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A B S T R A C T   

Objective: Accurate and prompt detection of cracked teeth plays a critical role for human oral 
health. The aim of this paper is to evaluate the performance of a tooth crack segmentation model 
(namely, FDB-DeepLabv3+) on optical microscopic images. 
Method: The FDB-DeepLabv3+ model proposed here improves feature learning by replacing the 
backbone with ResNet50. Feature pyramid network (FPN) is introduced to fuse muti-level fea-
tures. Densely linked atrous spatial pyramid pooling (Dense ASPP) is applied to achieve denser 
pixel sampling and wider receptive field. Bottleneck attention module (BAM) is embedded to 
enhance local feature extraction. 
Results: Through testing on a self-made hidden cracked tooth dataset, the proposed method 
outperforms four classical networks (FCN, U-Net, SegNet, DeepLabv3+) on segmentation results 
in terms of mean pixel accuracy (MPA) and mean intersection over union (MIoU). The network 
achieves an increase of 11.41% in MPA and 12.14% in MIoU compared to DeepLabv3+. Ablation 
experiments shows that all the modifications are beneficial. 
Conclusion: An improved network is designed for segmenting tooth surface cracks with good 
overall performance and robustness, which may hold significant potential in computer-aided 
diagnosis of cracked teeth.   

1. Introduction 

Oral diseases are among the most prevalent global health issues, recognized as a significant global public health challenge by 
numerous scholars [1]. These conditions place a substantial burden on both healthcare and the economy, underscoring the critical 
importance of maintaining oral health. Toothache, one of the most prevalent oral health issues, can result in pain, eating disturbances, 
and sleep disorders [2]. Cracks in teeth are one of the causes of toothaches, and the American Association of Endodontists (AAE) has 
categorized these cracks into five types: craze lines, fractured cusps, cracked teeth, split teeth, and vertical root fractures (VRF) [3]. 
Moreover, epidemiological studies have singled out cracked tooth syndrome (CTS) as one of the primary factor contributing to tooth 
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loss [4]. However, the identification of cracks in hard tissue, particularly within the oral cavity, represents a notable challenge at the 
intersection of dentistry and engineering [5] (Fig. S1 shows three challenging cases). Due to the often-vague early symptoms of cracked 
teeth, it is often difficult for dentists to detect cracks in the teeth [6]. If the symptom of the cracked tooth could not be detected and 
treated in time, the crack in the teeth would gradually propagate to the dentin layer with the use of the diseased tooth, which would 
lead to pulpitis, or even complete tooth loss [7]. An accurate diagnosis of cracked teeth is imperative to prevent the worsening of 
symptoms and tooth loss, which holds great significance for human oral health. 

Over the past few decades, numerous techniques have been developed by researchers to detect cracks in human teeth, which can be 
broadly categorized into the following four groups: traditional methods based on patient clinical symptoms [8–11], cone-beam 
computed tomography (CBCT)-based methods [12–15], inspection method based on microscopy imaging [16–19], and deep 
learning-based methods [20–24]. Although these methods are commonly used diagnostic methods, they face three main challenges: 
(1) the diagnostic process may exacerbate the patient’s symptoms and cause discomfort, (2) the accuracy of the diagnosis is dependent 
on the dentist’s work status and work experience, (3) the robustness is low and susceptible to noise. More details can be referred to 
previously written reviews [5,6,25]. Briefly speaking, as for traditional methods, the main methods included cold stimulation [8], 
probing method [9], occlusion test method [10], and light trans-illumination method [11]. However, most of them can be painful and 
even aggravating for the patient at the time of diagnosis. For cone-beam computed tomography-based methods, they have been widely 
used to detect cracks in teeth. Nevertheless, the utilization of CBCT for the detection of cracked teeth is challenged by the presence of 
metal artifacts, overlapping vignettes, and noise in the obtained images, making it difficult to identify the presence of occult cracks, 
which could easily be overlooked by practitioners [26]. Furthermore, CBCT scans are relatively expensive and labor-intensive. For 
inspection method based on microscopy imaging, dentists magnify each tooth 14 to 18 times with a microscope to detect cracks and 
assess pathological risk levels. Although it is low-cost and does not cause radiation damage, this method often requires the assistance of 
methylene blue dye [17], which makes the procedure more complex. Additionally, sometimes to achieve better staining, coarse 
grinding and polishing with coarse pumice slurry are required [19], which could worsen the patient’s condition. Moreover, some tiny 
cracks that are highly concealed can be easily misdiagnosed when teeth are affected by cavities, plaque, and other factors. Traditional 
diagnosis is also dependent on the professionalism and experience of radiologist and dentist [27]. In addition, prolonged and intensive 
work with the eyes can cause visual fatigue in dentists, which increases the probability of missed diagnosis and misdiagnosis. 

In recent years, deep learning-based methods have garnered increasing attention in the realm of damage monitoring [28,29] and 
computer-aided diagnosis [30]. Transformer-based model [28] and YOLO model [29] were proposed to detect tunnel lining cracks 
with acceptable detection accuracy. As for medical diagnosis, deep learning has been employed for auxiliary diagnosis of various 
biological tissues (liver, thyroid, blood), achieving a high level of diagnostic accuracy and efficiency through convolutional neural 
network (CNN) such as U-Net [31,32] and DeepLabv3+ [33]. Unlike common segmentation targets, tooth cracks are usually small 
targets that are often accompanied by interference from other conditions such as dental plaque, dental caries, and fluoride poisoning. 
Furthermore, tooth cracks can vary from person to person, and imaging process (i.e. CBCT) may also generate noise, making the cracks 
indistinguishable from their surroundings. Therefore, the development of methods for detection of cracks in human teeth remains a 
challenging area. 

Certain scholars have already employed deep learning methods to detect tooth cracks. For example, Hu et al. [20] utilized three 
deep learning networks, namely ResNet50, VGG19, and DenseNet169, to assist in diagnosing vertical root fractures based on CBCT 
images. Jared Vicory et al. [21] proposed a tooth microcrack detection algorithm that combined wavelet features and machine 
learning, which achieved better segmentation of tooth cracks on CBCT images. Sahu et al. [22] developed a model that combined 
signal enhancement and a CNN-based deep crack detection model to accurately detect tooth cracks using high-resolution CBCT scans. 
Dumbryte et al. [23] combined X-ray imaging and CNN for non-destructive and qualitative analysis of tooth microcracks. It is worth 
noting that X-ray-based techniques, although powerful, the presence of unwelcome factors such as metal artifacts, overlapping vi-
gnettes, and image noise in CBCT imagery have been observed to exert a detrimental effect [26]. Nevertheless, there is less attention 
given to the application of deep learning techniques for the detection of cracks in tooth in optical images. Guo et al. [24] introduced a 
novel approach for automatic tooth crack detection based on optical images, utilizing a combination of the sliding window algorithm 
and convolutional neural network. However, methods based on binary classification lack more detailed information about cracks, and 
dentists need to further locate the position and contour of cracks during detection. Hence, research on quantitative crack analysis with 
optical imaging is meaningful and necessary. 

This paper introduces a model, namely FDB-DeepLabv3+ that targets tooth crack segmentation. It is capable of segmenting cracks 
on tooth surfaces on oral microscopic images for a variety of challenging situations. This model may further provide a substantial 
approach to assist doctors in diagnosing cracked teeth. The primary contribution of this paper can be summarized as follows:  

(1) Extensive and systematic research is conducted, to explore the influence of different backbones (Xception, MobileNetV2, 
Inception-ResNetV2, ResNet18, ResNet50, ResNet101) on DeepLabv3+ with thorough qualitative and quantitative analyses, 
resulting in the selection of the optimal solution.  

(2) Based on the selection of the backbone, three additional modules (FPN, Dense ASPP, BAM) are integrated to form the proposed 
FDB-DeepLabv3+ model, which significantly improves MPA by 11.41% and MIoU by 12.14% on self-made dataset.  

(3) The application of semantic segmentation technology on optical images of human tooth cracks is explored for the first time in 
this paper. 

The manuscript is structured as follows. Section 2 offers the related works. Section 3 presents the common methods and the 
proposed method. Section 4 outlines the experimental procedure. Section 5 gives the discussion. Section 6 is the conclusion. 
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2. Related works 

With the development of computer vision technology, semantic segmentation methods have been widely used in medical image 
processing. In recent years, some scholars have proposed fracture detection models tailored to specific tasks by considering the unique 
features of fractures and background characteristics in different application scenarios, such as wrist cracks and bone fracture [34–37]. 
As illustrated in Fig. 1, commonly used semantic segmentation methods include FCN, U-Net, SegNet, and DeepLabv3+. 

2.1. FCN 

FCN [38] is composed of two main components, down-sampling and up-sampling convolution operations, and utilizes VGG16 as its 
backbone (as shown in Fig. 1 (b)). It replaces the fully-connected layer in the convolutional neural network with a fully-convolutional 
layer so that the network can accept input images of arbitrary size. By incorporating the skip structure, the feature map generated by 
the last convolutional layer is fused with the output of the pooling layer. Ultimately, the model produces a feature map with the 
identical size as the input image, enabling better segmentation results by predicting each pixel of the original image. 

2.2. U-Net 

U-Net is a fully convolutional neural network model improved by Ronneberger et al. [39], which is named after its U-shaped 
architecture and is frequently used in biomedical imaging (as shown in Fig. 1 (a)). This network employs the skip connection method to 
concatenate feature maps from the encoder and decoder at the same level in the channel dimension. This approach enables the fusion 
of deep network features with contextual information from shallow network images, facilitating multi-scale feature fusion. By fusing 
features through the concatenation of channels, the U-Net network reduces the loss of image information and improves image seg-
mentation performance. 

2.3. SegNet 

SegNet is a deep convolutional neural network model that was developed by Badrinarayanan et al. [40] It employs a symmetric 
encoder-decoder architecture that effectively preserved deep and abstract details (as shown in Fig. 1 (c)). The encoder is a network 
model that continues to use VGG16 and is primarily used for analyzing object information. In the decoder, feature information is 
mapped back to the original image. By reusing the maximum pooling indices during the up-sampling process, the network reduces the 
detail loss caused by pooling layers. The output of the decoder is finally sent to the softmax layer, generating the category probability of 
each pixel. 

Fig. 1. The four commonly used semantic segmentation network architectures, including (a)U-Net, (b) FCN, (c) SegNet, (d) DeepLabv3+.  
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2.4. DeepLabv3+

Chen et al. [41] proposed the DeepLabv3+ network model to address issues such as spatial insensitivity, resolution reduction 
caused by down-sampling, and multiscale images in deep convolutional neural networks (as shown in Fig. 1 (d)). The network adopts 
an encoder-decoder structure based on the Xception backbone [42], which includes atrous convolution and spatial pyramid pooling 
(SPP) modules. The atrous spatial pyramid pooling (ASPP) module in DeepLabv3+ is a variant based on SPP and atrous convolution, 
which can capture rich contextual information by feature pooling at different resolutions and further optimizes the deep features 
extracted by the encoding part. The decoding section up-samples the deep feature maps and fuses them with shallow features to 
optimize the positional information. Through this encoder-decoder architecture, clear object boundaries can be obtained, and seg-
mentation accuracy can be improved. 

3. Method 

3.1. Architecture of the proposed FDB-DeepLabv3+

In this paper, an improved semantic segmentation model is proposed based on the DeepLabv3+ architecture to further enhance the 
segmentation accuracy of tooth cracks in various complex scenarios (Fig. 2(a) shows the network architecture). 

Modifications to the network architecture include the following three aspects:  

i. Replacing the backbone with ResNet50 and introducing feature pyramid network (FPN), which enables the fusion of feature 
maps from the bottom to the top, thereby obtaining richer semantic and spatial information, and improving the model’s ability 
to detect small pixel points such as tooth cracks.  

ii. Combining the densely linked atrous spatial pyramid pooling (Dense ASPP), so as to reduce the ignored pixel features, maintain 
the integrity of feature information, and achieve an expanded receptive field without augmenting the parameter count in the 
original ASPP module.  

iii. Following stage 4 of the ResNet50 in DeepLabv3+, the bottleneck attention module (BAM) module is introduced, so that it can 
pay more attention to the local information of the tooth cracks feature and further refine the detailed feature of the tooth crack. 

3.1.1. ResNet50 
ResNet [43] is a breakthrough architecture that introduces residual connections to tackle the gradient vanishing problem in deep 

convolutional neural networks (CNNs). As shown in Fig. S2, the Residual Block contains residual connections, these connections allow 
information to bypass certain layers and flow directly from input to output, preserving the original features and enabling the learning 
of residual information. Among various types of ResNet, ResNet50 is chosen as the backbone of our model for several reasons. First, 
ResNet50 has shown superior performance in various computer vision tasks, such as image classification, object detection, and se-
mantic segmentation. Its depth and design make it a powerful feature extractor for complex visual patterns. Second, the residual 
connections in ResNet50 alleviate the gradient vanishing problem, allowing for more effective training of deep neural networks. Third, 
while ensuring accuracy, ResNet50 achieves a balance between training speed and network performance, unlike ResNet101 and 
ResNet152, which require a substantial amount of computational resources due to their higher complexity [44]. By using ResNet50, 

Fig. 2. Architecture of the proposed FDB-DeepLabv3+, which includes FPN, Dense ASPP, and BAM. (a) FDB-DeepLabv3+ (Dense ASPP is shown in 
detail), (b) FPN, (c) BAM. 
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the aim is to enhance our model’s feature learning and overall performance in our application domain. 

3.1.2. FPN 
During the process of training ResNet50 to learn target features, the image resolution gradually decreases due to the consecutive 

convolutional operations, which may have resulted in recognition errors for objects with small pixel proportions in the image. FPN 
[45] is a method for fusing feature maps from different levels (as shown in Fig. 2(b)). In FPN, the feature maps produced by Stage 3 of 
the ResNet50 model are first adjusted to 256 channels through a 1 × 1 convolutional kernel and then up-sampled by a factor of 2 to 
create one branch of the FPN. The feature maps produced by Stage 2 are also adjusted to 256 channels through a 1 × 1 convolutional 
operation and use to create another branch of the FPN. These two branches are then fused by element-by-element summation, and the 
resulting feature map is up-sampled by a factor of 2 and fused with the 256-channel feature map produced by Stage 1. Ultimately, the 
fused feature map generated by FPN contains more comprehensive semantic and spatial details, thereby enhancing the capacity to 
identify minute pixel-based features such as tooth fractures. 

3.2. Dense ASPP 

In the ASPP module of the original DeepLabv3+ model, the parallel-connected atrous convolution exhibited discreteness in image 
space, which may result in the loss of feature information and cause discontinuity in the segmentation of small cracks. Replacing the 
ASPP module with the Dense ASPP module may better extract crack features. The advantages of the improved Dense ASPP includes 
two aspects. Firstly, it makes pixel sampling dense. Secondly, it may achieve a broader receptive field without increasing the number of 
parameters [46]. 

In the setting of the densely linked ASPP module described in this paper, the atrous convolution kernel size is set to 3, and the 
module consists of three atrous convolutional layers (as shown in Fig. 2(a)). The choice of a kernel size of 3 strikes a balance between 
computational efficiency and high performance. The same parameter selections, including the atrous rate in each branch, are also used 
in Refs. [41,46]. The DeepLabv3+ model uses ResNet50 as the primary feature extraction network, and the output channel number of 
ResNet50 to the densely linked ASPP module is 2048. The feature dimension of the output feature map of the densely linked ASPP 
module is set to 256. This setting reduces the dimensionality of the feature map to mitigate computational complexity while preserving 
critical information. Additionally, it facilitates information compression, enabling efficient representation of the extracted features. 
Moreover, this configuration helps maintain a balance between model capacity and available computational resources, preventing 
overfitting and enhancing generalization capability. 

Table 1 shows the receptive fields obtained by original ASPP as well as using the dense link stack atrous convolution. In the original 
DeepLabv3+ model, the ASPP module works in parallel with no information sharing among the branches, and the feature maps are 
directly concatenated after passing through each atrous convolutional layer. As shown in Table 1, the receptive fields are 13, 25, and 
37 when the atrous rates are 6, 12, and 18, respectively. However, the densely linked ASPP structure improves the reuse of feature 
information across different layers and correspondingly increases the receptive field. As shown, the receptive fields are 37 when the 
branches with atrous rates of 6 and 12 are connected, and 61 when the branches with atrous rates of 12 and 18 are connected. When the 
three branches with atrous rates of 6, 12 and 18 are connected, the receptive field is 73. 

3.3. BAM 

In the task of tooth crack segmentation, the model recognizes interference information such as the black shadow lines of the teeth 
outline and background as tooth cracks in the image, which ultimately affects the segmentation performance of the model. To address 
this issue, the attention mechanism module is introduced to make the deep learning model pay more attention to the local information 
where the tooth crack features are located. Both channel information and spatial information play a crucial role in refining the crack 
information. Therefore, in this paper, the BAM [44] is introduced in stage 4 of the ResNet50 backbone in the DeepLabv3+ model to 
extract both channel and spatial features from the image. 

The BAM attention module consists of a channel branch and a spatial branch (as shown in Fig. 2(c)). For the input feature map, the 
BAM module is able to obtain a new feature map that is obtained by fusing the channel attention map and the spatial attention map 
[47]. The new feature map can be computed by Eq. (1): 

F′
1 =Fc + Fs (1) 

Table 1 
Receptive field of Densely Linked ASPP (kernel size = 3).  

Type Parameters (atrous rate) Receptive field 

ASPP 6 13 
12 25 
18 37 

Dense ASPP 6,12 37 
12,18 61 
6,12,18 73  
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where F’
1 represents the new feature map; Fc represents the channel attention map; Fs represents the spatial attention map. 

The final feature map obtained through the BAM module can be calculated by Eq. (2): 

F2 =F1 × F′
1 + F1 (2)  

where F1 ∈ RH×W×C represents the input feature map and F2 ∈ RH×W×C represents the final feature map. 
The purpose of the channel attention branch in the BAM module is to selectively focus on the relationship between different 

channels, which makes the network pay more attention to the crack information. The purpose of the spatial attention branch is to 
emphasize the features of each spatial position so that the network can extract more spatial position information features related to the 
crack. 

The channel attention branch of the BAM module consists of a global average pooling layer and two fully connected layers. It can 
aggregate features between each channel and generate a feature vector using Eq. (3). 

Fc =FC(FC(GlobalAvgPool(F1))) (3)  

where FC represents fully connected layers, Fc represents a 1 × 1 × C feature vector, and GlobalAvgpool represents global average 
pooling. 

As contextual information is crucial to understanding spatial positions in the task of tooth crack segmentation, a larger receptive 
field is needed to effectively capture contextual information. Therefore, the spatial attention branch of the BAM module consists of two 
1 × 1 convolution layers and two 3 × 3 dilated convolution layers, which can generate a feature map of size H × W × 1. In the ex-
periments, the kernel size of the dilated convolution layers is set to 3 × 3 with an atrous rate of 4. The spatial attention feature map is 
defined in Eq. (4). 

Fs = conv1×1(Dilated(Dilated(conv1×1(F1)))) (4)  

where conv1×1 represents a 1 × 1 convolution layer, and Dilated represents a dilated convolution layer. 
Following the two parallel attention branches, the dimensions of the attention maps are adjusted to the same size H × W × C to 

ensure compatibility, then they are fused pixel-wise to obtain a three-dimensional feature map. After compressing the new feature map 
into the range of 0–1 via the sigmoid function, element-wise multiplication is performed with the input feature map. Finally, pixel-wise 
addition is carried out with the original input feature map, resulting in the generation of the final feature map. 

3.4. Segmentation evaluation metrics 

The task of tooth crack segmentation can be considered as a two-class classification problem, where the objective is to assign each 
pixel in the input image to either the tooth crack category or the background category. It can also be viewed as a positive and negative 
classification problem, where the tooth crack category is regarded as the positive category, and the background category is regarded as 
the negative category. By comparing the prediction results of the model with the ground truth of the dataset, four basic indicators can 
be obtained, namely True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN). The True Positive represents 
the total number of positive pixels that are correctly predicted as positive pixels, while False Positive indicates the number of negative 
class pixels that are wrongly classified as positive class pixels. The True Negative denotes the number of pixels of the positive class that 
are incorrectly classified into the negative class, and the False Negative indicates the total number of pixels of the negative class that 
are correctly predicted. Using these four basic indicators, the other evaluation metrics can be calculated. 

In this paper, image segmentation is evaluated using MPA and MIoU. MPA is a commonly used pixel-level accuracy metric function 
for evaluating the overall accuracy of a semantic segmentation model in terms of pixel classification. Its calculation formula is shown in 
Eq. (5). 

MPA=
1
n
∑n

i=1

TP + TN
FN + FP + TP + TN

(5) 

MIoU is a mean cross-merge ratio metric function that is commonly used to evaluate the classification effectiveness of semantic 
segmentation models. It takes into account not only the classification accuracy of the model for each class of pixels but also the effect of 
pixel distribution and the number of pixels on the results, enabling a more comprehensive assessment of the model’s performance. Its 
calculation formula is shown in Eq. (6). 

MIoU =
1
n
∑n

i=1

TP
FN + FP + TP

(6)  

4. Experiment 

4.1. Dataset and implementation 

4.1.1. Dataset 
A total of 286 fresh human molars (from 20 to 30-year-old adults) obtained from the Stomatology Hospital of Sun Yat-sen 
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University and the Affiliated Hospital of Guangdong University of Technology, are used in this study. Cracks are created in these teeth 
through thermal expansion and contraction in thermodynamics to simulate cracked teeth. The same preparation protocol for vitro 
simulated cracked teeth and its details can be found in Refs. [24,48,49]. It should be mentioned that the preparation of cracked teeth 
samples requires a significant effort because of costs and resources, with specific requirements for tooth type and integrity. In the end, 
we select 600 optical images that meet the aforementioned criteria. According to the literature survey, many studies that apply se-
mantic segmentation for detecting crack have concentrated on datasets with less than 600 images [50,51]. For instance, in Refs. [50, 
51], they employed 200 and 504 images, respectively. Both studies achieved commendable performance in their specific tasks. 
Therefore, the dataset used in this paper is not considered small within the domain of crack segmentation. 

4.1.2. Implementation details 
After a thorough examination by an experienced dentist, the dataset is randomly divided into two groups (training, and testing sets) 

with a ratio of 5:1, and the same strategy is also employed in the research works of [50,52]. The dataset contains images of normal, 
exposed, dark light, dental fluorosis, dental plaque, and dental caries, with up to 450 images for normal teeth. Dental plaque and dental 
caries have the least representation, with 15 and 20 images, respectively. More details can be found in Table 2. Due to the limited 
representation of dental plaque and dental caries images, this paper conducts further qualitative analysis on these two categories. As 
these images are of different sizes, they are resized to a uniform resolution of 512 × 512 pixels to complete the dataset. Through the 
application of transfer learning technique, pre-training weights from ImageNet are used as the initialization of our model, which 
improve the network’s performance, training efficiency, and effectiveness in the task of tooth crack segmentation. In addition, in order 
to reduce the risk of overfitting, batch normalization is introduced after each convolutional layer [53] and L2 regularization is applied 
for additional protection against overfitting [54]. Fig. S3 illustrates the validation loss and training loss plots for various DeepLabv3+
networks with different backbone architectures. By examining the figure, it can observe that all the models exhibit relative stability 
during the training process, with both the training loss and validation loss showing synchronous reduction and eventual convergence. 
Additionally, there is minimal fluctuation, and the values of training and validation losses remain consistently low, indicating that the 
models do not demonstrate significant overfitting. 

The experimental platform uses Windows 10 operating system, Intel Xeon E5-2678 V3 processor, 32G memory capacity, and 
NVIDIA GeForce RTX 3090 24 GB graphics card, and the training and testing are all performed on MATLAB@2022a. During the 
training process, stochastic gradient descent with momentum (sgdm) is utilized as the optimizer. The batch size is set to 8, and the 
initial learning rate is established as 0.001. The model was trained for a total of 50 epochs. The data set is manually annotated using the 
Image Labeler toolbox in MATLAB@2022a. It is noteworthy that a professional dentist, who is one of the authors of this article, 
conducts the final review of all image annotation. 

4.2. Comparison of commonly used models 

To better validate the performance of the FDB-DeepLabv3+ model, a rigorous experimental design is employed as follows.  

a. Comparative experiments are conducted to evaluate the performance of several commonly used image segmentation models, 
including FCN, U-Net, SegNet, and DeepLabv3+ (Sections 4.2.1 and 4.2.2). The results demonstrate that DeepLabv3+ outperforms 
the other models in terms of Mean Pixel Accuracy (MPA) and Mean Intersection over Union (MIoU).  

b. Building on the previous results, to enhance the performance of the DeepLabv3+ model, experiments are conducted with different 
backbones, including ResNet18, ResNet50, ResNet101, Xception, MobileNetV2, and Inception-ResNetV2 (Sections 4.2.1 and 
4.2.2). Among these models, it is revealed that the best performance is achieved by the ResNet50-DeepLabv3+ network.  

c. Subsequently, a detailed comparative analysis is conducted between the proposed FDB-DeepLabv3+ and ResNet50-DeepLabv3+ to 
evaluate the performance of the FDB-DeepLabv3+ model in image segmentation tasks (Section 4.3). Through this comparative 
experiment, the strengths and limitations of FDB-DeepLabv3+ relative to ResNet50-DeepLabv3+ and other models are accurately 
assessed, further validating the performance of FDB-DeepLabv3+. 

4.2.1. Quantitative results of commonly used models 
In this section, the currently used semantic segmentation models are compared, including FCN, U-Net, SegNet, and DeepLabv3+

models based on six different backbones (ResNet18, ResNet50, ResNet101, Xception, MobileNetV2, Inception-ResNetV2). The same 

Table 2 
Proportion of different categories of images in the dataset.  

Categories Training set Test set Total 

Exposure 24 6 30 
Darker light 33 7 40 
Dental fluorosis 38 7 45 
Dental plaque 10 5 15 
Dental caries 15 5 20 
Normal 380 70 450 
Total 500 100 600  

Z. Xie et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e25892

8

dataset is used for both training and testing in the experiments to ensure comparability and consistency in the independent variable. 
Table 3 displays the quantitative comparison results of the eight models. It is observed that ResNet50-DeepLabv3+ exhibites superior 
performance in the comparisons on MPA and MIoU with values of 72.67 and 72.06, respectively. Notably, when compared with 
Xception-DeepLabv3+(baseline), ResNet50-DeepLabv3+ shows significant improvements of 8.56% and 9.13% in MPA and MIoU, 
respectively. Furthermore, it should be noted that the performance of ResNet101-DeepLabv3+ exhibits slightly inferior results 
compared to ResNet50-DeepLabv3+, suggesting that in our crack segmentation task, deeper network cannot further enhance feature 
learning and image segmentation capabilities. Similar results can also be found in Refs. [55–57]. These results further demonstrate the 
dominance of ResNet50-DeepLabv3+ in the task of image segmentation. Among the nine models evaluated, FCN demonstrats the 
lowest performances. 

4.2.2. Visual segmentation results of commonly used models 
Fig. 3 provides the segmentation results of different models on tooth cracks under normal circumstances. It can be observed that the 

segmentation results of FCN-8s and U-Net are coarse, with serious segmentation accuracy issues. When segmenting, slight reflections 
and uneven areas on the tooth surface are easily misrecognized as cracks. SegNet suffers from serious over-segmentation of the detailed 
contours of tooth cracks. It can be seen that the DeepLabv3+ series models exhibit significant segmentation advantages. As shown in 
Fig. 3(a) and (b), the segmentation accuracy of each model is relatively high, and the segmented crack contours are closer to the ground 
truth. For Fig. 3(c) and (d), each model tends to recognize the boundary between the tooth contour and the background as a crack, 
resulting in inaccurate segmentation. As for Fig. 3(e) and (f), when the cracks on the tooth surface are fine and the contrast with the 
tooth surface is low, the DeepLabv3+ series models with different backbones may not accurately find the contour details of tooth 
cracks, resulting in over-segmentation and coarse segmentation results. Among these models, DeepLabv3+ with ResNet as its back-
bone delivers the best performance, yielding a more comprehensive outline of segmented tooth cracks. However, noticeable differ-
ences in segmentation quality emerge when comparing various ResNet versions. In contrast to ResNet50-DeepLabv3+ and ResNet101- 
DeepLabv3+, ResNet18-DeepLabv3+ is capable of delineating crack outlines effectively, but it demonstrates a reduced proficiency in 
classifying interfering pixels within each image. Both ResNet50-DeepLabv3+ and ResNet101-DeepLabv3+ exhibit strong segmenta-
tion capabilities for tooth crack pixels. However, ResNet101-DeepLabv3+ lags in terms of the continuity of crack segmentation, while 
ResNet50-DeepLabv3+ demonstrates the most comprehensive advantage, excelling in both the continuity of crack segmentation and 
the handling of interfering pixels. 

Fig. 4 shows the segmentation results of various models under the influence of factors such as severe exposure, dental plaque, dental 
fluorosis, and cavities. Although the overall performance of the DeepLabv3+ series models in segmenting tooth cracks is satisfactory, 
these models still have some segmentation accuracy issues. In Fig. 4(a), when the tooth crack is in an image with severe exposure, the 
DeepLabv3+ models with Xception, MobileNetv2, and Inception-ResNetv2 as the backbone incorrectly classify some pixels in the 
overexposed areas as cracks, resulting in over-segmentation. In Fig. 4(b), when the tooth crack is covered by dental plaque, all models 
recognize some of the dental plaque area as cracks, resulting in inaccurate segmentation. For Fig. 4(c) and (d), when cracks appear on 
teeth with dental fluorosis or other lesions, the DeepLabv3+ models cannot precisely capture the intricate characteristics of the crack 
edges, resulting in segmentation errors in the lesion area. For teeth with cracks affected by dental caries, such as Fig. 4(e) and (f), even 
the relatively good performing ResNet50-DeepLabv3+ model and ResNet101-DeepLabv3+ model can cause missing edge features of 
tooth cracks. Among the tested models, the ResNet50-DeepLabv3+ model and the ResNet101-DeepLabv3+ model both show prom-
ising performance, but it is still affected to some extent by factors such as image illumination, dental fluorosis, and dental caries. 
Considering the performance of the model’s performance as well as the computational resources, we further tend to improve Deep-
Labv3+ based on the ResNet50-DeepLabv3+ model. In order to verify the performance of the proposed model (FDB-DeepLabv3+), a 
series of comparison experiments between it and ResNet50-DeepLabv3+ are conducted. 

4.3. Comparison between FDB-DeepLabv3+ and ResNet50-DeepLabv3+

The quantitative results and visual segmentation outcomes of commonly used models have been discussed in the previous sections, 
confirming the effectiveness of backbone network replacement from DeepLabv3+ to ResNet50. In this section, the training loss curves 
of DeepLabv3+ with different backbones are first examined, followed by a comparison of the training loss curves between FDB- 
DeepLabv3+ and ResNet50-DeepLabv3+. Subsequently, a quantitative analysis of the performance of FDB-DeepLabv3+ and 

Table 3 
Quantitative results among the eight methods on self-made hidden cracked tooth dataset.  

Model Backbone/Type MPA (%) MIoU (%) 

FCN 8s 56.91 54.52 
U-Net VGG16 58.67 56.80 
SegNet VGG16 59.98 58.36 
DeepLabv3+ ResNet18 70.15 69.30 
DeepLabv3+ ResNet50 72.67 72.06 
DeepLabv3+ ResNet101 72.24 71.16 
DeepLabv3+ Xception 64.11 62.93 
DeepLabv3+ MobileNetv2 65.38 64.34 
DeepLabv3+ InceptionResNetv2 69.98 69.12  
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Fig. 3. Segmentation comparison of eight models when handling normal tooth surface, including (a)–(d) Adequate light, (e)–(f) Darker light and 
tinny cracks. 

Fig. 4. Segmentation comparisons of eight models when handling challenging tooth surfaces, including (a) Exposure, (b) Dental plaque, (c)–(d) 
Dental fluorosis, (e)–(f) Dental caries. 
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ResNet50-DeepLabv3+ is conducted based on MPA and MIoU metrics. Finally, the visualization of tooth crack segmentation results 
achieved by FDB-DeepLabv3+ and ResNet50-DeepLabv3+ is compared. 

4.3.1. Quantitative analysis of FDB-DeepLabv3+
Fig. 5 shows the training loss curves of the DeepLabv3+ model based on different backbones and the proposed FDB-DeepLabv3+. 

As shown in Fig. 5(a), the ResNet50-DeepLabv3+ model performs the best and has the lowest loss value compared to DeepLabv3+ with 
other backbone (ResNet18, ResNet101, Xception, MobileNetV2, Inception-ResNetV2). Specifically, the Xception-DeepLabv3+ model 
exhibits the poorest performance with the highest loss value. Although the MobileNetV2-DeepLabv3+ model shows slightly better 
results than Xception-DeepLabv3+, it still falls short of achieving satisfactory outcomes. Moreover, both the ResNet18-DeepLabv3+, 
ResNet101-DeepLabv3+ and Inception-ResNetV2-DeepLabv3+ models are close in performance, but neither of them represents the 
optimal solution. This suggests that using ResNet50 as the backbone can result in higher accuracy and a lower loss rate due to its 
residual structure and deeper network architecture. On the other hand, Fig. 5(b) indicates that the proposed FDB-DeepLabv3+ model, 
which improved on the ResNet50-DeepLabv3+ model, has a faster convergence rate during the initial training period. After 
approximately 700 iterations, the loss curve gradually stabilizes and remains around 0.05, and its loss value is lower than that of the 
ResNet50-DeepLabv3+ model. This suggests that the FDB-DeepLabv3+ model may effectively reduce the loss of feature information 
and improve the segmentation effect of tooth cracks. 

Table 4 presents the quantitative comparison results between the ResNet50-DeepLabv3+ and FDB-DeepLabv3+ models. The re-
sults indicate that the proposed FDB-DeepLabv3+ model achieves a 2.85% higher MPA and 3.01% higher MIoU than the ResNet50- 
DeepLabv3+ model. These results demonstrate the proposed method has improved the detection capability of small pixel points, such 
as tooth cracks, by better extracting crack features and enhancing the attention to local information where tooth crack features reside. 

By further combining the results from Table 3, it is found that, compared to the original DeepLabv3+ model, the MPA of the FDB- 
DeepLabv3+ model is improved by 11.41%, and the MIoU is improved by 12.14%. This indicates that the FDB-DeepLabv3+ model 
demonstrates higher overall accuracy and better classification performance in pixel-level categorization. Considering these results 
collectively, it can be concluded that the FDB-DeepLabv3+ model exhibits superior performance in pixel-level classification tasks, 
providing enhanced capabilities for the accurate detection of fine structures such as tooth cracks. 

4.3.2. Qualitative analysis of FDB-DeepLabv3+
To validate the segmentation performance of the improved DeepLabv3+ model on tooth crack images, some difficult-to-segment 

tooth crack images are selected from the test set for comparative analysis. By visualizing and comparing the segmented results, it is 
evident that the FDB-DeepLabv3+ model indeed improves the segmentation performance of tooth cracks. 

Fig. 6 illustrates the segmentation results of the DeepLabv3+ model before and after improvement on tooth crack images. Fig. 6(a) 
shows a tooth surface image under exposure influence, where the ResNet50-DeepLabv3+ model produces rough crack boundaries due 
to the exposure effect on the crack area. In contrast, the FDB-DeepLabv3+ model can effectively refine the crack boundaries, but some 
segmentation errors still occur in the exposure area. Fig. 6(b) depicts image distortion, where the ResNet50-DeepLabv3+ model 
produces discontinuities in the segmented tooth cracks, while the improved model maintains the continuity of cracks. Furthermore, 
several examples (tooth decay, dental plaque, fluorosis) have been showcased, as some images in the dataset are heavily contaminated, 
which can serve as a better test of the model’s performance. Fig. 6(c–f) shows images of lesioned tooth surfaces, where the ResNet50- 
DeepLabv3+ model produces segmentation errors in some lesion areas during tooth crack segmentation, leading to missing the edge 
features of tooth cracks. In contrast, the FDB-DeepLabv3+ model effectively improves this phenomenon and demonstrates robustness. 
In summary, the improved FDB-DeepLabv3+ model effectively reduces the impact of factors such as plaque, dental caries and image 

Fig. 5. Loss curves of different models on self-made hidden cracked tooth dataset (a) DeepLabv3+ model based on different backbones, (b) 
ResNet50-DeepLabv3+ and FDB-DeepLabv3+. 
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exposure on the segmentation accuracy of the model. Moreover, the crack contours segmented by the model are more closely aligned 
with the annotated ground truth in various scenarios, and improves the segmentation results of the tooth boundary. 

Considering the limited number of images depicting dental plaque and dental caries in the dataset, this paper undertakes a 
comprehensive comparison of these two image types. In Fig. 7(a), it can observe that when plaque is severe, DeepLabv3+ models with 
non-ResNet backbones (including Xception, MobileNetv2, and InceptionResNetv2) exhibit relatively poor segmentation performance. 
Specifically, Xception performs weakest in plaque classification, while MobileNetv2 requires further improvement in distinguishing 
reflective pixels. Although InceptionResNetv2 performs the best among these three, it still occasionally misclassifies boundary pixels of 
plaque as cracks. In contrast, DeepLabv3+ models with ResNet as the backbone perform significantly better. Among these, ResNet18 
shows some segmentation errors, while ResNet50 and ResNet101 excel in plaque boundary pixel classification. FDB-DeepLabv3+
outperforms all of them without the aforementioned shortcomings. In Fig. 7(b), all models face challenges in fully segmenting cracks. 
However, DeepLabv3+ models with ResNet as the backbone demonstrate better error segmentation, while FDB-DeepLabv3+ excels by 
not erroneously classifying any non-crack pixels. For Fig. 7(c–d), given the large area of dental caries all models find it challenging to 
fully segment cracks. Nevertheless, in terms of error segmentation, ResNet50, ResNet101, and FDB-DeepLabv3+ stand out, with FDB- 
DeepLabv3+ demonstrating the most outstanding performance. 

Table 4 
Quantitative results among the ResNet50-DeepLabv3+ and FDB-DeepLabv3+ on self-made 
hidden cracked tooth dataset.  

Model MPA (%) MIoU (%) 

ResNet50-DeepLabv3+ 72.67 72.06 
FDB-DeepLabv3+ 75.52 75.07  

Fig. 6. Segmentation comparisons of the model before and after improvement when handling challenging cases, including (a) Exposure, (b) Image 
distortion, (c)–(f) Diseased teeth. 
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4.4. Ablation analysis 

Ablation experiments are conducted to verify the impact of the improved modules on the overall performance of the proposed 
model. The semantic segmentation results of tooth crack images with different combination methods are shown in Table 5. 

Comparing the results based on (1) and (2), it can be observed that replacing the backbone from Xception with ResNet50 resulted in 
an increase of 8.56% in MPA and 9.13% in MIoU values. This indicates that the ResNet block effectively enhances the model’s feature 
learning capability. Based on the results comparison of (2) and (3), it is seen that by fusing the feature maps of three different levels of 
the ResNet50 backbone through the FPN structure and using a layer-by-layer up-sampling method for concatenation and fusion as an 
important branch of the input decoding layer, the overall performance of the model is slightly improved, with MPA and MIoU values 
increasing by 0.56% and 0.62% respectively. According to the results comparison of (2) and (4), it is seen that after changing the 
original ASPP module to the densely linked ASPP module, the model performs better, with MPA and MIoU values increasing by 1.11% 
and 1.19% respectively. Based on the results comparison of (2) and (5), it is seen that after introducing the attention branch, the value 
of MPA and MIoU increase by 1.52% and 1.62% respectively which indicates that this method effectively improves the accuracy of 
feature extraction. Based on the result of approach (6), it is observed that the incorporation of all three modules concurrently leads to a 
significant enhancement in the overall performance of the model. The resultant MPA and MIoU values are found to be 75.52% and 
75.07%, respectively. 

5. Discussion 

The accurate diagnosis of cracked teeth presents a significant challenge due to the presence of early symptoms that are often vague 
and easily confounded with other dental conditions. This can result in both misdiagnosis and missed diagnosis. Research has 
demonstrated that AI-based deep learning methods, such as wavelet-guided deep models, can outperform human observers in terms of 
diagnostic accuracy [21,22]. While certain deep learning methods have been shown to provide a relatively high diagnosis rate 
(exceeding 90% using binary classification neural networks [20,24] as well as combined U-Net and YOLOv4 network [37]), issues such 
as extended detection time and limited crack information suggest that semantic segmentation methods may offer more detailed and 

Fig. 7. Different DeepLabv3+ models for segmenting crack in tooth with dental plaque and dental caries.  

Table 5 
Semantic segmentation results of tooth crack images using different combination methods.  

approach ResNet50 FPN Dense ASPP BAM MPA (%) MIoU (%) 

(1)     64.11 62.93 
(2) ✓    72.67 72.06 
(3) ✓ ✓   73.23 72.68 
(4) ✓  ✓  73.78 73.25 
(5) ✓   ✓ 74.19 73.68 
(6) ✓ ✓ ✓ ✓ 75.52 75.07  
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specific information. This can facilitate a more comprehensive understanding of the crack structure and aid in the formulation of 
subsequent treatment plans. The utilization of optical imaging in this study is noteworthy, as it not only reduces costs but also 
effectively avoid the limitation of the U-Net learning framework in tooth crack segmentation with CBCT imaging. The smoothing filters 
used in HR-CBCT may disrupt subtle features in the images [22,25]. 

In traditional small object detection, DeepLabv3 demonstrates significant advantages compared to FCN and U-Net model [58]. 
With improvements to the ASPP module and the fully connected conditional random field module, DeepLabv3+ has achieved even 
better results in terms of mandibular fractures detection [37], particularly in detecting smaller targets such as cracks in terms of 
over-segmentation and precision. Based on our experiments DeepLabv3+ performs best in tooth crack segmentation compared to other 
commonly used networks. However, the results of the image segmentation show that segmenting cracks in segmentation detail and 
under other pathologies are flawed and can be further optimized. Our study aims to enhance the performance based on DeepLabv3+
model. ResNet50 is replaced as the backbone of the model, owing to its advantages in terms of depth, parameter sharing, expressive 
feature representation, and advanced architectural design. Numerous studies have indicated that this modification leads to improved 
performance of the model [59–61]. Feature Pyramid Network (FPN) is added to effectively integrate low-level, mid-level, and 
high-level features from the backbone, compensating for the loss of feature information. Similar improvement can also be found in 
reference quotation [62]. ASPP module is integrated to connect crack features in a more densely manner, ensuring strong correlations 
between segmentation objective and maintaining the integrity of objective segmentation [63]. What’s more, BAM module is incor-
porated into our model based on the evidence from Ref. [64], which demonstrates that BAM module can focus on both spatial and 
channel aspects of the image, enhancing the weight allocation of crack features and further improving the details of the crack features. 
Other attention mechanisms, such as ECA and CBAM, come with certain limitations in handling global context dependencies and 
channel-wise relationships, or they have higher complexity and require more computational resources. Considering factors like 
execution efficiency and performance improvements (compared to residual networks), BAM is integrated into our model. Ablation 
experiments show that each module has a positive impact on the detection and that the inclusion of all modules is effective. 

Currently, research on the use of artificial intelligence to assist dentists in detecting tooth fractures is rare. In the field of dentistry, 
especially in the diagnosis of diseases related to tooth cracks, the potential of artificial intelligence remains largely untapped. The 
novelty of this research lies not only in the exploration of using artificial intelligence to detect cracks in human teeth with optical 
pictures, but also in the investigation of the impact of various backbones on the performance of the DeepLabv3+ model. Most 
importantly, we further integrated and enhanced the traditional DeepLabv3+ model, resulting in the FDB-DeepLabv3+ model. This 
model significantly improves the numerical performance of the conventional DeepLabv3+ model in the task of semantic segmentation 
of cracked teeth, as evidenced by higher MPA and MIoU evaluation metrics on self-made cracked tooth dataset. 

Traditional methods (patient clinical symptoms-based method, microscopy imaging-based method, CBCT-based methods etc.) may 
have limitations in diagnosis, but the application of semantic segmentation techniques through deep learning models holds the 
promise of enhancing the accuracy of fracture detection, providing more reliable auxiliary tools for dentists. This approach has the 
potential to bring about new breakthroughs in dental healthcare, improving early diagnosis rates of tooth fractures and thereby 
enhancing patient treatment and overall health outcomes. 

The proposed method should be further performed to investigate the diagnostic value in real clinical intraoral diagnostics, espe-
cially in areas such as occlusal surfaces and dental implantations. Furthermore, reducing model complexity to facilitate deployment on 
embedded devices in real clinical assistive diagnostic environments is another direction that needs further investigation. 

6. Conclusion 

This paper has presented an in-depth investigation into AI-based semantic segmentation method for detecting crack in human teeth 
with optical images. Based on deep learning, the DeepLabv3+ model has been improved by incorporating knowledge from the se-
mantic segmentation field and the experience of medical experts. A microscopic image-based tooth crack segmentation algorithm 
named FDB-DeepLabv3+ has been proposed for the task of segmentation of cracks in the presence of various interfering factors. This 
method has demonstrated superior performance in terms of MPA and MIoU metrics compared to classical DeepLabv3+ model, with an 
MPA that is 11.41% higher and an MIoU that is 12.14% higher. Overall, the proposed model contributes to improving the detection of 
tooth crack in optical image and providing a potential solution for subsequent diagnoses. 
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