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Stress concentration is a crucial source of mechanical
failure in structural elements, especially those
embedding voids. This paper examines periodic
porous materials with porosity lower than 5%.
We investigate their stress distribution under
planar multiaxial loading, and presents a family
of geometrically optimized void shapes for stress
mitigation. We adopt a generalized description for
both void geometry and planar tessellation patterns
that can handle single and multiple voids of arbitrary
void shape at a generic angle. The role of void shape
evolution from diamond to rectellipse on the stress-
distribution is captured at the edge of voids in a
representative volume element (RVE) made of non-
equal length periodic vectors. Theoretical derivations,
numerical simulations along with experimental
validation of the strain field in thermoplastic polymer
samples fabricated by laser cutting unveil the role of
geometric parameters, e.g. superellipse order, aspect
ratio and rotation angle, that minimize stress peak
and ameliorate stress distribution around voids.
This work extends and complements classical theory
by providing fundamental insights into the role
that tessellation, void shape and inclination play in
the stress distribution of low-porosity architected
materials, thus introducing essential guidelines of
broad application for stress-minimization and failure
mitigation in diverse sectors.
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1. Introduction
Architected materials can achieve exotic properties, potentially enabling a wider range of
application across disciplines than conventional bulk materials [1–3]. Typically, it is the
architecture of the building block rather than the chemical make-up that is designed by
rationalized intuition [4] or shape [5] and topology optimization for designated functions
[6–8]. Representative applications through the lens of mechanics of materials include maximum
stiffness for structural integrity [9,10], enhanced fatigue life [11,12], maximum energy absorption
and dissipation [13–15], negative modulus and mass density [16,17], or vanishing shear modulus
[18,19]. The employment of tunable properties is also pervasive in other domains, such as
auxeticity [20,21], wave propagation and acoustic band gaps [22–25], shape morphing and re-
configuration [26–30], heat transfer [31,32], negative or zero coefficient of thermal expansion
[33–35], biomedical devices [36–38], and many others [39].

Despite the abundance of research in porous architected materials, the majority focuses on
high-porosity domains, preferably over 70% for greater tunability. Low porosity applications,
i.e. below 5%, however, also exist, and are often employed in extreme environments subjected
to severe service conditions [40–45]. Recent work on low-porosity metamaterials has shown
the achievement of high tunability in both Poisson’s ratio and band gaps through the use of
staggered elliptical voids in orthogonal tessellations of ultralow porosity (less than 2%) [41,45].
Other works focused on non-elliptical slots with ‘S’ shape, and reported enhanced fatigue life
[40], more broadband absorption for high-frequency acoustic noise [42], and improved cooling
effectiveness than traditional circular voids [44]. Shifted and rotated straight slots in orthogonal
tessellations have been also used in auxetic metamaterials with low-frequency band gaps [46,47].
On this front, most investigations focus on harnessing the well-studied mechanism of rotating
units, where slots or cuts are introduced mainly in the form of circular shapes within orthogonal
tessellations to generate auxetic responses.

Introducing slots in a design domain typically create sharp peaks of stress, a crucial source
of mechanical failure in solids as well as in architected materials [48–50]. Classical works on
stress concentration in solids examined mostly the impact of circular voids and other similar
geometries in an infinite or semi-infinite domain mainly under uniform tension and other simple
loading cases, some with consideration of reinforcements and anisotropic materials. Specific to
cellular architectures, stress concentration has also been studied, but so far to a less degree.
Most focused on high porosity metamaterials, hence investigating the relation between stress
concentration and geometric imperfections induced by additive manufacturing [51,52]. On the
low-porosity front, on the other hand, stress concentration, along with other aspects, such as crack
nucleation, has been studied mainly in orthogonally tessellated metamaterials [43,53,54]. Several
aspects remain so far unaddressed despite playing a key role on the impact of stress concentration
in architected materials; these include (i) the stress field generated by voids with generic shape
and the effect of boundary conditions on the edge of voids; (ii) the existence of optimal shape,
beyond circular voids, and void interaction in a representative volume element (RVE); (iii)
the role of generic tessellation patterns, beyond those defined by the normality of periodic
vectors.

This paper on low-porosity metamaterials has a threefold objective: (i) examine voids with
generic shapes and study the stress concentration field on their edges; (ii) identify optimized
void geometries for minimum stress; (iii) understand the role of generic tessellation patterns with
varying angle of periodic vectors and adjustable edge to length ratio under a general condition of
biaxial loading. Section 2 introduces first a theoretical analysis supported by numeric simulations
of stress distribution on the edge of generic voids in arbitrary planar tessellations, and then
presents optimized parameters of void shapes for the mitigation of stress concentration. Section 3
presents the set-up of digital image correlation testing and in §4, the results of the strain fields are
experimentally verified by the measurements of laser cut samples. Section 5, which precedes the
conclusions, discusses the effect of tessellation pattern and loading conditions on the optimized
system that minimizes peak stress on the edges of multiple voids.
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Figure 1. Definition of geometric parameters for tessellated superelliptical voids of low porosity in a planar domain. (a)
Description of superelliptical voids andRVE; (b) RVE subject to displacement loading andperiodic boundary conditions. Sketches
of voidsmagnified for visualization purposes. RVE defined by periodic vectors, L2 and L1, forming tessellation angleφ.γ defines
void rotation from axis x. (Online version in colour.)

2. Stress concentration on the edge of a superelliptical void in representative
volume element with low porosity

(a) Stress and strain fields in the representative volume element
We examine a two-dimensional architected material described by a generic RVE shaped with
a parallelogram with varying angle between the periodic vectors, hence capable of describing
arbitrary tessellations. Within the RVE we consider individual or multiple voids capturing a total
area below 5%, each traceable by a generic shape that can range from asteroids, diamonds, to
ellipses and rectellipses. Figure 1a shows representative shapes and number of voids in a two by
two RVE describing a periodic domain.

For the description of void shape, we resort to Lamé curves describing a family of
superellipical curves. This formulation enables to outline the shape boundary of a generic void in
the RVE through the manipulation of three parameters only, i.e. superellipse order, q, and ratio of
semi-axis length, a and b, in a succinct form as

|x
a
|q + |y

b
|q = 1. (2.1)

The main shape descriptors in the equation above are used in figure 1a to generate
representative void shapes in a parallelogram RVE. For q = 2, we retrieve the special case of
elliptical voids. For varying q, other shapes emerge, such as asteroids (q = 2/3), diamonds (q = 1)
and rectellipses (q = 4). By varying q, the continuity of curvature changes, a factor that plays a key
role in the stress-distribution on the edge of a void [48–50].

As per the tessellation pattern, our parallelogram RVE is defined by two periodic vectors, L2
and L1, which can form a tessellation angle of φ, hence enabling a generic description of repetitive
patterns beyond orthogonal (figure 1a). Within the RVE, the location of the void i is determined
by the coordinates of its centre (xi, yi) and its rotation angle γi from the horizontal axis (figure 1a).
Their relative rotation, δi is also defined to describe the existence of multiple voids within the RVE
(figure 1b), a notion here presented to describe different tessellation patterns, such as hexagonal
and Kagome, as illustrated in a later section of the paper.

The area of the void is determined from the porosity is ψ

ψ = n
Avoid

ARVE
, (2.2)

where we assume that multiple voids (n> 1) in the RVE are of given area. For a prescribed area
of the void, Avoid, the aspect ratio a/b of the superellipse can be used as another independent
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parameter besides the order q and the semi-axis lengths to write Avoid as a function of the gamma
function

Avoid = 4ab

(
Γ (1 + 1/q)

)2

Γ (1 + 2/q)
. (2.3)

The equations above describing void geometry and tessellation pattern are used in the
following to derive the stress and strain fields in the RVE under the following assumptions:

(i) The material domain is unbounded, periodic and subjected to uniform displacement in
the X and Y directions of the global Cartesian system. Stress and strain analysis of the
planar tessellation is thus inferred from to the study of the RVE under periodic boundary
conditions.

(ii) The porosity is considered to be lower than 5%, thereby enabling the adoption of the bulk
material properties of the solid for the RVE. This assumption infers that the interaction of
multiple voids in the RVE is practically negligible.

(iii) The RVE undergoes small deformation and the material behaviour is linear elastic, thus
small strain theory applies to the theoretical derivation.

Figure 1b shows the parallelogram RVE subjected to a generic biaxial displacement u and v

with v = cu. Varying c allows to retrieve uniaxial loading conditions as c = −μ sin(φ), where μ is
Poisson’s ratio. By aligning the horizontal edge of the RVE to the global X axis, we can write the
periodic boundary conditions on its edges as

uR − uL = u2 − u1, vR − vL = v2 − v1 for left and right

uT − uB = u4 − u1, vT − vB = v4 − v1 for top and bottom
(2.4)

where the subscripts mark the right (R), left (L), top (T) and bottom (B) edges and four vertices of
the RVE in figure 1b.

To suppress rigid body motion and to model the general case of the existence of shear strain in
the RVE, we apply a set of four homogeneous boundary conditions at node 1, 2 and 4 (figure 1b).
This choice is necessary to capture non-zero shear strains in an RVE tessellated at an angle other
than 90◦. By contrast, constraining only three degrees of freedom would fail to capture non-zero
shear strains.

u1 = v1 = 0

v2 = 0

u4 = 0.

⎫⎪⎪⎬
⎪⎪⎭ (2.5)

The strain field in the solid RVE can then be derived for φ �= 0. The combination of
equation (2.4) and (2.5) allows the existence of non-zero shear strain in the RVE for φ other
than 90◦

εxx = ∂u
∂x

= u
L1

εyy = ∂v

∂y
= c

u
kL1 sin(φ)

γxy = ∂u
∂y

+ ∂v

∂x
= − u

L1
cot(φ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)
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Solving the eigenvalue problem of the matrix form of equation (2.6) with εxy = γxy/2 yields the
principal strain for 0◦ <φ ≤ 90◦ as

ε1 =
u

(
c + k sin(φ) −

√
c2 − 2kc sin(φ) + k2

)
2kL1 sin(φ)

ε2 =
u

(
c + k sin(φ) +

√
c2 − 2kc sin(φ) + k2

)
2kL1 sin(φ)

.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.7)

The corresponding principal directions can thus be determined as the inverse tangent of the
eigenvectors

v1 =
[

c − k sin(φ) +
√

c2 − 2kc sin(φ) + k2

k cos(φ)
, 1

]

v2 =
[

c − k sin(φ) −
√

c2 − 2kc sin(φ) + k2

k cos(φ)
, 1

]
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.8)

The assumptions (i) to (iii) also enable us to adopt the plane stress conditions. Multiplying the
constitutive matrix of the linear elastic material with the principal strains in equation (2.7) yields
two principal stresses

σ1 = −
Eu

[
(1 + μ)(c + k sin(φ)) − (1 − μ)

√
c2 − 2kc sin(φ) + k2

]
2kL1 sin(φ)

(
μ2 − 1

)

σ2 = −
Eu

[
(1 + μ)(c + k sin(φ)) + (1 − μ)

√
c2 − 2kc sin(φ) + k2

]
2kL1 sin(φ)

(
μ2 − 1

) ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)

where E and μ are Young’s modulus and Poisson’s ratio of the bulk material.
If we consider the case of uniaxial displacement loading, in the horizontal direction (u), the

vertical displacement can be obtained from u by setting c as −μ sin(φ). Inserting this expression
into equations (2.7) to (2.9) yields

σ1 =
u

(
k − μ−

√
k2 cot2(φ) + μ2 + 2kμ+ k2

)
2kL1

σ2 =
u

(
k − μ+

√
k2 cot2(φ) + μ2 + 2kμ+ k2

)
2kL1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.10)

v1 =
[
− k + μ−

√
k2 cot2(φ) + μ2 + 2kμ+ k2

k cot(φ)
, 1

]

v2 =
[
− k + μ+

√
k2 cot2(φ) + μ2 + 2kμ+ k2

k cot(φ)
, 1

]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.11)

σ1 = Eu(μ− k)
2kL1(μ− 1)

−
Eu

√
μ2 + 2kμ+ k2/ sin2(φ)

2kL1(μ+ 1)

σ2 = Eu(μ− k)
2kL1(μ− 1)

+
Eu

√
μ2 + 2kμ+ k2/ sin2(φ)

2kL1(μ+ 1)

.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.12)

The rhombus-shaped RVE is a special case obtained by setting k = 1 in the equations above.
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Figure 2. Shapes and stress distribution of optimal elliptical and optimized superelliptical voids for peak stress minimization.
(a) Principal directions and the optimized axis alignment for a superelliptical void. Optimal elliptical voids and their stress
distribution for (b) 0<σ1/σ2 ≤ 1, and (c) −1≤ σ1/σ2 < 0. Optimized superelliptical voids and their stress distribution
for (d)−1≤ σ1/σ2 < 0. (Online version in colour.)

(b) Optimized shape of low porosity superelliptical void for mitigation of peak stress
In this section, we first examine the special case of an elliptical void (q = 2) and find in closed form
its optimum shape, i.e. the optimum aspect ratio, and then study numerically the generic scenario
of the optimum shape of a void with q �= 2.

(i) Optimized elliptical holes

Equation (2.9) provides the two principal stresses in the RVE, where the void—either elliptical or
superelliptical—is embedded with directions given by equation (2.8). An exemplary RVE under
biaxial loading is shown on the left of figure 2a.

The low porosity assumption enables us to treat the void within an RVE as loaded by σ1 and
σ2 in an infinitely large domain. Theoretical derivation verified numerically (see the electronic
supplementary material S1) have shown the optimal rotation γ for the mitigation of stress
concentration makes the longer semi-axis of the elliptical void aligned with the principal direction
of the larger principal stress, as shown in the right plot of figure 2a. Further results in the next
subsection show this alignment applies to superelliptical voids too.

Under the condition of void alignment with the principal axes, we can now find the optimal a/b
of the elliptical void in closed-form, while the optimized q, and a/b for a superelliptical void are
found numerically in the next sections. For elliptical voids, we consider the stress concentration
factor of an arbitrary rotated void within the RVE as

Kt = σmax

σ2
, (2.13)

where σmax is the largest von Mises stress on the edge of the void and σ2 is the larger principal
stresses in magnitude, taken as the reference stress herein.

The theoretical formulae of the optimal elliptical void aspect ratio that minimizes Kt and the
minimum value of Kt (see details of derivation in electronic supplementary material, S1) are given
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by

optimal
a
b

=

⎧⎪⎪⎨
⎪⎪⎩

1
σ1/σ2

for 0< σ1
σ2

≤ 1

1√−σ1/σ2
for − 1 ≤ σ1

σ2
< 0

(2.14)

and

min Kt =

⎧⎪⎪⎨
⎪⎪⎩

1 + σ1/σ2 for 0< σ1
σ2

≤ 1

(
1 +

√
−

(
σ1
σ2

))2

for − 1 ≤ σ1
σ2
< 0.

(2.15)

Equations (2.14) and (2.15) are used to generate six plots of stress distributions collected in
figure 2b,c for optimal elliptical voids for the following bi-axial loading cases: σ1/σ2 = ±1, ±0.5
and ±0.1. From the results, it emerges

(i) For σ1/σ2 > 0 (figure 2b), the optimal elliptical void can achieve full stress state on the
edge. As per equations (2.14) and (2.15), the optimal a/b is the reciprocal of σ1/σ2 and
the minimum Kt is a linear function of σ1/σ2. The optimal a/b decreases to 1 and the
minimum Kt increases to 2 as σ1/σ2 approaches 1.

(ii) For σ1/σ2 < 0 (figure 2c), the maximum stress is attained at the four tips. The results
show that for given magnitude of σ1/σ2, the optimal a/b is larger for −1<σ1/σ2 < 0 than
for 0<σ1/σ2 < 1 because for the former the square root appears in equation (2.14). The
minimum Kt is larger for σ1/σ2 < 0, and the largest difference is 100% for σ1/σ2 = −1
when compared with σ1/σ2 = 1.

(iii) If σ1/σ2 = 0, the optimal parameters are the limit of equation (2.14) and (2.15) with
a/b = ∞ and Kt = 1. This implies that approaching the uniaxial principal stress makes the
optimal elliptical hole evolve into an infinitely thin slit aligned with the loading direction,
and the maximum von Mises stress on the tip of the crack to converge to the value of the
loading stress.

(ii) Optimized superelliptical holes

For superelliptical void with q �= 2, no closed-form solution of the stress field exists on the edge
of a void in an infinite domain. In this section, we first numerically solve the problem for
given geometric parameters, and then optimize the void geometry to find the parameters that
minimize Kt.

A square RVE with φ = 90◦ andψ = 0.25% is modelled using ABAQUS (SIMULIA, Providence,
RI). The boundary conditions given by equation (2.4) and (2.5) are implemented. Young’s
modulus and Poisson’s ratio of the base material are E = 7.0 × 10+4 MPa and μ= 0.35. After
a convergence test, approximately 15 000 quadratic plane stress elements with local mesh
refinement and curvature control are employed. Further details of the finite-element simulation
are available in the supplementary material S2. The superellipse order q falls in the set of (1.5,
2, 3, 4, 5, 6) and the aspect ratio a/b varies in the set of (1, 2, 4, 10, 20). The rotation angle γ
ranges between −90◦ and 90◦ by an increment of 10◦. By tuning the ratio c between biaxial
displacement loadings, a series of principal stress ratio can be obtained (see equation (2.9)). A
numerical optimization implemented in Matlab (MathWorks, Natick, MA) on the best result of
the parametric study follows to identify the optimized parameters of the superelliptical void that
minimize stress concentration. The results are plotted in figure 2d plots for the following loading
cases: σ1/σ2 = −1, −0.5 and −0.1. A number of insights can be drawn from the results and from a
relative comparison of the plots in figure 2c,d

(i) First, the numerical results confirm that the void axis alignment with the principal
directions obtained in the previous section in closed form also holds for general
superelliptical voids.
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Figure 3. Optimized geometries of superelliptical voids for rhombus RVE under uniaxial displacement. (a) Normalized min
values of peak von Mises stress versus tessellation angle for elliptical and superelliptical voids; (b) Rotation angle and aspect
ratio of optimized elliptical voids; (c) Superellipse order and aspect ratio of optimized superelliptical voids. Sketches of voids
magnified for visualization purposes. (Online version in colour.)

(ii) Superelliptical voids with q> 2 can further reduce the stress concentration factor by 18%
to 22% from elliptical voids when σ1/σ2 < 0.

(iii) Superllitipcal voids with q> 2 features a continuous change of curvature at their edge
reaching a maximum at their corners and zero at their tips. Given the tight relation
between stress concentration and curvature, the ideal full-stress distribution can be better
approximated by a distribution of stress that achieves the full-stress at eight points on the
edge, two around each corner, as opposed to four points only for elliptical voids.

(iv) As σ1/σ2 reduces from 0 to −1, the optimized a/b reduces and converges to 1 while the
optimized q increases up to 5.

(v) For −1<σ1/σ2 < 0, the optimized a/b of the superelliptical void is always larger than the
elliptical counterpart.

(iii) Optimized superellipse in rhombus-shaped representative volume element

To exemplify the application of the above findings to low porosity architected materials with RVE
tessellated in a planar domain, we now study the effect of the tessellation angle γ , and for given
values of γ we find the optimized geometry of the void including superellipse order q and ratio
of semi-axis length a/b. We examine a generic superelliptical void at the centre of a rhombus-
shaped RVE, with porosity ψ = 0.25%, periodic vectors of equal length, k = 1 (figure 1b), and
under uniaxial displacement loading u. The architected material is made out of a representative
metal with yield stress σy = 275 MPa.

To study the role of tessellation angle, we assume to vary it discretely of 10◦ between the
representative values 30◦ and 90◦, and consider the resulting seven scenarios for the cases of q = 2
and q> 2, all satisfying the boundary conditions in equations (2.4) and (2.5). We emphasize that
for φ �= 90◦ the principal stresses are biaxial (see equation (2.12)), and the ratio of σ1/σ2 in the RVE
increases from −0.239 at φ = 30◦ to 0 at φ = 90◦.

Figures 3 illustrates three related plots all emphasizing the role of φ on the x-axis. The
first (figure 3a) shows the peak von Mises stress, here normalized by the yield stress of
the representative metal, for the optimized elliptical and superelliptical void as well as for the
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Figure 4. Experimental set-up used to measure strain fields of low porosity architected materials.① Test sample;② Fixture;
③ Horizontal connection tab and steel wire; ④ TA ElectroForce 3510 Test Instrument; ⑤ Write Light; ⑥ CCD camera and ⑦
Displacement fields of fixtures and test sample (unit in mm). (Online version in colour.)

reference circular void, each reported for given φ. The second and the third (figure 3b,c), illustrated
their corresponding optimized parameters, i.e. rotation angle, aspect ratio and superellipse order.

From a comparison of the results in figure 3a, we observe that the decrease of the peak stress
achieved by the superelliptical family is outstanding: an optimized elliptical void can achieve at
least 31.8% of decrease of peak stress (at φ = 30◦) from its circular counterpart, and an optimized
superelliptical void can even reach 45.4% decrease at φ = 30◦. Furthermore, the effect of the
optimized superelliptical order for q> 2 is more significant for a smaller φ, as the value of σ1/σ2
is even lower than zero, and the optimized q = 2 when σ1/σ2 = 0. As per the void rotation, the
values of the optimized a/b in figure 3b match exactly the theoretical value of equation (2.11) and
demonstrate the alignment of the void with the principal directions. With regard to the ratio of
the void axes, the optimized a/b in figure 3b increases with the decrease of φ and the values are in
agreement with the predictions obtained by using equation (2.14) for −1 ≤ σ1/σ2 < 0.

For superelliptical voids with q> 2, the optimized values of γ for each φ are identical to those
of the elliptical voids, hence only the set of the latter are displayed in figure 3c. Here, the evolution
of the optimized q and a/b shows that for σ1/σ2 even smaller than zero, i.e. for decreasing φ,
the optimized q gets even larger than 2, and can be up to 5; by contrast, the optimized a/b
decreases with a decrease of φ. A comparison between figure 3b,c manifests that the a/b of
optimized superelliptical void is always larger than that of the optimized elliptical baseline, but
the difference tends to vanish as φ increases to 90◦. For σ1/σ2 = 0 at φ = 90◦, the optimized a/b is
20, reaching the upper bound set in the approximation of infinity for the numerical solution.

3. Fabrication and test procedure

(a) Description of sample fabrication and mechanical testing
To validate the research findings both from theory and computation, a digital image correlation
system of a charge-coupling device camera and the DIC correlation software Vic-2D (Correlate
Solution Inc.) was used to measure the strain field of eleven representative samples. Their
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geometry is shaped into a parallelogram of tessellation angle φ with length of 90 mm and width of
50 mm. All test samples were made of 0.318 mm thick glycol modified polyethylene terephthalate
(PETG) and were laser cut by TROTEC Laser GmbH (Austria). A 3 by 3 pattern of voids of 2%
porosity was set at the central portion of the sample. Prior to testing, the samples were coated in
white paint and then a fine pattern of black paint was added by an air sprayer for contrast.

(b) Mechanical testing
Each sample was first subject to a pre-tension of 50 N and then loaded to 300 N. The preloading
was applied to remove initial gaps and tighten the tester grips to the sample. The configuration
of the sample under a given loading was selected as the reference for the DIC measurement
capturing the deformation from 50 N to 300 N.

For parallelogram samples with φ �= 90◦, the boundary conditions in equations (2.4) and (2.5)
are demanding to implement in a real setting. For this reason, we designed a special rig of
trapezoidal fixtures and horizontal connection tabs (figure 4) to provide transverse fixation on
the lateral sides of the sample. While the rig allows to accommodate the biaxial principal stress
field of equation (2.12) for samples with φ �= 90◦, in our testing it was sufficient to apply only a
uniaxial load at the end of the sample. For a detailed description of the test set-up, see electronic
supplementary material, S3.

4. Validation results and comparison with numerical simulations
The tests were separated into four groups. Group I examines the effect of the aspect ratio. Group
II addresses the effect of rotation of voids to illustrate the importance of the alignment with the
principal direction. Group III investigates the impact of superellipse order on the strain pattern.
Group IV focuses on the relative rotation between two voids in the RVE and its influence on the
peak strain. The raw data from DIC were the displacement and strain fields of the sample. The
principal strain around the centre void was selected as the metric for comparison of simulation
versus test results.

The samples of Group I were fabricated with the following parameters φ = 90◦, q = 2, a/b =
1 and 4, 10. For φ = 90◦, the loading creates a uniaxial principal stress in the sample and
the alignment to the principal direction is obtained by laying the long semi-axis of elliptical
voids along the loading direction. Additional set of finite-element models (ABAQUS; SIMULIA,
Providence, RI) of the as-built sample with three-dimensional geometry were created and meshed
by quadratic brick elements with local refinement. The material response was assumed as linear
elastic with E = 4200 MPa and μ= 0.4 available from the manufacturer of the raw material.
Additional details on this set of finite-element models for as-built samples are reported in
electronic supplementary material, S2.

Figure 5a,b shows the results of test measurements along with a comparison between
simulations and test results for Group I under uniaxial displacement loading on an RVE with φ =
90◦. Presented in the contour plot figure 5a, the numerical results confirm that aligning elliptical
holes with the principal directions is the best choice for the mitigation of stress concentration. In
addition, the three sample configurations marked in the contour plot (figure 5a), each with its own
sketch on the top, were fabricated and tested. Their numerical and testing results are shown in
figure 5b. The comparison of the strain distribution on the edge of the centre void between them
demonstrates a very good match for all three samples. The peak strain is always observed at the
tips of the short semi-axis and the pattern is symmetrical. Both the experimental and simulation
results confirm the trend, we obtain from the theory in the loading case of uniaxial stress: the
peak principal strain reduces as a/b increases. Quantitively, the simulation results are uniformly
higher than the tests by no more than 30%. This can be attributed to the accuracy of the test set-
up: DIC cannot measure a small margin on the edge of the void as observed in all samples, and
the strain/stress field decays away from the edge [50], resulting in a smaller measured value.
The width of the margin differs among samples and cannot be accurately estimated, and the rate
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Figure 5. Contour plots of FE simulation results and comparison with test results showing the effect of a/b, q, γ and δ, test
samples are marked by the symbol ‘x’ in red. (a) Contour plot of peak von Mises stress from FE simulation of a/b versus q,
γ = 0◦,φ = 90◦. (b) Group I: variation of a/b, q= 2, γ = 0◦,φ = 90◦. (c) Contour plot of peak von Mises stress from FE
simulation of γ versusφ, a/b= 10, q= 2. (d) Group II: variation of γ , a/b= 10, q= 2,φ = 50◦. (e) Contour plot of peak
von Mises stress from FE simulation of a/b versus q, γ = −15◦, φ = 50◦. (f ) Group III: variation of q and a/b, γ = −15◦,
φ = 50◦. (g) Contour plot of peak von Mises stress from FE simulation of γ versus δ, a/b= 10, q= 2, φ = 50◦. (h) Group
IV: variation of δ, a/b= 10, q= 2, γ = −15◦,φ = 50◦. (Online version in colour.)



12

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20200864

...........................................................

of strain/stress decay is dependent on the shape of the void, thereby explaining the difference
in percentage errors. The accuracy of DIC is also sensitive to spot size and spot density on the
sample and the specifications of the hardware, yet these play a minor role in this work.

Group II consists of three samples with φ = 50◦, q = 2 and a/b = 10. The angle of rotation varies
among them such as γ = −12◦, −15◦ and −16◦ respectively. The actual tests were performed by
incrementing γ by 1◦ until the identification of the optimized value that corresponded to the
minimum principal strain; therefore the three cases presented herein are representative. The ridge
of the optimized γ that minimizes the peak stress for each φ in the contour plot of figure 5c
corresponds to the principal direction predicted by equation (2.11). Figure 5d shows a good
match of the strain pattern for each case. The optimized rotation angle is γ = −15◦, an angle
at which the location of the peak strain is symmetric about the long axis of the elliptical void.
Any deviation from it, even by 1◦, causes a shift in the peak strain, thereby spoiling symmetry
and generating an increase of the peak strain value. The theoretical prediction of the optimized
γ is −15.9◦ by equation (2.8), which only differs by 0.9◦. The tests and simulations of Group II
verify the alignment of the void with the principal direction for stress/strain minimization and
support the validity of the closed form expression derived for the principal direction. The ∼ 30%
error observed from the DIC measurement, which may underestimate the magnitude of the peak
strain, still exists, and the reasons can be attributed to those discussed above for Group I.

Group III is the direct comparison of a set of optimized void shapes for φ = 50◦.
More specifically optimized elliptical voids with q = 2, a/b = 4 (figure 3b) versus optimized
superelliptical voids with q = 4, a/b = 10 (figure 3c). Figure 5e shows the contour plot of
representative geometries with varying a/b, q for given φ = 50◦. As per the value of γ , we note that
the samples were manufactured with γ = −15◦, the value of void rotation found from the results
of Group II, as opposed to −15.9◦ which is the theoretically obtained value. From the comparison
of the strain patterns in figure 5f, we evince the superiority of superelliptical voids. The test results
suggest that the superelliptical void (right) can achieve 7.2% lower peak strain than the elliptical
counterpart (left), while the simulations indicate that the decrease can be 10%. Both tests and
simulations manifest that the superelliptical void can reach the peak strain at locations near its
four corners (although not perfectly symmetric due to the imperfect implementation of boundary
conditions). On the other hand, for the elliptical void the peak strain can localize at the tips of
the short axis only. The test measurements are approximately 20% smaller than the simulation
results. In summary, also for this group of tests the DIC measurements verify our arguments
on the optimized orientation, superellipse order and aspect ratio for the minimization of stress
concentration.

Group IV further investigates the effect of multiple voids in one RVE. Assuming all voids are
congruent and sufficiently spaced from each other to minimize mutual interaction at low porosity,
the only variable that pertains is δ, the relative rotation between two voids in the RVE (figure 1a).
To study the effect of δ, we fabricate samples with φ = 50◦ for three representative geometries
sharing the parameters q = 2, a/b = 10, γ = −15◦, and differing for δ= 0◦, 30◦ and 90◦. These are
marked in the contour plot of figure 5g. The results in figure 5h shows that the peak strain is
sensitive to the relative rotation of voids; it nearly doubles when δ increases from 0◦ to 30◦ and
further enlarges at δ = 90◦. To minimize the peak strain, multiple low-porosity voids should be
identical with respect to translation. Also here we observe a very good qualitative match of the
strain patterns. The quantitative error increases as δ deviates from 0◦ and approaches 90◦. Finally,
we note that the experimental results of this last group of tests are also representative of other
types of tessellation, e.g. hexagonal patterns, as explained in the next section.

5. Beyond single void representative volume element: the role of tessellations
in low porosity architected materials

The research findings above for the minimization of peak stress on the edge of superelliptical
voids in planar RVE can be ideally extended to address arbitrary planar tessellations. Varying
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Table 1. Summary of parameters and reduction of peak von Mises stress of void shapes for tessellations with φ = 60◦ and
ψ = 0.25% in figure 6.

optimized reference no. of voids difference of

load case void void in the RVE σvmMax

u �= 0, v= 0 q= 3.5 q= 2 1 −59%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a/b= 15.4 a/b= 1 2 −59%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ = −11.7◦ γ = 0 3 −59%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u �= 0, v= 0.43u q= 2 q= 2 1 −33%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a/b= 1.65 a/b= 1 2 −33%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ = −24.6◦ γ = 0 3 −33%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the tessellation angle φ, the edge length ratio k and the number of voids in the RVE n enables to
represent a large set of tessellations. For example, for φ = 60◦ we can retrieve a family of classical
and widely applied tessellations including triangular, hexagonal and Kagome tessellations. What
is specific to each of them, however, is n, the number of voids in the RVE, respectively one, two
and three, as shown in the RVEs indicated in blue in figure 6.

We now focus on a representative tessellation defined by φ = 60◦ and discuss the role of n in the
RVE. The relative positions of the centres of voids in the RVE are determined by the geometry of
the tessellation; here we assume that multiple voids in the RVE have identical geometry except for
their relative rotations (figure 6). We study the effect of void number through numerical analysis
and optimization along with validation experiments for RVE of 0.25% porosity under two load
cases: (i) uniaxial horizontal displacement and (ii) biaxial tension, defined by v = 0.43u.

The optimized voids for each tessellation under each load case are juxtaposed in figure 6.
Figure 6a–d pertain to the uniaxial displacement load case, while the others, (figure 6e–h)
correspond to the load case of biaxial displacement. The circular void in the triangular tessellation
is here selected as the reference. The key observation from all cases in the figure 6 is that for
the minimization of peak stress in low-porosity planar architected materials, the result is not
sensitive to the number of voids in the RVE. This is due to the small value of porosity, ruling out
void interaction. For the mitigation of stress concentration, the triangular, hexagonal and Kagome
tessellations all need to respect the optimized values of q, a/b and γ found in §2, despite their
difference of n from 1 to 3; their values of peak stress are also equal.

For the uniaxial displacement loading case, σ1/σ2 = −0.042, and the optimized shape
approaches a long and narrow superelliptical void (figure 5b–d). In addition, the values of their
γ matches the predictions obtained from equation (2.8). The accompanying colour bar visualizes
the peak von Mises stress normalized by the yield stress. By comparing the results in figure 6, we
observe the following. The optimized void shape yields a 59% decrease of the peak stress from
that of the reference circular void.

For the biaxial tension case, σ1/σ2 = 0.605, and the optimized shape is an elliptical void, as this
can reach the full-stress distribution everywhere on the edge. Also for this case, the optimized
γ equals the theoretical prediction, and the decrease of the peak stress is 33%. To summarize
the results of the two examples, the parameters of the optimized and reference voids along with
the reduction of peak von Mises stress are provided in table 1. Examples herein together with
those in figure 3 demonstrate that the adoption of optimized shapes for super-elliptical voids in
low-porosity planar tessellations can significantly decrease the amount of stress concentration to
values below those yielded by traditional circular voids.
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Figure 6. Comparison of peak stress between tessellations in the family of φ = 60◦. (a) Triangular tessellation, circular
voids under uniaxial displacement. (b) Triangular tessellation, optimized superelliptical voids under uniaxial displacement.
(c) Hexagonal tessellation, optimized superelliptical voids under uniaxial displacement. (d) Kagome tessellation, optimized
superelliptical voids under uniaxial displacement. (e) Triangular tessellation, circular voids under biaxial displacement. (f )
Triangular tessellation, optimized superelliptical voids under biaxial displacement. (g) Hexagonal tessellation, optimized
superelliptical voids under biaxial displacement. (h) Kagome tessellation, optimized superelliptical voids under biaxial
displacement. (Online version in colour.)
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Table 2. Summary of optimized parameters of a (super)elliptical void and Kt for the range of loading conditions: −1≤
σ1/σ2 ≤ 1.

elliptical void elliptical void Superelliptical void

σ1/σ2 a/b Kt σ1/σ2 a/b Kt q a/b Kt
1.0 1.00 2.00 −1.0 1.00 4.00 5.0 1.00 3.13

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.9 1.11 1.90 −0.9 1.05 3.80 5.0 1.10 3.01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.8 1.25 1.80 −0.8 1.12 3.59 5.0 1.27 2.85
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.7 1.43 1.70 −0.7 1.20 3.37 5.0 1.40 2.66
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.6 1.67 1.60 −0.6 1.29 3.15 5.0 1.62 2.47
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.5 2.00 1.50 −0.5 1.41 2.91 4.5 1.88 2.29
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.4 2.50 1.40 −0.4 1.58 2.66 4.5 2.36 2.12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.3 3.33 1.30 −0.3 1.83 2.40 4.5 3.08 1.90
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.2 5.00 1.20 −0.2 2.23 2.09 4.5 4.55 1.69
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.1 10.0 1.10 −0.1 3.16 1.73 4.0 8.64 1.42
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The findings presented in this paper can be generalized in compact form to provide guidelines
of broad application for low-porosity architected materials with planar tessellation. The following
are procedural steps for the minimization of stress concentration, here categorized with respect
to the number of voids present in the RVE.

(a) Tessellations with single void in the RVE
(i) Determine the principal directions and the principal stresses by using equation (2.8) and

(2.9) with the properties of the solid material and the RVE.
(ii) Align the long axis of the void with the principal direction of the larger principal stresses

in magnitude. Failing to do so can result in a large increase of peak stress, even when
the deviation from this optimal condition is small. For example, the worst-case scenario
of our investigation shows that by perturbing of only one degree the optimized elliptical
hole with a/b = 20 and φ = 90◦, we can incur in a 5.4% increase of stress. The increase goes
up to 126% for a mere 5 degree deviation.

(iii) Select the optimized geometric parameters of the (super)elliptical voids for given loading
conditions, as tabulated in compact form in table 2. For q = 2 (elliptical voids), the values
are determined using equation (2.14) and (2.15). For q> 2 (superelliptical voids), the
optimized parameters are determined numerically. The results show that for σ1/σ2 >

0, the optimal elliptical void renders a full-stress state; if σ1/σ2 < 0 the optimized
superelliptical voids can approximate the full-stress state better than the elliptical ones.
The additional decrease of peak von Mises stress can be 18% to 22% as σ1/σ2 approaches
−1. The optimized a/b of superelliptical void for σ1/σ2 < 0 is close (difference < 12%) to
the optimized a/b of the elliptical void for σ1/σ2 > 0 with the identical absolute value.
Furthermore, as σ1/σ2 decreases to −1, the order of the optimized q for the superelliptical
void increases to 5.

(b) Tessellations with multiple voids in the representative volume element
(i) For very low porosity, e.g. below 5%, the interaction between voids in the RVE can be
neglected (figure 6). For this reason, the results presented above in point (iii) still hold for
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generic tessellations defined by other than normal periodic vectors as long as the multiple voids
containing in the RVE share the same geometry.

The results gained from this study are valuable for the design of low porosity architected
material with minimum level of stress. Our work extends the classical theory of stress
concentration by considering periodic boundary conditions and biaxial displacement loading.
It contributes to gain practical insights into the effect of arbitrary planar tessellations, and
provides optimized parameters of (super)elliptical voids that can achieve or approximate the full
stress state, a condition that in turn smooths out stress concentration. Further questions can be
addressed to refine the current outcomes. First, it is necessary to estimate a precise upper bound
of porosity for the validity of the independent action of voids. While the minimum distance
between neighbouring voids for their interaction to be considered inconsequential, cannot be
prescribed precisely for a general problem, relevant guidelines can be found in the literature [50].
Second, for the case of σ1/σ2 < 0, superelliptical voids outperform elliptical ones as they can better
approximate the full-stress state, but the existence of other void shapes that may perform even
better is still to explore. Shape and topology optimization can be a powerful numerical tool for this
purpose. Other than current assumptions of linear elastic materials and small strains, the work
can be extended to account for finite deformation, damage, plasticity and other more complex
physical phenomena.

6. Conclusion
This paper has examined generic planar tessellations of superelliptical voids in a low-porosity
domain under biaxial displacement loading. Theoretical derivations and numerical simulations
have identified the optimized geometric parameters of superelliptical voids for the mitigation
of stress concentration. Upon the alignment with the principal direction corresponding to the
largest principal stress, optimized superelliptical voids can more significantly reduce the peak
stress than circular voids by achieving full-stress at multiple locations on the edge of the void.
DIC tests validate the results with satisfactory level of agreement. The findings presented herein
augment the classical theory of stress concentration by delivering important principles on the
role of void shape and inclination, as well as tessellation, in the stress distribution of low-porosity
architected materials. Finally, general guidelines have been proposed for the mitigation of failure
with recommendations that are suitable for a broad range of engineering applications.

Ethics. This research was designed and performed without any involvement of human or animal products or
any interference of participants personal data. Hence, the authors hereby claim no ethical implications.
Data accessibility. The data related to theoretical derivations are available within the article and its electronic
supplementary material. Computational modelling data supporting the findings of this study are available
from Mendeley Data repository [55]. http://dx.doi.org/10.17632/ddkwcmsb4w.1.
Authors’ contributions. D.P. and J.L. conceived the idea, research and methodology. J.L. performed the theoretical
derivation and the finite-element analysis of RVE models. J.L. also selected the parameters of test samples
and modelled the test samples for finite-element analysis. H.X. designed the test rig, made the CAD drawings
and samples, performed the testing and helped modelling the test samples. D.P. discussed and supervised the
understanding of the findings of this work. All authors contributed to the final manuscript.
Competing interests. The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.
Funding. This work was funded by the Natural Sciences and Engineering Research Council of Canada and
Siemens Canada (grant nos. 242363 and 242561).
Disclaimer. Any opinions, findings and conclusions or recommendations expressed in this publication are those
of the authors and do not necessarily reflect the views of Siemens and NSERC.

References
1. Ashby M, Bréchet Y. 2003 Designing hybrid materials. Acta Mater. 51, 5801–5821.

(doi:10.1016/S1359-6454(03)00441-5)

http://dx.doi.org/10.17632/ddkwcmsb4w.1
https://doi.org/doi:10.1016/S1359-6454(03)00441-5


17

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20200864

...........................................................

2. Bertoldi K. 2017 Harnessing instabilities to design tunable architected cellular materials.
Annu. Rev. Mater. Res. 47, 51–61. (doi:10.1146/annurev-matsci-070616-123908)

3. Schaedler TA, Carter WB. 2016 Architected cellular materials. Annu. Rev. Mater. Res. 46, 187–
210. (doi:10.1146/annurev-matsci-070115-031624)

4. Overvelde JT, Weaver JC, Hoberman C, Bertoldi K. 2017 Rational design of reconfigurable
prismatic architected materials. Nature 541, 347–352. (doi:10.1038/nature20824)

5. Lehman J, Lakes R. 2013 Stiff lattices with zero thermal expansion and enhanced
stiffness via rib cross section optimization. Int. J. Mech. Mater. Des. 9, 213–225.
(doi:10.1007/s10999-012-9210-x)

6. Ha S-H, Lee HY, Hemker KJ, Guest JK. 2019 Topology optimization of three-dimensional
woven materials using a ground structure design variable representation. J. Mech. Des. 141,
061403. (doi:10.1115/1.4042114)

7. Osanov M, Guest JK. 2016 Topology optimization for architected materials design. Annu. Rev.
Mater. Res. 46, 211–233. (doi:10.1146/annurev-matsci-070115-031826)

8. Pasini D, Guest JK. 2019 Imperfect architected materials: mechanics and topology
optimization. MRS Bull. 44, 766–772. (doi:10.1557/mrs.2019.231)

9. Chen W, Watts S, Jackson JA, Smith WL, Tortorelli DA, Spadaccini CM. 2019 Stiff isotropic
lattices beyond the maxwell criterion. Sci. Adv. 5, eaaw1937. (doi:10.1126/sciadv.aaw1937)

10. Han SC, Kang K. 2019 Another stretching-dominated micro-architectured material, shellular.
Mater. Today 31, 31–38. (doi:10.1016/j.mattod.2019.05.018)

11. Abad EMK, Khanoki SA, Pasini D. 2013 Fatigue design of lattice materials via computational
mechanics: application to lattices with smooth transitions in cell geometry. Int. J. Fatigue 47,
126–136. (doi:10.1016/j.ijfatigue.2012.08.003)

12. Dallago M, Winiarski B, Zanini F, Carmignato S, Benedetti M. 2019 On the effect
of geometrical imperfections and defects on the fatigue strength of cellular lattice
structures additively manufactured via selective laser melting. Int. J. Fatigue 124, 348–360.
(doi:10.1016/j.ijfatigue.2019.03.019)

13. Chen X, Ji Q, Wei J, Tan H, Yu J, Zhang P, Laude V, Kadic M. 2020 Light-weight shell-lattice
metamaterials for mechanical shock absorption. Int. J. Mech. Sci. 169, 105288. (doi:10.1016/j.
ijmecsci.2019.105288)

14. Haghpanah B, Shirazi A, Salari-Sharif L, Izard AG, Valdevit L. 2017 Elastic architected
materials with extreme damping capacity. Extreme Mech. Lett. 17, 56–61. (doi:10.1016/j.
eml.2017.09.014)

15. Pham M-S, Liu C, Todd I, Lertthanasarn J. 2019 Damage-tolerant architected materials
inspired by crystal microstructure. Nature 565, 305–311. (doi:10.1038/s41586-018-0850-3)

16. Liu X-N, Hu G-K, Huang G-L, Sun C-T. 2011 An elastic metamaterial with simultaneously
negative mass density and bulk modulus. Appl. Phys. Lett. 98, 251907. (doi:10.1063/1.3597651)

17. Oh JH, Kwon YE, Lee HJ, Kim YY. 2016 Elastic metamaterials for independent realization of
negativity in density and stiffness. Sci. Rep. 6, 1–10. (doi:10.1038/s41598-016-0001-8)

18. Hedayati R, Leeflang A, Zadpoor A. 2017 Additively manufactured metallic pentamode meta-
materials. Appl. Phys. Lett. 110, 091905. (doi:10.1063/1.4977561)

19. Kadic M, Bückmann T, Stenger N, Thiel M, Wegener M. 2012 On the practicability of
pentamode mechanical metamaterials. Appl. Phys. Lett. 110, 191901. (doi:10.1063/1.4709436)

20. Gao Z, Liu D, Tománek D. 2018 Two-dimensional mechanical metamaterials with unusual
Poisson ratio behavior. Phys. Rev. Appl. 10, 064039. (doi:10.1103/PhysRevApplied.10.064039)

21. Grima-Cornish JN, Grima JN, Attard D. 2020 A novel mechanical metamaterial exhibiting
auxetic behavior and negative compressibility. Materials 13, 79. (doi:10.3390/ma13010079)

22. Chen Y, Li T, Scarpa F, Wang L. 2017 Lattice metamaterials with mechanically tunable
Poisson’s ratio for vibration control. Phys. Rev. Appl. 7, 024012. (doi:10.1103/Phys
RevApplied.7.024012)

23. Jafari H, Yazdi MRH, Fakhrabadi MMS. 2019 Wave propagation in microtubule-based
bio-nano-architected networks: a lesson from nature. Int. J. Mech. Sci. 164, 105175.
(doi:10.1016/j.ijmecsci.2019.105175)

24. Li S, Zhao D, Niu H, Zhu X, Zang J. 2018 Observation of elastic topological states in soft
materials. Nat. Commun. 9, 1–9. (doi:10.1038/s41467-017-02088-w)

25. Rafsanjani A, Pasini D. 2016 Bistable auxetic mechanical metamaterials inspired by ancient
geometric motifs. Extreme Mech. Lett. 9, 291–296. (doi:10.1016/j.eml.2016.09.001)

https://doi.org/doi:10.1146/annurev-matsci-070616-123908
https://doi.org/doi:10.1146/annurev-matsci-070115-031624
https://doi.org/doi:10.1038/nature20824
https://doi.org/doi:10.1007/s10999-012-9210-x
https://doi.org/doi:10.1115/1.4042114
https://doi.org/doi:10.1146/annurev-matsci-070115-031826
https://doi.org/doi:10.1557/mrs.2019.231
https://doi.org/doi:10.1126/sciadv.aaw1937
https://doi.org/doi:10.1016/j.mattod.2019.05.018
https://doi.org/doi:10.1016/j.ijfatigue.2012.08.003
https://doi.org/doi:10.1016/j.ijfatigue.2019.03.019
https://doi.org/doi:10.1016/j.ijmecsci.2019.105288
https://doi.org/doi:10.1016/j.ijmecsci.2019.105288
https://doi.org/doi:10.1016/j.eml.2017.09.014
https://doi.org/doi:10.1016/j.eml.2017.09.014
https://doi.org/doi:10.1038/s41586-018-0850-3
https://doi.org/doi:10.1063/1.3597651
https://doi.org/doi:10.1038/s41598-016-0001-8
https://doi.org/doi:10.1063/1.4977561
https://doi.org/doi:10.1063/1.4709436
https://doi.org/doi:10.1103/PhysRevApplied.10.064039
https://doi.org/doi:10.3390/ma13010079
https://doi.org/doi:10.1103/PhysRevApplied.7.024012
https://doi.org/doi:10.1103/PhysRevApplied.7.024012
https://doi.org/doi:10.1016/j.ijmecsci.2019.105175
https://doi.org/doi:10.1038/s41467-017-02088-w
https://doi.org/doi:10.1016/j.eml.2016.09.001


18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20200864

...........................................................

26. Haghpanah B, Salari-Sharif L, Pourrajab P, Hopkins J, Valdevit L. 2016
Multistable shape-reconfigurable architected materials. Adv. Mater. 28, 7915–7920.
(doi:10.1002/adma.201601650)

27. Liu L, Qiao C, An H, Pasini D. 2019 Encoding kirigami bi-materials to morph on target in
response to temperature. Sci. Rep. 9, 1–14. (doi:10.1038/s41598-018-37186-2)

28. Rafsanjani A, Akbarzadeh A, Pasini D. 2015 Snapping mechanical metamaterials under
tension. Adv. Mater. 27, 5931–5935. (doi:10.1002/adma.201502809)

29. Rafsanjani A, Akbarzadeh A, Pasini D. 2017 Buckling-induced kirigami. Phys. Rev. Lett. 118,
084301. (doi:10.1103/PhysRevLett.118.084301)

30. Taniker S, Celli P, Pasini D, Hofmann D, Daraio C. 2020 Temperature-induced shape
morphing of bi-metallic structures. Int. J. Solids Struct. 190, 22–32. (doi:10.1016/j.
ijsolstr.2019.10.024)

31. Iasiello M, Bianco N, Chiu WK, Naso V. 2019 Thermal conduction in open-cell metal
foams: anisotropy and representative volume element. Int. J. Therm. Sci. 137, 399–409.
(doi:10.1016/j.ijthermalsci.2018.12.002)

32. Yang H, Li Y, Yang Y, Chen D, Zhu Y. 2019 Effective thermal conductivity of high
porosity open-cell metal foams. Int. J. Heat Mass Transf. 147, 118974. (doi:10.1016/j.ij
heatmasstransfer.2019.118974)

33. Parsons EM. 2019 Lightweight cellular metal composites with zero and tunable thermal
expansion enabled by ultrasonic additive manufacturing: modeling, manufacturing, and
testing. Compos. Struct. 223, 110656. (doi:10.1016/j.compstruct.2019.02.031)

34. Xu H, Farag A, Pasini D. 2017 Multilevel hierarchy in bi-material lattices with high
specific stiffness and unbounded thermal expansion. Acta Mater. 134, 155–166. (doi:10.1016/j.
actamat.2017.05.059)

35. Xu H, Farag A, Pasini D. 2018 Routes to program thermal expansion in three-dimensional
lattice metamaterials built from tetrahedral building blocks. J. Mech. Phys. Solids 134, 54–87.
(doi:10.1016/j.jmps.2018.04.012)

36. Arabnejad S, Johnston B, Tanzer M, Pasini D. 2017 Fully porous 3d printed titanium femoral
stem to reduce stress-shielding following total hip arthroplasty. J. Orthop. Res. 35, 1774–1783.
(doi:10.1002/jor.23445)

37. Rahimizadeh A, Nourmohammadi Z, Arabnejad S, Tanzer M, Pasini D. 2018 Porous
architected biomaterial for a tibial-knee implant with minimum bone resorption and bone-
implant interface micromotion. J. Mech. Behav. Biomed. Mater. 78, 465–479. (doi:10.1016/
j.jmbbm.2017.11.041)

38. Zadpoor AA. 2019 Mechanical performance of additively manufactured meta-biomaterials.
Acta Biomater. 85, 41–59. (doi:10.1016/j.actbio.2018.12.038)

39. Zadpoor AA. 2016 Mechanical meta-materials. Mater. Horiz. 3, 371–381. (doi:10.1039/
C6MH00065G)

40. Javid F et al. 2017 On the design of porous structures with enhanced fatigue life. Extreme Mech.
Lett. 16, 13–17. (doi:10.1016/j.eml.2017.08.002)

41. Javid F, Wang P, Shanian A, Bertoldi K. 2016 Architected materials with ultra-low porosity for
vibration control. Adv. Mater. 28, 5943–5948. (doi:10.1002/adma.201600052)

42. Jetté F-X, Shanian A, Schaenzer M, Pham MQ, Bourgeois G, Farhangi M, Sanchez F, Innes
M. 2017 Acoustic properties of perforated liners with perpendicular arrangements of narrow
slots. In Proc. Turbo Expo: Power for Land, Sea, and Air, p. V04AT04A061. New York, NY:
American Society of Mechanical Engineers.

43. Leng J, Reynolds G, Schaenzer M, Pham MQ, Bourgeois G, Shanian A, Pasini D. 2018 Stress
concentration in low-porosity periodic tessellations with generic patterns of elliptical holes
under biaxial strain. J. Appl. Mech. 85, 101010. (doi:10.1115/1.4040539)

44. Shanian A et al. 2019 Application of multifunctional mechanical metamaterials. Adv. Eng.
Mater. 21, 1900084. (doi:10.1002/adem.201900084)

45. Taylor M, Francesconi L, Gerendás M, Shanian A, Carson C, Bertoldi K. 2014 Low
porosity metallic periodic structures with negative Poisson’s ratio. Adv. Mater. 26, 2365–2370.
(doi:10.1002/adma.201304464)

46. Tian X, Chen W, Gao R, Liu S, Wang J. 2020 Design of pore layout for perforated
auxetic metamaterials with low-frequency band gaps. Appl. Phys. Express 13, 045503.
(doi:10.35848/1882-0786/ab7f5b)

https://doi.org/doi:10.1002/adma.201601650
https://doi.org/doi:10.1038/s41598-018-37186-2
https://doi.org/doi:10.1002/adma.201502809
https://doi.org/doi:10.1103/PhysRevLett.118.084301
https://doi.org/doi:10.1016/j.ijsolstr.2019.10.024
https://doi.org/doi:10.1016/j.ijsolstr.2019.10.024
https://doi.org/doi:10.1016/j.ijthermalsci.2018.12.002
https://doi.org/doi:10.1016/j.ijheatmasstransfer.2019.118974
https://doi.org/doi:10.1016/j.ijheatmasstransfer.2019.118974
https://doi.org/doi:10.1016/j.compstruct.2019.02.031
https://doi.org/doi:10.1016/j.actamat.2017.05.059
https://doi.org/doi:10.1016/j.actamat.2017.05.059
https://doi.org/doi:10.1016/j.jmps.2018.04.012
https://doi.org/doi:10.1002/jor.23445
https://doi.org/doi:10.1016/j.jmbbm.2017.11.041
https://doi.org/doi:10.1016/j.jmbbm.2017.11.041
https://doi.org/doi:10.1016/j.actbio.2018.12.038
https://doi.org/doi:10.1039/C6MH00065G
https://doi.org/doi:10.1039/C6MH00065G
https://doi.org/doi:10.1016/j.eml.2017.08.002
https://doi.org/doi:10.1002/adma.201600052
https://doi.org/doi:10.1115/1.4040539
https://doi.org/doi:10.1002/adem.201900084
https://doi.org/doi:10.1002/adma.201304464
https://doi.org/doi:10.35848/1882-0786/ab7f5b


19

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20200864

...........................................................

47. Tian X, Chen W, Gao R, Liu S, Wang J. 2020 Perforation-rotation based approach for band gap
creation and enlargement in low porosity architected materials. Compos. Struct. 245, 112331.
(doi:10.1016/j.compstruct.2020.112331)

48. Inglis CE. 1913 Stresses in a plate due to the presence of cracks and sharp corners. Trans. - Soc.
Nav. Archit. Mar. Eng. 55, 193–198.

49. Neuber H. 1961 Theory of stress concentration for shear-strained prismatical bodies with
arbitrary nonlinear stress-strain law. J. Appl. Mech. 28, 544–550. (doi:10.1115/1.3641780)

50. Pilkey WD, Pilkey DF. 2008 Peterson’s stress concentration factors. Hoboken, NJ: John Wiley &
Sons.

51. Dallago M, Raghavendra S, Fontanari V, Benedetti M. 2020 Stress concentration factors
for planar square cell lattices with filleted junctions. Mater. Des. Process. Commun. 2, e98.
(doi:10.1002/mdp2.98)

52. Lohmuller P, Favre J, Piotrowski B, Kenzari S, Laheurte P. 2018 Stress concentration
and mechanical strength of cubic lattice architectures. Materials 11, 1146. (doi:10.3390/
ma11071146)

53. Francesconi L, Baldi A, Dominguez G, Taylor M. 2020 An investigation of the enhanced
fatigue performance of low-porosity auxetic metamaterials. Exp. Mech. 60, 93–107.
(doi:10.1007/s11340-019-00539-7)

54. Francesconi L, Taylor M, Baldi A. 2019 An investigation of stress concentration, crack
nucleation, and fatigue life of thin low porosity metallic auxetic structures. In Fracture, fatigue,
failure and damage evolution, pp. 65–71, vol. 6. Lecture Notes in Physics. Cham, Switzerland:
Springer International Publishing.

55. Pasini D. 2020 Data for paper on superelliptical voids in arbitrary tessellations. Mendeley
Data, V1. (doi:10.17632/ddkwcmsb4w.1)

https://doi.org/doi:10.1016/j.compstruct.2020.112331
https://doi.org/doi:10.1115/1.3641780
https://doi.org/doi:10.1002/mdp2.98
https://doi.org/doi:10.3390/ma11071146
https://doi.org/doi:10.3390/ma11071146
https://doi.org/doi:10.1007/s11340-019-00539-7
https://doi.org/doi:10.17632/ddkwcmsb4w.1

	Introduction
	Stress concentration on the edge of a superelliptical void in representative volume element with low porosity
	Stress and strain fields in the representative volume element
	Optimized shape of low porosity superelliptical void for mitigation of peak stress

	Fabrication and test procedure
	Description of sample fabrication and mechanical testing
	Mechanical testing

	Validation results and comparison with numerical simulations
	Beyond single void representative volume element: the role of tessellations in low porosity architected materials
	Tessellations with single void in the RVE
	Tessellations with multiple voids in the representative volume element

	Conclusion
	References

