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Existing mechanical metamaterials are typically designed to either withstand
loads as a stiff structure, shape morph as a floppy mechanism, or trap energy
as a multistable matter, distinct behaviours that correspond to three primary
classes of macroscopic solids. Their stiffness and stability are sealed perma-
nently into their architecture, mostly remaining immutable post-fabrication
due to the invariance of zero modes. Here, we introduce an all-in-one repro-
grammable class of Kagome metamaterials that enable the in-situ repro-
gramming of zero modes to access the apparently conflicting properties of all
classes. Through the selective activation of metahinges via self-contact, their
architecture can be switched to acquire on-demand rigidity, floppiness, or
global multistability, bridging the seemingly uncrossable gap between struc-
tures, mechanisms, and multistable matters. We showcase the versatile gen-
eralizations of the metahinge and remarkable reprogrammability of zero
modes for a range of properties including stiffness, mechanical signal guiding,

buckling modes, phonon spectra, and auxeticity, opening a plethora of
opportunities for all-in-one materials and devices.

In condensed matter physics, a zero mode (ZM) denotes a particular
deformation pattern in a system incurring a fairly low energy cost.
ZMs are prevalent in both natural and technological worlds across a
wide spectrum of length scales, with examples encompassing but not
limited to the shearing of non-viscous fluids and pentamode
materials>®, the Guest-Hutchinson mode in the Kagome lattice®, and
the deployment/retraction of origami-based solar arrays. ZMs are
fundamental in sealing the physical properties, e.g., stiffness and sta-
bility, of a system, as they represent the most energy-favored pathways
of deformation that arise in response to an external stimulus. The
intrinsic relation between ZMs and the fundamental physical char-
acteristics contributes to explaining why the notion of ZMs can be
used to classify a macroscopic solid into one of three classes, each with
its own response that can be diametrically opposite to another (Fig. 1a).

A finite number of ZMs typically defines a mechanism (left in Fig. 1a),
which is floppy and hence apt to shape morph but often lacking load-
bearing capacity. In contrast, a kinematically determinant structure
has no ZMs (right in Fig. 1a), thus showing promising rigidity and
robust stability. In between them is a multistable matter (middle in
Fig. 1a), which resembles a stable structure around its energy local
minima, whereas it behaves akin to an unstable mechanism near its
energy local maxima.

Over the past two decades, each individual class of solids (Fig. 1a)
has inspired the architected design of mechanical metamaterials
attaining a plethora of often strikingly dissimilar mechanical char-
acteristics. The concept of mechanism, for instance, has inspired the
design of highly morphable metamaterials®'; the notion of structure
has been fundamental to boost the stiffness-to-weight ratio™", and
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Fig. 1| Role of zero modes in macroscopic solids and activation of a topolo-
gically transformable metahinge. a Primary categories of solids at the macro-
scopic scale, classified with respect to the number of zero modes. b Nearly singular
deformation mapping in a solid domain, allowing the formation of a flexible hinge
(top row); topology-transformation in a multibody architecture leading to the
formation of a contact-induced metahinge (middle and bottom rows). ¢ A quarter
of the architecture is annotated with key geometry parameters and its deformed
configuration. d Distinct energy landscapes emerging during activation for given
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geometric parameters; spots in distinct colors correspond to the activated state on
each energy landscape; E is Young’'s modulus of the elastic constituent material,
and ¢, is the out-of-plane thickness. e Contour plot of (L — L')* /L* in the design
space defined by A'B/AA’ and OC/AA’. f Force-displacement relation describing
metahinge activation; insets show deactivated (initial) and activated states; the
experimental uncertainty domain is obtained by performing identical compression
tests at intervals of 10 cycles of activation and deactivation.

that of multistability for self-sustained reconfiguration” and elastic
energy trapping'. Most existing metamaterials, however, lack versa-
tility. Once fabricated with the characteristics of one sole class of
solids, they cannot offer those of the others because their architecture
is imprinted with an unchangeable number and pattern of ZMs. They
behave as either a structure, a mechanism, or a multistable matter,
hence inheriting the intrinsic stiffness and stability of the class of solids
they belong to. To enable on-the-fly adjustment of stiffness or stability,
reprogrammable mechanical metamaterials have been rationally
designed to incorporate field-responsive constituents™ " or reconfi-
gurable architecture® %%, A subset of reconfigurable metamaterials
has been designed to provide adjustable kinematic determinacy that
allows a transition between a structure and a mechanism'*°%, offering
a remarkable degree of stiffness reprogrammability. Materials exhi-
biting adjustable geometry incompatibility” or local confinement***
can also provide reprogrammability of their stability, enabling a
seamless transition between a structure and a multistable matter.
Existing reprogrammable metamaterials, however, can only transition
between two of the three primary classes of macroscopic solids, falling
short in integrating all of them into a single unitary piece of material
offering three dissimilar palettes of mechanical properties-rigidity,
floppiness, and multistability.

This work introduces an all-in-one class of reprogrammable mat-
ter that resolves what has been so far out of reach: crossing the
response boundaries between all three classes of macroscopic solids
post-fabrication, and enabling the acquisition and switch on site of the
traits of each class as desired. This versatility stems from a reversible
process entailing the in-situ activation and deactivation of ZMs, which
metamorphs the internal architecture to take on the properties of
either a compliant mechanism, a rigid structure, or a multistable
matter. We demonstrate how to reprogram the ZMs to reconcile the
seemingly conflicting mechanical characteristics of all three classes,
hence demonstrating multifunctionality across a wide and diverse
spectrum of applications. These include - but are not limited to - on-
demand mechanical signal guiding, stiffness tuning, selective sup-
pression of buckling modes, mechanical logic operations, tunable
phonon spectra, and switchable auxeticity.

Results

Activation of metahinge enabling isochoric reconfiguration
The ZMs of a mechanical metamaterial, also known as internal
mechanisms?, are generally realized by connecting relatively bulky
bodies via flexible hinges’?, hence forming an architecture where the
strain energy concentrates within the flexible hinges while the
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relatively bulky bodies remain nearly undeformed. To activate/deac-
tivate a ZM entails enabling the emergence or vanishing of flexible
hinges. The most intuitive strategy to form a flexible hinge in a con-
servative system is to squeeze a finite volume of a solid domain into a
tiny region Q, i.e., a flexible hinge (upper part of Fig. 1b), a process that
generally leads to a nearly singular deformation gradient F typically
accompanied by excessive material stretching; this requires an abun-
dant amount of energy typically resulting in irreversible plastic
deformation or material damage.

An alternative solution to avoid excessive material stretching
while still ensuring the formation of a flexible hinge, is to introduce
rationally designed perforations into the solid domain. This strategy
allows material points on opposite boundaries to engage and form a
flexible hinge through local rotation®. Fig. 1b (middle) shows a perfo-
rated architecture that embodies this principle; it comprises elastic
beam-type components (blue) and rigid components (black). In the
initial state, its Euler’s characteristic is x =— 2. Under the squeeze of a
pair of activation forces (red arrows in Fig. 1b), the architecture can
undergo moderate local rotation, making the pairing edges (purple)
and hinges (green) get close and eventually merge due to self-
contact?®*. This process of activation transitions the architecture to
another topological state characterized by a dissimilar Euler’s char-
acteristic, y=—1. In this activated state, a contact-induced metahinge
emerges, empowering the architecture with a rotational ZM about the
metahinge. Despite the significant changes in shape and topology,
there exists no excessive material stretching in the elastic beam-type
components, thus realizing an energy-efficient and reversible activa-
tion process.

The process of metahinge activation, which features reflection
symmetry, can be monostable or bistable depending on the spacing
angle between pairing triangles (2a in Fig. 1b) and the geometry
incompatibility (8 in Fig. 1c). Through a theoretical model (Supple-
mentary Note 1), we study the energy landscapes during activation for
varying geometric parameters, i.e., adjusting OC and A'B to alter a and
B. Three main cases exist. For a<pf, e.g., A'B/AA'=0.7 and
OC/AA’=0.6, the self-contact between pairing edges occurs prema-
turely and prevents the architecture from reaching its second stable
state, thus resulting in a convex and monostable energy landscape
(dashed blue curve in Fig. 1d). For a>28, e.g., AB/AA'=0.4 and
OC/AA’ =22, the architecture is bistable, but its second stable state is
a zero-energy state in the absence of self-contact (red spot on the
dotted curve in Fig. 1d), meaning that a rotational ZM cannot emerge.
Only for B<a<2p, both bistability and edge contact take place, as
shown by two representative energy landscapes plotted with solid
curves in Fig. 1d.

An initial version of the above architecture has been leveraged to
create one-dimensional mechanical metamaterials with repro-
grammable bending stiffness® and local resonance®®. Upon activation,
the architecture changes its horizontal length, denoted as 2L -2L
(Fig. 1b), an outcome that can result in global geometry frustration® if
this architecture is used as a building block of a tessellated two-
dimensional metamaterial. Geometry frustration can substantially
alter the volume and external shape of the material, rendering it
incompatible with its original boundaries. The architecture previously
reported™?° fails to address the challenge of geometry frustration,
which is resolved here. Upon activation, the horizontal span of our
metahinge can be redefined to remain invariant, hence enabling an
isochoric reconfiguration process that effectively eliminates undesir-
able geometry frustration. By tuning OC/AA’ and A'B/AA’, we can
effectively alter the length change L' - L and eventually find conditions
that are length preserving. In Fig. 1d, for instance, the yellow energy
landscape exhibits (L' - L)/L = 0.04, corresponding to a length change
~27 % that observed in the blue energy landscape, where (L'—L)/
L =0.15. With these insights, we generate a design map where the

dimensionless ratio (L — L*)2 /L2 is plotted with respect to the design
variables, OC/AA’ and A'B/AA’. Two curves, a = and a = 2 bound the
feasible design space. Within the dark blue region in the feasible design
space, we ultimately select a pair of values, OC/AA'=2.2 and
A'B/AA’ =0.7 (green spzot in Fig. 1e), that guarantee nearly negligible
length change (L — L") /L? of -1.4x10™* as well as a well-merged
metahinge in the activated state of the as-manufactured specimen.
Fig. If illustrates the force-displacement relation of the specimen that
preserved its length upon activation. A pronounced snap-through
instability appears under a pair of squeezing forces, followed by an
abrupt and steep rise of the reaction force F, at the onset of self-
contact (purple spot on the solid blue curve in Fig. 1f). The reaction
force F,, does not display a significant negative value mainly due to the
viscoelasticity of the base material and the untethered loading con-
dition, yet the activated state can be robustly preserved with self-
contact. On the other hand, the metahinge is deactivated if a
boundary-pulling force is applied to overcome the energy barrier and
restore its original shape (Supplementary Movie 1). To demonstrate
the repeatability of the metahinge, we cyclically performed the acti-
vation and deactivation process. At intervals of every 10 cycles, we
recorded the corresponding force-displacement relation for activa-
tion. This set of data is plotted as the experimental uncertainty domain
shown in Fig. 1f. Plastic deformation may develop within the flexible
hinges and stabilize after a certain number of cycles®’. The 101* acti-
vation exhibits a limit force of 10.7 N, a value that is ~82% of that of the
1** activation. Despite this, the metahinge after cyclic usage can still
promise a robust activated state, and the rotational ZM post-activation
is well preserved.

Isochoric reconfiguration from a honeycomb structure to a
Kagome mechanism
The architecture shown in Fig. 1b can be treated as a one-dimensional
bistable element that can be connected in a two-dimensional network
to form a planar metamaterial capable of isochoric reconfiguration;
this material is a unitary piece that can reversibly switch between a
structure and a mechanism; its mechanisms of isochoric reconfigura-
tion enable the arbitrary activation of selected metahinges without
encountering geometry frustration, a distinct advantage over the
existing literature'****°. To study this phenomenon, we first examine a
network with nodal connectivity Z=3, i.e., three bistable elements
converging to each vertex (Fig. 2a). Each vertex of the network is a rigid
joint, disallowing free rotation. In the initial state (see fabricated finite-
period specimen at the bottom of Fig. 2a), the metamaterial resembles
a hierarchical honeycomb structure with no ZMs. Upon a sequence of
local activation forces (Supplementary Movie 2), the honeycomb
structure undergoes an isochoric reconfiguration where all the meta-
hinges are activated. We point out that the activation sequence has a
negligible influence on the resulting activated state due to the iso-
choric characteristic of each metahinge. Therefore, any consecutive
actions of activation are independent of each other. In the fully acti-
vated state, the honeycomb structure becomes a hinged Kagome
mechanism featuring multiple floppy ZMs, as shown in Fig. 2b. In
contrast to conventional multistable mechanical metamaterials'**>,
which undergo state transitions through boundary compression/ten-
sion, our metamaterial in its initial state (Fig. 2a) is highly robust in
resistance to boundary loads, as a boundary action of compression/
tension is unable to induce the required counter-rotation that can
activate each pair of triangles. Its state transition is triggered only when
local activation forces are applied to pairing hinges that are about to
merge, a characteristic implying that its initial state is to some extent
protected by local geometry and is insensitive to boundary
perturbations.

To characterize how the activation of multiple metahinges influ-
ences the mechanical properties of the metamaterial, we performed
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Fig. 2 | Reprogramming zero modes in Kagome metamaterials through iso-
choric reconfiguration. a Kagome metamaterial with all its metahinges being
deactivated, resembling a honeycomb structure; white scale bar 44 mm:; inset at the
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Kagome metamaterial; white scale bar 44 mm; inset at the bottom-right corner is
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compression tests on specimens in both their fully deactivated (initial)
and activated states. Figure 2c illustrates their force-displacement
curves with snapshots captured during the loading process. The fully
deactivated metamaterial specimen behaves as a planar structure and
undergoes a homogeneous bulk deformation mode (insets i and ii of
Fig. 2¢), i.e., an affine deformation response®*; the effective compres-
sion stiffness in this deactivated state is 2.15 N/mm. Upon being fully
activated, the metamaterial specimen becomes extremely floppy; it
visibly wilts under self-weight when positioned on the compression
platform (inset iii of Fig. 2c). Here the compression mainly leads to the
localized deformation of the Kagome mechanism at the contact area
(insets iii and iv of Fig. 2c), delivering an effective stiffness of 0.46 N/
mm. In a nutshell, from the fully deactivated state to the fully activated
state, the emergence of multiple ZMs enables a remarkable reduction
in compression stiffness of ~79%, and the deformation changes from a
homogeneous bulk mode (affine) to a localized (non-affine) mode*
(Supplementary Movie 2).

Lattice analogy for isochoric reconfiguration of Kagome
metamaterials

To predict the number and pattern of ZMs in a Kagome metamaterial
with arbitrarily activated metahinges, we now introduce a lattice ana-
logy. The fully activated Kagome metamaterial (Fig. 2b) is a Maxwell
lattice that can be represented by an assembly of hinged triangular
frameworks®, as shown at the top of Fig. 2d. Each vertex in the fra-
mework is a contact-induced metahinge allowing free (low-energy)
rotation around its center. The black edges illustrated in Fig. 2d are the
nearest neighbor (NN) bonds*” connecting each metahinge to its
nearest neighboring metahinge, showing axial stiffness kyn. If the
contact-induced metahinge is deactivated, the low-energy rotation
vanishes, a scenario that is equivalent to adding a pair of the next
nearest neighbor (NNN) bonds™*, with axial stiffness knnn, to the
triangular frameworks (middle of Fig. 2d). The lattice analogy here
presented serves to capture the number and pattern of ZMs as
opposed to accurately predicting the actual elasticity and inertial
characteristics of the metamaterial; for this reason the value of both

knn and kynn is now set to unity. Fig. 2d shows the relationship
between a randomly activated physical specimen and the corre-
sponding lattice analogy, which can be leveraged to determine the
number (Np) and pattern of ZMs through the calculation of the null
space of the kinematic matrix (Supplementary Note 2).

Uniaxial and biaxial zero modes through selective activation of
metahinges

A fully activated Kagome metamaterial has multiple infinitesimal ZMs
along its network axes, characterized by a collective counter-rotation
between pairs of triangular frameworks®. Due to this strong kine-
matic indeterminacy, multiple deformation pathways*® are possible
in a fully activated Kagome metamaterial (Fig. 2b). To deterministi-
cally enable one deformation pathway to emerge, we need to selec-
tively incorporate NNN bonds so as to degenerate the Kagome
metamaterial to a single-degree-of-freedom (SDOF) system, i.e., a
lattice framework possessing only one ZM. lllustrated in Fig. 3a is a
representative lattice analogy with only one ZM traveling along the e;
axis, whose displacement vector is denoted as ®, and depicted by
the red arrows. The physical counterpart of the lattice is shown on
the right of Fig. 3a, where a rotational input on the right can be
successfully delivered to the opposite end (left) through the
designed ZM. We emphasize that this uniaxial ZM is infinitesimal;
hence under a finite deformation, the rotation signal exhibits a decay
from the source (right) to the output end (left). This type of uniaxial
ZMs for mechanical signal transmission can also be realized indivi-
dually along the e, and e axes.

We now showcase how to construct a biaxial ZM by leveraging two
individual uniaxial ZMs. We first discuss the linear superposition of two
ZMs along the e; and e; (i /) axes. It has been recently demonstrated
that in a rotation-based metamaterial, a rotation node, where the
relative rotation between two adjacent bodies vanishes, can arise due
to the superposition of two ZMs at their intersection boundary*. A
similar phenomenon can be captured in the Kagome lattice system
shown in Fig. 3b. Here NNN bonds have been strategically added to the
system which has now acquired two uniaxial ZMs running through the
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Fig. 3 | Uniaxial and biaxial zero modes in a selectively activated Kagome
metamaterial. a Selectively activated Kagome metamaterial showing a uniaxial
zero mode; Ny is the number of zero modes of the lattice analogy; white scale bar 22
mm. b Linear superposition of two uniaxial zero modes and possible rotation
nodes. c-e Biaxial zero modes featuring symmetry and asymmetric deformation

with respect to the angle bisector in white; from top to bottom, selectively acti-
vated specimens can deliver 6, <6 , 8, =8, ,and 6, > 6,, respectively; white scale
bar 22 mm. f Mechanical XOR gate blocking the propagation of in-phase rotational
signals and transmitting out-of-phase signals.

e; and e, axes, denoted by the normalized displacement vectors o,
and @, respectively. A linear combination of ®, and ®,,, given by
€@, + ¢, ®, constitutes another ZM. Depending on the value of ¢,/c,,
there exist three types of superpositioned ZMs featuring three types of
rotation nodes, marked in Fig. 3b with distinct colors. If ¢;/c; = 0.5, for
example, the superpositioned ZM features two rotation nodes high-
lighted in green; the adjacent triangles around each green metahinge
exhibit an identical rigid-body motion, a phenomenon implying that
this green metahinge is inactive. As a result, adding two pairs of NNN

bonds around these two inactive metahinges has no influence on this
superpositioned ZM (left of Fig. 3c where the added NNN bonds are
colored in green as the corresponding rotation node). Adding such
NNN bonds can kill the original two ZMs, @, and ®, , while preserving
the superpositioned ZM, 0.5, +®,,, a phenomenon that char-
acterizes the unique ZM of the lattice system, i.e., the lattice framework
degenerates to a SDOF system. This functionality can be leveraged to
create a mechanical signal transmitter that can couple motions along
two distinct axes, as described below.
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The experimental results in Fig. 3c, d, and e (see also Supple-
mentary Movie 3) attest the attainment of dissimilar modal amplitudes
along two axes. For example, to demonstrate the biaxial ZM in Fig. 3c,
where the rotation amplitude is larger along the e, axis than the e, axis,
we first extract the four triangles outlined in red; then we evaluate the
average of their absolute rotation to represent the modal amplitude
along the e, axis, which is denoted as éel. Similarly, the four triangles
outlined in blue in Fig. 3¢ (middle) are used to evaluate 6, , the modal
amplitude along the e, axis. On the right of Fig. 3c, we compare the
experimentally obtained Bel - ?)ez relationship with that obtained from
nonlinear Finite Element (FE) simulations of the lattice analogy (Sup-
plementary Note 3). The black dashed line, with a slope of 2.0, repre-
sents the éel - éez relation under the assumption of infinitesimal
deformation. The experimentally obtained data closely match the FE
simulation results in the small-deformation regime while exhibiting a
deviation as the deformation increases. This slight overestimation of
éel obtained from the FE simulation is mainly attributed to the
assumed value (unity) of the axial stiffness of the NN and NNN bonds in
the lattice analog model. Despite this discrepancy, the experimental
results confirm that for this biaxial ZM, we can obtain 6, <6, . On the
other hand, by introducing the corresponding NNN bonds around the
yellow or blue rotation nodes (left of Figs. 3d and 3e respectively), we
can acquire other two types of biaxial ZMs. One (Fig. 3d) exhibits a
nearly symmetric deformation with respect to the angle bisector of
two axes (white dahsed line), i.e., 6 =0, , whereas the biaxial ZM in
Fig. 3e has 6, >0, .

The results obtained above can now be leveraged for mechanical
logic operations. A demonstrative example is the realization of an XOR
mechanical logic gate using the biaxial ZM shown in Fig. 3d. The two
independent inputs of the logic gate are the moments applied to the
two rotational triangles outlined in red; their values are interpreted on
the left of Fig. 3f. The output of the logic gate is contingent on the
status of the biaxial ZM. If the ZM is active, allowing the mechanical
signal to be transmitted, we define the output as 1; in contrast, if the
ZM is inactive, the mechanical signal is blocked, implying an output of
0. As illustrated in Fig. 3f, only if the two input moments are out-of-
phase, i.e., spinning conversely, the ZM can be activated, yielding an
output of 1. Otherwise, the input moments can merely lead to an
incompatible deformation localized at the area where the moments
are applied. By virtue of this logical characteristic, selected metahinges
can be activated in a metamaterial to act as a mechanical transmission
system capable of filtering unwanted signals depending on whether
the input signals are in-phase or out-of-phase (Supplementary
Movie 4).

All-in-one reprogrammable architecture transforming into
either a structure, a multistable matter, or a mechanism

A fully deactivated Kagome metamaterial represents a stable structure,
whereas a fully activated Kagome metamaterial is an unstable
mechanism. A natural question arises: can a Kagome metamaterial with
a selectively activated portion of its metahinges become metastable,
i.e., is it possible to selectively switch the local state of each bistable
metahinge to activate the global multistability of the metamaterial? To
address this matter, we first analyze the similarity between a Kagome
lattice with selectively added NNN bonds (Fig. 4a) and the fully
deployed state of a planar kirigami with triangular motifs*. In the
lattice analogy (Fig. 4a), the red NNN bonds and their associated tri-
angles act akin to the Y-shaped elastic confinement observed in an
existing planar kirigami*’; the remaining triangular sub-frameworks in
the lattice analogy resemble the rotational bodies in that planar kir-
igami. It has been approved that the unit cell of the planar kirigami has
two stable states, one deployed and one collapsed*. Given the direct
geometric similarity, we can anticipate that the lattice analogy pre-
sented in Fig. 4a can also deliver an auxetic bistable transition from the

deployed state to a collapsed state. To verify the bistability of this
transition, we employ the Nudged Elastic Band (NEB) method**** and
probe the minimum energy path (MEP) during state transition. If an
unavoidable energy barrier exists along the MEP, the transition is
bistable®. Otherwise, this transition corresponds to a finite-amplitude
ZM or a finite collapse mechanism’. In the NEB method, we initialize
the state transition path with a linear interpolation between the
deployed and collapsed states, serving as our initial guess for the MEP.
We iteratively update the state transition path (Supplementary Note 4)
and examine how the energy landscape evolves, as plotted in Fig. 4b,
where A and AA stand for the initial area and area change of the unit cell
respectively. We observe that the energy landscape eventually con-
verges to the MEP represented by a red curve with a non-zero energy
barrier, attesting that this state transition of the lattice analogy is bis-
table. Fig. 4c and d illustrate two key states of the periodic lattice
analogy: state ii, the local maxima of the MEP, and state iii, the fully
collapsed state. The normalized area changes, AA/A, in states ii and iii
are - 0.41 and - 0.75, respectively.

To experimentally demonstrate the bistable/multistable transi-
tion in a physical specimen selectively activated in the manner men-
tioned above, we extract a metastrip of the periodic lattice analogy, as
indicated by the purple region in Fig. 4a. A fully deactivated metastrip
is a structure with no ZMs (Fig. 4e). A selectively activated metastrip
resembles the deployed state of the planar kirigami with triangular
motifs, as shown on the left of Fig. 4f. By sequentially overcoming the
geometry incompatibility/energy barrier of the unit cells (Supple-
mentary Movie 5), we can transition the metastrip to a stable collapsed
state (right of Fig. 4f) with an area change AA/A =- 0.65; this value is in
between - 0.41 and - 0.75 since the metastrip has exceeded the local
maxima (Fig. 4c) on the energy landscape but is prevented from
reaching the fully collapsed state (Fig. 4d) due to the presence of
internal contact, or in another word, due to the intersection between
NN and NNN bonds in the lattice analogy. This experimental result
demonstrates that the metamaterial can undergo reversible transfor-
mations that embody its architecture with the traits of either a struc-
ture (Fig. 4e), a multistable matter (Fig. 4f), or a mechanism (Fig. 4g).

Reprogrammable phonon spectra
Besides studying the ZMs of a selectively activated Kagome metama-
terial in the static regime, we now employ the lattice analogy to
demonstrate the reprogrammability of its linear phonon spectra. Illu-
strated at the top of Fig. 4h—j are three representative periodic lattices,
each tessellated through their unit cell (highlighted in yellow) along
the lattice vectors a; and a,. The unit cell has selectively added NNN
bonds that allow ZMs to propagate along designated axes (red arrows).
By applying Bloch’s theorem and varying the wave vector within the
first Brillouin zone, we can solve the eigenfrequency of this harmonic
system and obtain its linear phonon spectra (Supplementary Note 5).
Figure 4 h-j illustrates the first five normalized eigenfrequencies,
denoted by w;(i=1,...,5), and corresponding density plots of each
period lattice. The existence of zero frequencies is dependent on the
wave vector [k, k,J*°. For example, the lattice illustrated in Fig. 4a, a
periodic counterpart of the specimen in Fig. 3a, has a zero-frequency
contour defined by k,=0 (reciprocal space) within the lowest fre-
quency branch w;; the eigenvectors on this contour manifest localized
deformation modes along the e; axis in direct space, and the phase
velocity along this contour is zero. In total, three acoustic branches
originate from [k, k] =[0, 0]; two of them correspond to the long-
itudinal and shearing bulk waves, while the remaining one represents a
localized wave along the e; axis. Once we remove relevant NNN bonds
to activate another ZM along the e; axis (Fig. 4i), there will be two zero-
frequency contours characterized by k,=0 and k, = — «/§ky respec-
tively. Now the periodic lattice manifests four acoustic branches
starting at [k, k,] =[O, OJ; this lattice exhibits strong anisotropy around
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Fig. 4 | Selective activation of metahinges for reversible transformation among
a structure, a multistable matter, and a mechanism (top); reprogrammable
phonon spectra (bottom). a Periodic Kagome lattice with selectively added the
next nearest neighbor (NNN) bonds resembling the fully deployed state of planar
multistable kirigami sheets*. b Iterative optimization of energy landscape during
state transition leveraging the Nudged Elastic Band method, confirming that the
periodic lattice is multistable. ¢ Configuration of the periodic lattice at the energy

0.0 ke

local maxima. d Fully collapsed state of the lattice analogy. e-g Physical metastrip
specimen capable of transforming its architecture into a structure (e), a multistable
matter (f), and a mechanism (g). h—j Phonon spectra of periodic lattices with
selectively added NNN bonds; ' is the normalized eigenfrequency; e; axes in red
indicate activated directions allowing zero modes to propagate; the bottom-left
corner of each plot is the band diagram; the right column is the density plots of
each eigenfrequency branch.

the [k, k] =[O0, O] point (Supplementary Note 5). Upon adding a pair of
NNN bonds (yellow bonds in Fig. 4j) around the intersection node of
two axes, we can eliminate the original two zero-frequency contours
along ky=0and k, = — «/§ky, and create a new acoustic branch man-
ifesting a coupled deformation mode along the e; and e; axes in direct
space. This emerging acoustic branch exhibits a non-zero phase velo-
city at [ky, k] =[0, 0], with the minimum phase velocity occurring at
the angle bisector of k,=0 and k, = — «/§ky. Additionally, the phase
velocity around the [k, k)] =[O0, O] point is less dependent on the
direction of the wave vector, suggesting that the selective addition of
NNN bonds can be employed to reprogram the anisotropy of the lat-
tice in the low-frequency regime.

Reprogramming buckling modes in a rotation-square metama-
terial via selective activation of metahinges
As well known, the buckling behavior of a planar structure is governed
by the competition between the in-plane stretching/compression
energy and the out-of-plane bending energy*. Given our metamaterial
concept allows for reprogrammable in-plane ZMs capable of modify-
ing the ratio between the in-plane and out-of-plane energy, we antici-
pate that the selective activation of metahinges might offer a means to
suppress the out-of-plane buckling of the planar metamaterial.

As a demonstrative example, we form a square network with Z=4
by connecting our bistable element (Fig. 1b). As illustrated in Fig. 5a,
the network in its initial state is a rigid structure (No=0). As the
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square network featuring one bulk zero mode. ¢ Lattice analogy representing a
selectively activated metamaterial; the activated rotation square can be described
by four nodes connected via six bonds (N4B6 model). d-h Snapshots of com-
pressed metamaterial specimens in five distinct activated states; in each plot, the
left and right columns display the undeformed and deformed configurations
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respectively; both front and side views are included; each state of the specimen is
labeled with a four-digit binary number, with each digit denoting whether the
corresponding row is activated (1) or deactivated (0). i Force-displacement rela-
tions of selectively activated rotation-square metamaterials; dashed curves corre-
spond to states exhibiting out-of-plane buckling, while solid curves stand for states
showing in-plane buckling; friction-induced noise can be witnessed in states 0111
and 1111 due to the sliding between rotation squares and compression indenters.

contact-induced metahinges are activated in the middle of each bar,
the initially kinematically determinate structure turns into a rotation-
square mechanism*’, giving rise to an auxetic bulk ZM*%. As shown on
the right of Fig. 5b, this bulk ZM is a finite-amplitude mechanism
persisting in a large-deformation regime until the gaps between the
rotation squares are fully closed. The rotation-square mechanism can
be represented by a lattice analogy, where the fully activated rotation
square is represented by a framework comprising four nodes and six
bonds (Fig. 5¢), namely the N4B6 model*. Similarly, the deactivation of
the contact-induced metahinge is equivalent to adding a pair of bonds

(highlighted in light red) to eliminate the relative free rotation between
two rotation squares. It is evident that the lattice analogy becomes an
SDOF mechanism only if there are no red bonds, i.e., the metamaterial
is fully activated. Therefore, a partially activated metamaterial exhibits
a response falling between a thick plate structure (fully deactivated)
and an SDOF mechanism (fully activated), where the former buckles
out-of-plane upon reaching the critical point, and the latter maintains
in-plane deformation even under significant compression.

Figure 5 d-h presents snapshots of a compressed metamaterial
specimen across five distinct activated states, and Fig. 5i shows their
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corresponding force-displacement relations. In the fully deactivated
state 0000, the planar structure initially exhibits a monotonic
force-displacement response; as the displacement reaches -13.3 mm,
the specimen suddenly buckles out-of-plane and undergoes a snap-
back instability, a limit-point buckling phenomenon generally
observed in thick plates or wide beams®. In the partially activated
states 0001 and 0011, the internal contact strengthens the effective
bending stiffness of the local Timoshenko-type beams®, a phenom-
enon that improves to a certain extent the global compressive stiffness
of the specimen prior to the onset of instability. The out-of-plane
buckling, however, still exists, and the corresponding critical dis-
placement has rarely changed. Up to this point, the out-of-plane
bending is still the energy-favored deformation mode in the post-
buckling regime.

An opposite outcome to the above is obtained if the top three rows
are activated (Fig. 5g). The out-of-plane buckling is now suppressed, but
the local buckling of metahinges™ formed by self-contact is triggered at
~6.7 mm of compression, which leads to a discontinuous in-plane post-
buckling response®™. Comparing Fig. 5d-g, we observe that as more
rotation squares are activated, the buckling mode transitions from the
global out-of-plane bending of the entire specimen to the in-plane
bending of the contact-induced metahinges: the latter replaces the
former as the energy-favored mode in the post-buckling regime. The
critical displacement exhibits a substantial decrease as the buckling
mode switches from out-of-plane to in-plane, primarily due to the
characteristic dimension of the contact-induced metahinge which is
much smaller than that of the entire specimen. Since the bulk ZM is not
fully activated in the O111 state, the auxetic phenomenon does not
propagate across the entire specimen. As a result, a domain wall (sha-
ded in red) emerges on the third row, delineating a boundary between
the auxetic region (top) and the non-auxetic region (bottom), namely
the mechanism region (top) and the structure region (bottom). This
type of domain wall has been found in rotation-square metamaterials
with intentionally introduced pinning defects®. In our metamaterial, the
deactivation of a contact-induced metahinge is analogous to introdu-
cing a pinning defect. Our approach to introducing defects, however, is
rooted in the bistability of the local architecture, eliminating the need
for manual adhesion to immobilize the defect™. As a result, the versa-
tility of our strategy enables a more convenient reprogrammability of
the domain wall within a rotation-square metamaterial.

Finally, if all the metahinges have been activated, the critical dis-
placement and force exhibit a further reduction (red curve in Fig. 5i).
This is due to the complete activation of the auxetic ZM, making the
entire system less stable yet with no out-of-plane buckling. The spe-
cimen now transforms into a compliant rotation-square mechanism,
and its fully collapsed state is shown in the inset of Fig. 5i. In summary,
this set of results shows that through the progressive activation of the
rotation-square metamaterial, we can on-demand suppress the out-of-
plane buckling and trigger the in-plane buckling of metahinges at a
smaller scale, thus concurrently reprogramming the associated critical
forces and displacements (Supplementary Movie 6).

Generalization to metamaterials comprising metahinges with a
higher coordination number
In the context of a fully activated metamaterial, the coordination
number is defined as the average number of rotation bodies connected
at each activated metahinge, e.g., the fully activated metamaterials in
Figs. 2b and 5h have a coordination number of two. Here, we
demonstrate the creation of a metahinge featuring a higher coordi-
nation number, enabling the emergence of a larger number of ZMs
upon activation. The strategy here pursued is to admit higher-order
cyclic symmetry in the metahinge architecture so as to access a larger
pool of metamaterial tessellations with higher coordination numbers.
The metahinge architecture illustrated in Fig. 1b exhibits C, cyclic
symmetry yielding a corresponding set of metamaterial tessellations. If

we extract its left half to create a new assembly featuring C; symmetry,
we can obtain an activated metahinge with a coordination number of
three, as shown in Fig. 6a. This architecture can then be connected to
form a Kagome-type metamaterial belonging to the p6 mm group™
(Fig. 6b). The activation process in this case is non-isochoric. The area
of the activated unit cell shrinks to about 53% of its original value
(shaded yellow regions in Fig. 6b). The metamaterial is also able to
deliver a dual response: the effective compressive stiffness, which is
4.96 N/mm in the fully deactivated state, decreases to 0.46 N/mm due
to the emergence of numerous ZMs post-activation (Fig. 6¢ and Sup-
plementary Movie 7). The fully activated specimen resembles a hinged
honeycomb (inset iii of Fig. 6¢) and hence is highly flexible, leading to
an initial deformation under gravity, similar to the Kagome metama-
terial shown in Fig. 2c. In this case, internal contact between pairing
rotation bodies” emerges in the specimen lower part due to the small
spacing angle resulting from the high coordination number. This
densification in the lower part results in a concentrated deformation at
the upper edge of the specimen (insets iii and iv in Fig. 6c).

The type of non-isochoric transformation described above can also
be interpreted through our lattice analogy. The fully deactivated state
of the metamaterial (left of Fig. 6b) can be considered as a network
hinged by a series of constituent rectangles characterized by an aspect
ratio of sy/s. A typical constituent rectangle (shaded in purple in Fig. 6b)
can be represented by the N4B6 model in the lattice analogy (left of
Fig. 6d). For non-isochoric transformations, activating the metahinges is
equivalent to reducing the aspect ratio s;/s, until it approaches zero. As
$1/S2 > 0, the rectangle degenerates to a bond, and the lattice analogy
transforms into a hinged hexagonal lattice (Fig. 6d). This non-isochoric
transformation leads to a significant change in the phonon spectrum:
the acoustic branch with the lowest group velocity degenerates to a
zero-frequency contour, the bandgap (gray area) between the fourth
and fifth branches is broadened, and a bandgap (blue area) between the
ninth and tenth branches emerges (Supplementary Note 6). Overall, the
band structure shifts to a lower frequency regime due to the softening
behavior endowed by the metahinge activation.

Similarly, we can explore higher-order of cyclic symmetry, and
create for example an architecture with C, symmetry, featuring a
coordination number of four in the fully activated state, as illustrated
in Fig. 6e. The architecture can then be tessellated to build a square-
type metamaterial (left of Fig. 6f). In the fully deactivated state, the
metamaterial specimen already exhibits one bulk auxetic ZM (insets i
and ii Fig. 6g), and hence it is comparably floppy under compression
(blue curve in Fig. 6g). Upon full activation, the metamaterial speci-
men manifests an increased number of ZMs and loses its shearing
resistance. Affected by gravity and imperfections, the specimen is
tilted to one side, resulting in a sequence of internal contacts
between rotation bodies (insets iii and iv in Fig. 6g); this internal
contact further alters the specimen topology” and substantially
improves the compression stiffness (red curve in Fig. 6g and Sup-
plementary Movie 8). Fig. 6h shows the lattice analogy for this p4mm
group metamaterial. The original rectangle-hinged lattice degen-
erates to a square lattice upon activation. Zero frequencies emerge
along the I'-Y contour in reciprocal space, corresponding to the
shearing ZMs in direct space. Similarly, the activation of metahinges
can lead to the emergence and vanishing of bandgaps (Supplemen-
tary Note 6), as shown in Fig. 6h. We remark that the spacing angle t
in the fully activated state (Fig. 6a, e) is a crucial geometry parameter
preventing us from reaching higher-order cyclic symmetry; t decays
exponentially with the symmetric order, and hence the internal
contact between rotational bodies would disrupt the bistable acti-
vation process. While the metamaterial tessellations incorporating C;
and C, metahinges (Fig. 6) enable a reprogrammable number of ZMs,
facilitating in situ stiffness tuning, their global response lacks the
ability to transition between being multistable and monostable,
unlike the Kagome metamaterial depicted in Fig. 4e-g.
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isochoric reconfiguration from a Kagome-type metamaterial to a hinged honey-
comb; region shaded in yellow is the unit cell; region shaded in purple is the
constituent rectangle that is kinematically determinate; insets at the bottom-right
corner illustrate the topological transformation of the metahinge; white scale bar
44 mm. ¢ Compression responses of fully deactivated and activated p6mm meta-
material specimens. d Lattice analogy and phonon spectra for the p6mm
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metamaterial; the first Brillouin Zone is shown at the top of the third column; the
dashed line is the zero-frequency contour. e Activated metahinge with C, symmetry
showing a coordination number of four; the Euler’s characteristic y transitions from
-4 to -3.fNon-isochoric reconfiguration from a rectangle-hinged metamaterial to a
square lattice; white scale bar 44 mm. g Compression responses of corresponding
fully deactivated and activated p4mm metamaterial specimens. h Lattice analogy
and phonon spectra for the p4mm metamaterial; the original bandgap shaded in
blue vanishes upon full activation.

Discussion

In summary, we have presented a class of mechanical metamaterials
that feature reprogrammable zero modes enabled by the selective
activation of metahinges. The architecture of the metahinge is
rationally redefined over the existing literature to tackle the chal-
lenge of geometry frustration that arises during its progressive
activation in a tessellated two-dimensional metamaterial. This allows
our Kagome-type metamaterial to reversibly transition among a rigid
structure, a compliant mechanism, and a multistable matter, hence
integrating their conflicting mechanical characteristics within a sin-
gle topology-transformable architecture. We also showcase the
generalization of our concept to a rotation-square metamaterial and

the creation of a metahinge with higher cyclic symmetry. In distinct
activated states, this class of metamaterials is able to deliver stiffness
reprogramming near one order of magnitude, adjustable phonon
spectra, on-demand buckling mode suppression, and switchable
auxeticity, providing a promising avenue for the development of all-
in-one devices for application in a diverse range of engineering fields.
Finally, we envision the scalability of our metahinge within a range
spanning from millimeters to meters and the possibility of embed-
ding the metahinge architecture into origami-type metamaterials,
enabling on-demand activation of foldability, thus extending our
concept from two-dimensional planar materials to three-dimensional
bulk materials.
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Methods

Fabrication

We fabricated all the experimental specimens through Fused Deposi-
tion Modeling (Anycubic Vyper, China). The constituent material is
thermoplastic polyurethane (TPU) 95A featuring a large elongation at
break, ensuring that the printed flexible hinges can repeatedly
undergo finite rotation without damage. The in-plane dimensions of
the specimen presented in Fig. 1f can be found in Supplementary
Notes 1 and 7; its out-of-plane thickness is 30 mm. The finite-period
specimens illustrated in Fig. 2 and 6 were assembled by multiple
printed pieces via interlocking mechanism and adhesion (see Supple-
mentary Note 7 for more details); their out-of-plane thickness is
25 mm. The rotation-square metamaterial shown in Fig. 5 was printed
integrally without any assembly. All the specimens were printed at
their fully deactivated configuration. To ensure the accuracy and effi-
ciency of the printing process, we set the layer height, line width, infill
density, and printing speed as 0.20mm, 0.26 mm, 100%, and
80.00 mmy/s, respectively.

Compression test

The quasi-static compression tests illustrated in Figs. 1f, 2c, 5i, 6¢, and
6g were performed on Bose ElectroForce 3510 (Bose Corporation,
Framingham, Massachusetts). Given the distinct compression ratio
each specimen can undergo, we adjusted the loading rate accordingly
such that the quasi-static condition is satisfied, and the total loading
time for each specimen is controlled within a reasonable range. For
example, the metamaterial samples bearing bulk zero modes (the fully
activated Kagome metamaterial shown in Fig. 2b and the deactivated
metamaterial in Fig. 6f) can undergo large compression, and hence the
loading rate is moderately increased to reduce the total running time.
The activation of the metahinge was at a loading rate of 0.68 mm/s
(Fig. 1f). The compression for the fully deactivated and activated
Kagome metamaterial (Fig. 2c) was at a loading rate of 0.52 mm/s and
1.92 mm/s, respectively. The rotation-square metamaterial was com-
pressed at a rate of 1.40 mmy/s (Fig. 5i). The metamaterial bearing C;
metahinges was compressed at a rate of 0.52 mm/s in both its deacti-
vated and activated states (Fig. 6¢). The metamaterial bearing C,
metahinges in its deactivated and activated states was compressed at a
rate of 1.92 mm/s and 0.30 mmy/s, respectively. Each specimen except
for the metahinge in each of its activated states, was tested three times
to obtain the experimental uncertainty regime, illustrated as the sha-
ded areas in the plots; we selected one representative result to be
plotted as a solid curve.

Mechanical signal guiding through biaxial zero modes
Equilateral triangular markers in red are attached to the center of each
rotation body to trace the local rotation of the biaxial zero modes in
the selectively activated Kagome metamaterial. The bottom-left corner
of the finite-period specimen is clamped to freeze global rigid-body
motions. A slow push is applied to the free edge of the rightmost
rotation body to trigger the biaxial zero mode. The quasi-static
deformation process is recorded by Sony RX 100 (Sony Corporation,
Japan) with a sampling frequency of 60 Hz. Representative frames are
extracted from the video at intervals of 1.67s and imported into
Microsoft Visio (Microsoft Corporation, United States). Masks are
added to the red triangular markers of interest (see the outlined tri-
angles in Fig. 3c-e). The modal amplitudes along the e, and e, axes are
then evaluated as the average rotation of the corresponding masks,
denoted by 6, and 6, respectively.

Data availability
All the data supporting the conclusions of this study are included in the
article and the Supplementary Information file. Source data are pro-
vided with this paper.

Code availability
The codes that support the findings of this study are available from the
corresponding author upon request.
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