaling
has a very important effect on material selection. It also
helps to explain why high-density materials like steel per-
form relatively well in tightly constrained spaces.
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