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Abstract

This paper explores how reinforcing the hyperbolic heat conduction by the

nonlocality affects temperature distribution in nanostructures such as

nanobeam and single-walled carbon nanotubes (SWCNTs). The work dissects

the nonlocal heat conduction by advocating a thoroughly new application of

the differential quadrature method. The nanobeam is modeled like a SWCNT

(cylindrical shell), and the boundaries on the inner and outer sides are consid-

ered under a temperature jump at the nanoscale. The effects of several parame-

ters on the temperature distribution through the thickness of the nanobeam

are highlighted, including time-dependent boundary conditions, time lag, non-

local parameter, length, and radius of the hollow beam.
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1 | INTRODUCTION

Over the last decade, nanostructures have attracted much
interest due to their astounding characteristics that influ-
ence electrical, physical, chemical, optoelectrical, and
biological properties. Carbon nanotubes (CNTs), one of
the most popular carbon-based devices, have been inves-
tigated thoroughly over the past several decades for their
potential applications including field-effect transistors,
interconnects, electron field emitters, sensors, and energy
storage and energy conversion devices.[1–4] Although the
thermal conductivity of polymer matrix reinforced by
CNTs improves when CNTs are randomly distributed, due
to their large aspect ratio and the strong Van der Waals
force between the CNTs and the medium, they tend to
aggregate and form clusters in the nano-composite.[5,6]

Many studies about CNTs and nanoscale structures
were based on the classical continuum theory, which
ignores the size effect. To tackle this problem, nonlocal elas-
ticity theories were introduced for nanoscale structures to
develop size-dependent relations.[7–12] These approaches

show superior performance in coping with this problem
than any other approach. Furthermore, several works stud-
ied the heat conduction in nanocomposites,[13–17] and
nanostructures theoretically[18–21] and experimentally.[22–24]

In the classical model, the temperature gradient of a
specific point causes the heat flux at the same point. At
the nanoscale, a sufficient number of collisions among
energy carriers are required for the heat transport to take
place.[25,26] In general, quantifying the value of a physical
property at one point through another physical property
in a region near to that point is considered as the non-
local effect in the continuum theory and has been
observed experimentally.[27]

The hyperbolic heat conduction equation is intro-
duced based on the Cattaneo and Vernotte model for the
heat flux incorporating a relaxation mechanism that
gradually adjusts to a change in the temperature gradi-
ent.[28–32] This model is a satisfactory extension of the
classical diffusion theory and can yield the hyperbolic
wave equation within the continuum assumption. Based
on the investigations of Soboley[32] and Tzou,[33] since
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the heat flux at micro/nano scale is substantially non-
local, classical models should be modified by introducing
the characteristic length of the material. Prior research
generally confirms that at the nanoscale, the heat transfer
is quite different from that estimated by classical laws. To
tackle this problem, Guyer and Krumhansl (GK)[34,35]

introduced a generalized model by considering the char-
acteristic length of the material as follows:

q z, t+ τq
� �

= −krT z, tð Þ+ l2r2q z, tð Þ, ð1Þ

where τq and l are the time lag of the heat flux and inter-
nal characteristic length, respectively. To investigate the
transient heat conduction from nano- to macro-scales,
Wang et al.[36] considered the effects of both the non-
Fourier heat conduction and the nonlocality of the prob-
lem simultaneously. Xu[37] investigated the nanoscale
heat conduction in silicon thin films by considering the
temporally and spatially nonlocal effects. They showed
thermal wave propagation in nanoscale materials.

Employing the differential quadrature method
(DQM) to solve the transient or time-dependent problems
is a challenging problem in solid mechanics. There have
been a few reports of implementing DQM to discretize
the spatial domain and one of them employing finite dif-
ference, using the Runge Kutta or Newton–Raphson
method, to discretize the temporal domain.[38,39] Instabil-
ity is the most crucial drawback of this method.[40] There
have been a few studies that seek to discretize the tempo-
ral domain using DQM.[41,42] Block marching is an effi-
cient method to solve a time-dependent problem.[43–45]

To solve the hyperbolic and dual-phase-lag heat
conduction, Pourasghar and Chen[44,46,47] introduced a
new application for the DQM. They discretized the spa-
tial and temporal domain by DQM. Finally, they
implemented the Newton–Raphson method to obtain
the temperature history along with the temperature
distribution through the thickness of the material. It
has been recognized that the DQM has the capability
of producing highly accurate solutions with minimal
computational effort[43] when the method is applied to
problems with globally smooth solutions. The main
advantages of the DQM are its inherent conceptual
simplicity and the fact that easily programmable algo-
rithmic expressions are obtained.

A novel contribution of this study is to propose a new
approach to accommodate both the temperature non-
locality and phase lagging, by modifying the non-Fourier
heat conduction introduced in Ref [35], and solving the
problem by DQM.[8,38] The proposed method marches in
the time direction block by block. In each block, there
are several time levels, and the numerical results at these

time levels are obtained simultaneously. With this strat-
egy, the numerical solution at the (n + 1)th time level
depends on the solutions of the previous levels from the
1st to the nth levels. The results in the temporal domain
are obtained using the Newton–Raphson method.
Finally, in this paper we do not witness any unrealistic
value of overshooting for temperature as both tempera-
ture nonlocality and phase lagging are accommodated in
the heat conduction equation.

2 | NONLOCAL HEAT
CONDUCTION

Cattaneo[28] and Vernotte[29] proposed the classical ther-
mal wave model, in which the increase of the heat flux
vector is considered due to the phonon collision in a
duration of the relaxation time (τq):

q+ τq
∂q
∂t

= −krT: ð2Þ

where q is heat flux vector, t is time, k is thermal conduc-
tivity, T is temperature, and r is gradient operator. Even
though the hyperbolic models have shown that the intro-
duction of the phase-lag of the temperature gradient may
avoid the discontinuity of the temperature distribution,
these models are unstable and share overshooting tem-
perature.[45] In order to provide a realistic distribution of
temperature and resolve the issues, we used modified ver-
sion of the Hyperbolic heat conduction in which one
more mechanism for the heat transfer, acting at the
scales L, comparable with the phonon free path l is
included.[34,35] This, in turn, leads to a minimized over-
shooting temperature, thus being able to get much closer
to the realistic conditions. The following equation shows
the participation of the energy carriers into the heat con-
duction relation by l:

1− lð Þ2r2
� �

q= −k
∂T
∂z

ð3Þ

where z is the thickness direction as shown in Figure 1
and l is the mean free paths of phonons, which makes
the temperature at one specific point a function of the
temperature of all points in the body. As mentioned ear-
lier, the modified form of the non-Fourier heat conduc-
tion is used[35]:

1− l2r2 + τq
∂

∂t

� �
q= −k

∂T
∂z

ð4Þ

where τq reflects the effects of thermal inertia.
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2.1 | Nonlocal heat conduction analysis
of CNTs

Fourier and non-Fourier heat conduction models, such
as hyperbolic and dual-phase-lagging heat conduction,
do not accommodate the size effect, while the GK
model reflects both the nonlocal and phase lagging
effects[34,35,49–51]:

q+ τq
∂qz
∂t

= −k
∂T
∂z

+ l2
∂2T
∂z2

� 	
: ð5Þ

Furthermore, from the first law of thermodynamics,
the conservation of energy takes the following form:

Cp
∂T
∂t

+
∂q
∂z

= g z, tð Þ ð6Þ

with Cp being the volumetric heat capacity, Cp = ρc.
Let us consider a SWCNT, as shown in Figure 1, which

is subjected to a heat shock at the inner or outer surfaces.
A SWCNT is modeled as a Timoshenko nanobeam with
radius r, length L, and effective tube thickness h.

The temperature fields in the above equations can be
obtained from nonlocal heat conduction and energy
equation as follows:

q+ τq
∂qz
∂t

= −k
∂T
∂z

+ l2
∂2T
∂z2

ð7Þ

ρC
∂T
∂t

+
∂q
∂z

= g z, tð Þ, ð8Þ

where g(z, t) is the heat source, which is taken to be zero
in this paper.

For thermal boundary conditions, it is assumed that
the SWCNT is under a sudden temperature change on
the outer surface (z= − h

2 ) and all other boundaries are

considered adiabatic. The initial and boundary conditions
of the beam can be expressed as[52,53]:

T z, tð Þ= β tð Þ
T z,0ð Þ=0

q 0, tð Þ=0

q z,0ð Þ=0,

ð9Þ

in which β tð Þ=
1
2
+
3
4

2t
t*−1

� 	
−
1
4

2t
t*
−1

� 	3

if 0≤ t≤ t*

1 if t≥ t* for BCI

0 if t≤ t* for BCII

8>>><
>>>:

is a

third-order polynomial approximating a sudden change
in the temperature.

3 | SOLUTION METHOD

Unlike other solution methods, DQM does the computation
over the entire spatial–temporal domain (z-x plane) at one
step. Therefore, to accommodate the whole boundary con-
ditions accurately, the time step should be considered very
small. Increasing the number of sampling grid points to
capture the boundary conditions causes a few problems:
(1) increasing the order of the system of equations;
(2) increasing the running time to compute the state vari-
ables; (3) the considerable accumulation of numerical errors
due to the weighting coefficient of sampling grid points.

To eliminate these drawbacks while keeping high-level
accuracy, Shu[43] proposed an efficient temporal dis-
cretization approach based on block-marching in time and
DQM discretization in both the spatial and temporal direc-
tions, as shown in Figure 2.[45] The same approach is used
here to solve the nonlocal heat conduction in a nanostruc-
ture.More details of this procedure can be found in the liter-
ature.[43,47,48,54] The pth order derivative of the continuous
function f(z,t) in the spatial or temporal directions at an
arbitrary sampling grid point zi can bewritten as follows:

FIGURE 1 Single-wall

carbon nanotube (SWCNT)

modeled as a nonlocal

Timoshenko nanobeam [Color

figure can be viewed at

wileyonlinelibrary.com]
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∂f p z, tð Þ
∂zp






z= zi

=
XN
k=1

Cp
ikf zik, tj

� �
,

i=1,2,…Nz, j=1,2,…Nt,p=1,2,…Nz−1ð Þ
ð10Þ

∂f p z, tð Þ
∂tp






t= ti

=
XN
k=1

Dp
jkf zik, tj

� �
,

i=1,2,…Nz, j=1,2,…Nt,p=1,2,…Nz−1ð Þ,
ð11Þ

where Nz and Nt are the number of sampling points along
z and t directions, respectively. Also, Cp

ik and Dp
jk are the

zi and tj dependent weight coefficients.
By considering the test functions as the Lagrange

interpolation polynomials, the weighting coefficients of
the first- and second-order derivatives are available in
Ref [36], and they are defined, respectively, by

C1
ik =

M 1ð Þ zið Þ
zi−zkð ÞM 1ð Þ zkð Þ , for i≠k, i,k=1,2,…,N ð12Þ

C2
ik =2C1

ik C 1ð Þ
ii −

1
zi−zk

� 	
, for k≠i, i, j=1,2,…,N

C2
ii = −

XN
k=1, i≠k

C2
ik,

ð13Þ

where

M 1ð Þ zið Þ=
YNð Þ

m=1,m≠j

zj−zm
� �

: ð14Þ

3.1 | Nonlocal heat conduction

DQM is employed to discretize the temporal and spatial
derivatives. The total temporal domain is divided into a
set of time intervals and the obtained temperature at the
end of each time interval is used as an initial condition
for the next time interval. Thereby, in the beginning, the
temperature and heat flux at a given control volume, P,
at time, t, are obtained from the boundary conditions and
then the value at time interval, t+Δt, is found, and will
be considered as an initial condition for the next time
step. All time intervals are thus connected, and the time
history of temperature will be obtained. The DQM being
applied to Equations (7, 8), the following equations at
arbitrary sampling points zi and tj are then obtained:

kij
XNx

m=1

Cz1
imTmj− l2

XNx

m=1

Cz2
imTmj + τq

XNt

n=1

D1
jnqin + qij =0

ð15Þ

XNx

m=1

Cz1
imqmj + ρijCij

XNt

n=1

D1
jnTin = gij: ð16Þ

The solutions of Equations (15 and 16) will be obtained
by employing the Newton–Raphson method.

4 | RESULTS AND DISCUSSION

4.1 | Validation

To predict the temperature distribution, the DQM has
shown good agreement in all nodes with the analytical
solution,[55] as shown in Figure 3. The same values for
the parameters are considered here as those in Ref [55].
The results are presented for the hyperbolic heat conduc-
tion in a slab which is heated on both sides with zero ini-
tial conditions at the nanoscale. The hyperbolic heat
conduction in the Laplace domain is presented in Ref
[53] and Kn is used to consider the effect of nonlocality.

4.2 | Numerical results and discussion

In the following calculations, the heat conduction-related
parameters take these values, unless otherwise mentioned.

FIGURE 2 Configuration of block-marching technique and

mesh point distribution in each block
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For nanobeam: ρ = 1600 kg/m3, to = 12 * 10−7 s,
Cp = 630 J/K, K = 30, ri = 4 * 10−12 m, r0 = 16 * 10−12 m
and l = 2 * 10−8m. Here ri and ro are the inner and outer
radii of the hollow cylinder, r = (ri+ r0)/2.

Also, the number of sampling grid points for DQM is
considered equal to 21, time increment (dt) is 1 * 10−15 s
and t* = 5 * 10−15 s.

In Figures 4 and 5, we assumed that there is a ther-
mal shock on both inner (ri) and outer (ro) surfaces of the
cylinder. For the thermal shock, there is a 10�C increase
in temperature in 50 fs and then it stays still. The fast rise
in temperature at the boundaries (ri and ro) happens as a
result of prescribed boundary conditions. The increase in
the temperature in the middle parts of the thickness is
slower than what? due to the time required for the heat
flux to entirely reach and cover this area. Also, thermal
waves can be seen in Figure 4, and they become weaker
as time goes on.

Figure 6 indicates the effects of the thermal shock
time duration (t*) on the temperature distribution. As
shown in Figure 6(A), t* = 0 means that the temperature
at the boundary is constant (T = 10), and it gives the
highest value of the temperature throughout the thick-
ness of the nanobeam (Figure 6(B)). By increasing the
value of t*, and plotting the temperature pattern at
t = 20 fs, the lower temperature is obtained, as shown in
Figure 6(B).

The temperature distributions through the thickness
of the cylinder are presented in Figure 7 at different char-
acteristic lengths. In Figure 7, the presence of the internal
characteristic length prevents the temperature from
exceeding the boundary temperatures, which is known as

overshooting and may damage electrical devices if it is
not handled correctly. Furthermore, the small value of
the nonlocal length keeps the nonlocal effect within a
physical domain contiguous to the imposed thermal
shock at the boundary. As the characteristic length
becomes conspicuous at a large value of the nonlocal
length, the nonlocal effect escalates from the border and
propagates within the medium.

Figure 8 depicts the temperature distribution at
t = 20 fs for different relaxation times. The increase in
thermal relaxation time causes a decrease in the thermal

FIGURE 3 Comparison between two different solution

methods, (1) differential quadrature method (present method)

(2) Fourier transformation [Color figure can be viewed at

wileyonlinelibrary.com]

FIGURE 4 Time history of the temperature distribution at

different points through the thickness [Color figure can be viewed

at wileyonlinelibrary.com]

FIGURE 5 Heat transfer simulation in Matlab (Heatmap)

[Color figure can be viewed at wileyonlinelibrary.com]
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wave propagation speed and thereby decreases the
change in temperature away from the imposed boundary.
As shown in Figure 8, for the highest value of the relaxa-
tion time, τ0 = 12 * 10−4 s, a large proportion of the thick-
ness has not experienced the thermal shock and the
temperature has remained zero. On the contrary, for
τ0 = 12 * 10−7 s, which is the smallest value of relaxation
time, the whole thickness domain has been affected by
the thermal shock at the boundary.

The temperature distribution through the thickness
for the second type of boundary condition is presented in
Figure 9. Figure 9 shows that the temperature in the area
close to the inner (ri) and outer (ro) surfaces first increase
very fast in the heating stage (0< t<10 fs). Then the heat
source at the boundary disappears, and the temperature
becomes zero in these areas. Although we have removed
the heat source from the boundary, the effects of thermal
shock are still observed in the middle parts of the

FIGURE 6 Temperature distribution through the thickness by changing the time duration of the thermal shock (t*) (A) Boundary

conditions, (B) temperature distribution across the thickness of the carbon nano-tube at t = 20 fs [Color figure can be viewed at

wileyonlinelibrary.com]

FIGURE 7 Effects of the characteristic length (l) on the temperature distribution at t = 20 fs [Color figure can be viewed at

wileyonlinelibrary.com]
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thickness. The heat transfer within the media can be seen
in Figure 10. It is illustrated that although the tempera-
ture at the boundary is set to zero after 50 fs, the heat
transfer continues and tends to move toward the center
of the media.

Figure 11 is a comparison between the effects of two dif-
ferent boundary conditions on the temperature distribution
within the nano-cylinder. In the case of τ0 = 0.8 fs and 1 fs,
there has been some exciting results. We observed that for
two different boundary conditions, the temperature of some
regions in the middle of the thickness is identical. We can
justify this instance by considering the fact that temperature
in the area away from the imposed boundary, at the initial
stages, depends more on the characteristic length and relax-
ation time. The boundary conditions determine the limits

of the temperature, and the characteristic length along with
the relaxation time define how fast the medium can reach
these limits.

Figure 12 plots the variation of temperature distribution
at t = 20 fs through the thickness of the beam for different
thickness ratios (ro/ri). It shows that the temperature gradu-
ally decreases with increasing thickness ratio. For the
shortest value of the thickness ratio, the whole thickness
has experienced a change in temperature, but for the larger
value of the thickness ratio, the temperature at the area
around the center (r = ri+ ro/2) remains indentical.

FIGURE 8 Effects of the relaxation time on the temperature

distribution at t = 20 fs [Color figure can be viewed at

wileyonlinelibrary.com]

FIGURE 9 Temperature history of the temperature, BC: II

[Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 10 Visualizing temperature with single heatmap,

BC: II [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Transition from non-Fourier heat conduction to

Fourier heat conduction at t = 20 fs [Color figure can be viewed at

wileyonlinelibrary.com]
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5 | CONCLUSION

A semi-analytical solution for the modified Guyer-
Krumhansl equation is addressed for a nanobeam
modeled as a cylindrical shell using the DQM. The dif-
ferential quadrature approach is employed to develop a
new solution method leading to a more straightforward
solution. The method enables to assess the role of
boundary conditions and material properties in two
and three-dimensional problems. The linear effect of
nonlocality was extended in space under the direct
impact of thermal lagging in time. For the large values
of relaxation time, the time delay effect is restricted to
a physical domain close to the boundary. Decreasing
the value of the time delay pushes the thermal waves
forward. Furthermore, when the characteristic length
is small, there is a sharp decline in temperature near
the boundary, while the temperature in the center of
the cylinder is identical to that obtained from the
hyperbolic heat conduction. A similar phenomenon
happens for the heat flux. The small characteristic
length confines the effects of the interactions between
boundary and energy carriers within a physical domain
near the boundary.
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