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A B S T R A C T   

Lattice materials built via additive manufacturing feature process-induced defects that impact their mechanical 
properties and optimum design. This work presents a methodology to integrate geometric defects in a density- 
based formulation for topology optimization of additively built lattice materials. The method combines imper
fect unit cell models capturing their geometric defects with a homogenization scheme upscaling their effective 
properties, into a topology optimization formulation. The method is of general application, and it is here 
demonstrated through the application to two cell topologies, the Tetrahedron-based and the Octet-truss unit 
cells, called to satisfy specific geometric constraints. Verification is performed through the solution of two well- 
known benchmark problems in 3D: the fixed-beam and the L-shaped beam, assumed to consist of either defect- 
free or imperfect lattice materials. The impact of process-induced defects, and cell orientation is demonstrated on 
the elastic anisotropy of the unit cell, the optimized gradients of relative density and the global compliance of the 
beams. The results highlight the significance of accounting for geometric defects in topology optimization of 
additively built lattice materials.   

1. Introduction 

Lattice materials can be designed to feature a range of optimally 
tuned physical properties, such as stiffness to mass ratio [1–3], thermal 
expansion control [4], heat transfer [5], band gaps [6], fluidic perme
ability [3,7,8], and mechanical biocompatibility [9–11], often superior 
to those of monolithic solids. Additive manufacturing (AM) technology 
provides ample freedom to generate complex architectures with 
controlled pore morphology and graded pore distribution [12,13]. Once 
manufactured, however, their geometries can deviate from their nomi
nal counterpart due to process-induced defects appearing in both the 
base material and geometry. The outcome is an undesired shift in me
chanical and functional performance [14]. In fluid transport applica
tions, for example, pore occlusion and other defects caused by flawed 
material deposition can strongly penalize fluid permeability, flow pro
files, and pressure drops [15–18]. In structural applications, 
process-induced defects can generate sizeable knock-down factors on 
the elastic properties and changes in their failure modes [19–21]. In 
bone replacement applications, overmelted struts can obstruct voids and 
lead to reduced porosity to an extent that negatively affects bone 
ingrowth and osteoconductive properties [10,11,22–27]. 

The defect sensitivity of lattice architectures depends on several 
factors, such as base material, geometric characteristics, manufacturing 
technology, and type of defect. Investigations on defect sensitivity have 
considered either predefined defects introduced by design, i.e. as- 
designed defects, or manufacturing-induced defects. In cellular mate
rials, as-designed imperfections can be randomly dispersed, such as 
missing elements (struts, joints, or unit cells) and geometric irregular
ities (displaced nodes, and variable cross-section shape) [28,29], while 
other imperfections might also be periodically distributed. Examples of 
periodically-distributed defects include cell wall waviness, displaced 
nodes, plateau borders, and surface roughness [14]. Early works on 
cellular materials have focused on as-designed defects with the goal of 
studying their impact on their structural properties. For example, mis
placed nodes and cell wall waviness are defects that reduce the elastic 
moduli of planar lattices [29]. Other works have studied their influence 
on yield [30], ductility [31], fracture toughness [32–34] and other 
properties. 

For process-induced imperfections, material defects typically include 
inclusions, precipitates, or debris of a foreign matter, or material 
discontinuity such as voids, cavities, and cracks [14,35]. Sizeable de
viations in the form of uneven material deposition have been observed 
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for elements inclined differently with the building direction, a charac
teristic factor of lattice materials [36–39]. The consequence is typically a 
discrepancy in the expected mechanical and functional response at 
levels that depend on the relationship between the base material and 
length scale of the constituent elements. Even at small ranges, pertur
bations can generate unusual responses or deteriorate material func
tionality. For example, with elastoplastic architectures, geometric 
defects have imparted changes in the damage initiation and failure 
mechanisms that are not observed in their defect-free counterparts [19]. 
They can also lead to partial (or complete) pore closure with resulting 
changes in elastic moduli and strength [23]. Other works have also 
investigated the impact not only on the failure response [13,20,21,28, 
40–43], but also on the fatigue properties [44–46] of additively manu
factured lattice materials. For instance, a reduction has been observed in 
fatigue resistance of manufactured lattice structures, due to the 
non-uniform material distribution built up at sharp-notched junctions 
which generate significant stress peaks [38]. 

Several works have used topology optimization to design structures 
with functionally-graded lattice materials with enhanced mechanical 
and functional performance [47–51]. Others have focused on imposing 
constraints, such as buckling [52,53] and stress constraints [54,55], to 
prevent the failure of lattice materials. These works typically model 
nominal architectures that are free of manufacturing defects. Their 
tailored design may function well in ideal settings, but they might fail 
unexpectedly when micro imperfections and small load perturbations 
are present. Their use in practical applications, therefore, might become 
limited [56]. To address this issue, recent efforts have been made to 
incorporate uncertainties in load, geometry and material properties 
(resulting from manufacturing), into the design of architected materials. 
An example is the development of robust design strategies for cellular 
materials that account for imperfections at the connection between cells, 
as well as for wall thickness variations [57]. Robust topology optimi
zation [58,59] is also another effective tool that has been used to design 
auxetic materials featuring small size hinges that facilitate rotation to 
maximize auxetic effects [60]. In such materials, small variation in 
thickness may result in disconnected features that can significantly 
decrease the elastic stiffness [60,61]. Statistical modelling for uncer
tainty quantification has also been introduced to design additively 
manufactured single-material lattices [62]. Recently, a robust approach 
has been used to design multi-material lattice structures under given 
combinations of material and load uncertainties [63]. To date, however, 
the impact of AM induced geometric defects on the mechanics and 
optimized porosity gradient of porous materials has not been so far 
studied. 

This work addresses the role of a set of manufacturing defects on the 
mechanics and density distribution of optimally graded 3D lattices. We 
combine a density-based formulation for topology optimization with 
imperfect cellular models that are statistically equivalent in defect dis
tribution to their as-built counterparts (see Section 2). The presented 
methodology is general, and here exemplified through the use of two 
high-strength unit cells (the Tetrahedron-based and the Octet-truss) 
previously investigated for load-bearing bone replacement applica
tions [64]. We use asymptotic homogenization to upscale their effective 
elastic properties at given cell orientations as a function of relative 
density. In Section 3, the final compliance and optimized relative density 
distribution are compared for imperfect and defect-free models, to assess 
the effect of AM defects, unit cell orientation, and cell topology, fol
lowed by a discussion of the findings and limitations of this work. 

2. Methodology 

One path to optimize the porosity gradients of a cellular material 
with defects is to use a robust approach that searches for defect- 
insensitive architectures. In this paper, we adopt an alternative deter
ministic strategy that accounts for defects and integrate their impact on 
the elastic properties. We first develop homogenized models for 

additively built lattices featuring a statistical dispersion of process- 
induced defects, and then we formulate a gradient-based topology 
optimization problem for imperfect architectures. The proposed meth
odology is of general application, and here applied for demonstrative 
purposes to a cellular material subject to geometric constraints imposed 
by a bone replacement application. Fig. 1 summarizes the key steps 
underpinned by notions of multiscale mechanics of imperfect lattices 
and topology optimization.  

• Initialization of the design space. The design domain Ω is constructed 
and discretized into solid elements, each representing a unit cell 
making up the lattice domain (Fig. 1).  

• Unit cell selection, manufacturing, and characterization. A unit cell is 
selected a priori from an available pool of cell topologies and used to 
generate lattice material samples for additive manufacturing. Here, 
two representative cells, the Tetrahedron-based and Octet-truss to
pologies, are chosen for demonstrative purposes. Their geometric 
features are restricted within the allowable design space of bone 
replacement implants, which satisfy both additive manufacturing 
and pore size requirements for bone ingrowth. This translates into 
inequality geometric constraints on porosity, pore size, and strut 
thickness [23,64].  

• Generation of imperfect-geometry representative models. The additively 
manufactured lattice samples are μCT-reconstructed and morpho
logically characterized to attain the dispersion of a set of SLM- 
induced geometric defects. These include: (1) the change in strut 
thickness t, and (2) the deviation of the center axis, cd, from the 
principal axis of an ideal strut. Their probabilistic distribution is 
integrated into imperfect-architecture models that can represent 
behavior of as-built porous biomaterials. The method of Asymptotic 
Homogenization (AH) [65] is employed to calculate their homoge
nized elastic properties, as a function of relative density ρ, along 
given orientations of the unit cells relative to the building direction. 
The design variable ρ is initially assumed to be uniform within the 
design domain.  

• Finite element solver. Finite element analysis (FEA) is used to solve the 
boundary value problem of a deformable body subjected to a traction 
τ at the traction boundary Γτ, a displacement d at the displacement 
boundary Γd, and a body force f.  

• Topology optimization. A gradient-based formulation is used to find 
the optimized distribution of relative density that minimizes the 
objective function, in this representative compliance case, for a 
prescribed total amount of material [66]. Both as-designed, used as 
baseline, and imperfect models are examined for comparative pur
poses. The Method of Moving Asymptotes (MMA) is used to update 
the design variables ρ [67], which are then filtered using a density 
filter [68]. The nodal displacements and the unit cell’s effective 
properties are first obtained to create the global stiffness tensor. 
Then, the gradients of the objective function and constraints are 
calculated. The process of optimization continues until the achieve
ment of the optimized relative density distribution that fulfils both 
the objective and the constraints. 

2.1. Unit cell selection, additive manufacturing, and μCT-reconstruction 

We exemplify the general methodology here presented by applying it 
to a class of lattice materials whose geometric parameters satisfy a set of 
constraints, typically used for the design of porous bone replacement 
implants. Recent works on AM of porous biomaterials have studied the 
interaction between manufacturability and bone ingrowth, a relation 
that can be expressed by placing specified constraints on the geometry of 
the unit cell [10,64]. Fig. 2 illustrates the allowable design space for the 
defect-free Tetrahedron-based (a) and Octet-truss (b) cells. Such cell 
topologies are chosen due to their stretch-dominated deformation mode. 
This endows the necessary structural capacity (stiffness) for using them 
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in load-bearing orthopaedic applications [64,69]. Further, these unit 
cells have been used to design biomaterials with improved bone 
ingrowth [64], as well as to develop architected implants with optimized 
porosity gradients [10,11,26]. The design space of each unit cell (Fig. 2), 
is constructed by lines of constant relative density, ρ, and cell size, l, 
defined with respect to pore size, p, and the thickness of strut, t, with 

circular cross-section. The pore size is here defined as the largest sphere 
that can pass within two adjacent cells in a periodic lattice [64]. By 
imposing bone ingrowth requirements (50 ≤ p ≤ 650 μm and ρ ≤ 0.5 
[23,70,71]) along with manufacturing constraints (t ≥ 200 μm), a 
triangular domain arises with boundaries and area that depend on cell 
topology. This represents the allowable design space of a unit cell (grey 

Fig. 1. Flow chart illustrating the design scheme here presented to optimally grade a cellular domain with predefined unit cells additively built with imperfect- 
geometry. 

[
EH ( ρi) ]

ADand 
[
EH ( ρi) ]

IMPare the as-designed and imperfect homogenized elasticity tensors. 

Fig. 2. Visualization of bone ingrowth and additive manufacturing constraints of the as-designed Tetrahedron-based (a), and Octet-truss (b) unit cells. Thick black 
lines represent unit cells of l =1.2 mm selected for this study. 
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area) and includes all the geometric parameters that are both manu
facturable with the current AM technology capabilities and conducive to 
osseointegration [64]. Here, we prescribe a cell size of l =1.2 mm (black 
line), a choice that translates in relative density ranges for the 
Tetrahedron-based and Octet-truss cells between respectively 0.25 ≤ ρ ≤
0.5 and 0.28 ≤ ρ ≤ 0.5, pore size between 390 ≤ p ≤ 510 and 560 ≤ p ≤
650 μm, and strut thickness between 0.2 ≤ t ≤ 0.3 and 0.2 ≤ t ≤ 0.28 
mm. 

To explore the design space of the selected cell topologies, we 
consider a set of experimental data used in a previous study [23] where 
160 titanium alloy (Ti-6Al-4 V) porous samples are additively built with 
Selective laser melting (SLM). From the sample set, 16 points tracing the 
boundaries and covering the area of the admissible design spaces are 
selected and built (nine Tetrahedron-based and seven Octet-truss lat
tices) [23]. A typical sample of each design geometry is then scanned 
using a SkyScan 1172 high-resolution μCT to produce the CT-scan data 
required to reconstruct the lattices. Fig. 3 shows an example of 
as-designed, as-manufactured, and full μCT-reconstructed lattice sam
ples, with a zoom on a μCT-reconstructed unit cell. Geometry recon
struction is performed via a semi-automated segmentation process using 
ITK-SNAP [72]. 

2.2. Generation of imperfect-geometry models using statistical 
representation of geometric defects 

To generate numerical models that can predict the mechanical 
properties of as-built microarchitectures, we investigate a set of SLM- 
induced geometric defects. In Fig. 3 (d), the dashed lines show a clear 
disparity between as-designed and as-manufactured cells with mis
matches that are strongly dependent on the strut angle [36,38]. Further 
evidence is given in Fig. 4, showing scanning electron microscopy (SEM) 
images of an Octet-truss representative sample. In this work, two AM 
defects are considered: (1) non-uniform strut thickness t (Fig. 4 (a)), and 
(2) center deviation of the ideal strut axis cd (Fig. 4 (b)). To consider 
them in our numerical models, the reconstructed struts are grouped into 
sets with respect to their orientation over to the build plane. The 

Tetrahedron-based cell has three different strut orientations (horizontal, 
vertical, and diagonal), while the Octet-truss cell has two (horizontal 
and diagonal). The geometry of each strut is sliced with a sequence of 
parallel planes normal to the as-designed strut axis. We account for the 
first geometric imperfection by fitting a circle through the points on each 
plane and calculating its mean radius. Then for the center deviation, the 
offset of the center of each fitted circle is calculated about the axis of the 
ideal strut. Finally, a probability distribution of each geometric imper
fection is constructed using the data obtained from the statistical anal
ysis of the defects. 

First, a convergence analysis is performed to verify that the sample 
size of struts selected at different orientations is sufficient and descrip
tive in capturing the distribution of the defects [19]. For example a 
representative octet sample is reconstructed by randomly selecting at 
least 5% of the horizontal struts and 3% of the diagonal struts to 
generate probability density distributions of geometric defects. Using a 
Kernel density estimate [73], each probability distribution is fitted to a 
probability density function. Then, we calculate the mean value and 
standard deviation of geometric defects, to statistically quantify the 
probability distributions. This process enables the generation of a pool of 
numerical data, i.e. a library of strut thicknesses and center deviations, 
that parallel the imperfection distributions. Using the probability den
sity distributions, an in-house code is built to generate numerical models 
with imperfect porous architecture that is statistically equivalent to that 
of the as-manufactured counterpart (see Fig. 5). The method of inte
grating manufacturing defects into numerical models is computationally 
effective and recent research works have demonstrated its ability to 
accurately capture the mechanical behavior of lattices manufactured 
with SLM [19,23]. 

2.3. Mechanical properties of lattice materials 

The calculation of the effective properties of lattice materials 
through homogenization is well established in the literature. Here we 
resort to Asymptotic Homogenization (AH), one among other methods 
[74,75], widely used in the field of lattice materials [11,26,65,76–79]. 

Fig. 3. (a) as-designed, (b) as-manufactured, and (c) μCT-reconstructed lattice samples; (d) μCT-reconstructed Tetrahedron-based and Octet-truss unit cells showing 
geometric mismatches with their as-designed counterpart (dashed lines). 
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We apply AH to calculate the effective properties (i.e. the homogenized 
elasticity tensor) of the Tetrahedron-based and Octet-truss cells, using 
the as-designed (nominal) and imperfect models under their prescribed 
range of relative density (Fig. 2). For the Tetrahedron-based topology, 
six elastic constants are required to define the stiffness tensor (see Ap
pendix A). The cubic symmetry of the Octet-truss yields a stiffness tensor 
dependent on three elastic constants only: Young’s modulus, Eii, shear 
modulus, Gij, and Poisson’s ratio, υij. Fig. 6 shows the effective Young’s 
and shear moduli of as-designed ([Eii]AD, [Gij]AD) versus imperfect 
([Eii]IMP, [Gij]IMP) models for Tetrahedron-based (top) and Octet-truss 

(bottom) unit cells. The elastic properties are normalized with the 
bulk properties of the isotropic (heat-treated) titanium alloy (Ti6Al4V) 
previously tested (Es = 114 GPa and υs = 0.342) [80], and expressed as a 
function of relative density ρ. A clear discrepancy of elastic properties 
appears in Fig. 6 between as-designed and imperfect models. The 
maximum differences in Young’s and shear moduli are 23 % and 18 % 
for the Tetrahedron-based unit cell, and 21 % and 39 % for the 
Octet-truss topology. 

The geometric discrepancy as well as specific symmetry in elastic 
properties of each unit cell have a directional impact on the unit cell 

Fig. 4. Top-left: as-manufactured Octet-truss sample. (I) SEM images with SLM manufacturing defects highlighted: non-uniform cross-sectional shape and thickness t 
(a), center deviation of the strut axis cd (b), and broken strut (c), a defect type not considered in this work. 

Fig. 5. Scheme used to quantify the dispersions of strut thickness and center deviation and their integration into imperfect models. The Octet-truss sample with 40 % 
relative density is shown as an example. 
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response, which also influences the optimized distribution of relative 
density throughout the entire cellular domain. To capture the moduli 
dependency on cell orientation with respect to the building direction, 
Figs. 7 and 8 illustrate three-dimensional and planar polar plots of the 
elastic moduli, while Figures D.1 and D.2 show those of the shear 
moduli. The responses are given for the Tetrahedron-based and Octet- 
truss unit cells at ρ = 0.4 (i.e. 60 % porosity), value here taken as 
representative of the admissible design space (Fig. 2). Manufacturing 
defects lead to a shift in symmetry and reduction in elastic moduli of as- 
built architectures, observations aligned with findings in the literature 
[20,38,43]. In the planar plots of the Young’s modulus, the maximum 
discrepancy in the x direction, Δ(Exx/Es)max between as-designed and 
imperfect models is 23 % for the Tetrahedron-based at 60 degrees and 25 
% for the Octet-truss cells at 45 degrees rotation angle around z-axis. 
More details about polar plots are given in Appendices C and D. 

2.4. Topology optimization 

Approaches for robust topology optimization exist in the literature to 
handle manufacturing imperfections and assess their role on the opti
mized design. One of them is the worst-case scenario, where 
manufacturing imperfections are typically allowed to vary in a specified 
interval, and the structure with the worst performance is considered in 
the optimization [59,61,81]. This strategy, however, is often 
over-conservative and does not use a realistic representation of the 
manufacturing defects that emerge during a specific manufacturing 
process [14,81]. Other methods use a robust formulation, where prob
abilistic measures are introduced to model non-uniform manufacturing 
defects, such as material and geometric uncertainties [82–85]; in these 
cases, a probability distribution is typically assigned to the uncertain 

parameters, and the objective function is defined as a weighted average 
of the mean value of a given structural metric, along with its standard 
deviation [82]. 

In this work, we adopt an alternative approach of topology optimi
zation that is deterministic and account for a realistic representation of 
manufacturing defects along with their impact on the elastic properties 
of the lattice domain. The probability distribution of defects is obtained 
from CT-scan data of as-built lattice samples, and their statistical 
modelling is done only once to generate numerical models with imper
fect porous architecture, prior to the start of the optimization process 
(see section 2.2. and the flow chart in Fig. 1). Then the homogenized 
elasticity tensor of a given imperfect unit cell is calculated for each 
relative density, and used as an input in the deterministic formulation of 
topology optimization (Fig. 1). The advantages of this strategy are the 
reduced computational cost and the treatment of actual defects without 
relying on any pre-defined distribution. 

In Sections 2.4.1 and 2.4.2 the problem formulation and the filtering 
technique used are presented, while the sensitivity analysis is discussed 
in Section 2.4.3. 

2.4.1. Problem formulation 
In this work, we minimize the compliance for a prescribed total 

amount of material, under given conditions of support and loading to 
find the optimized density distribution through the design domain. The 
design domain is discretized into solid elements, where one design 
variable (i.e., relative density ρ) is allocated for each element. The 
design variables are used to construct the design vector. As discussed 
above in Section 2.2 and Fig. 2, for constant cell size, the relative density 
of a unit cell is controlled by the strut thickness t and pore size p. A final 
design is thus achieved with ranges of density distribution satisfying 

Fig. 6. Normalized effective properties as a function of relative density of as-designed versus imperfect models for Tetrahedron-based (a, b), and Octet-truss (c, d) 
unit cells at cell size=1.2 mm. 
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manufacturing, and bone ingrowth constraints, as shown in Fig. 2 for the 
Tetrahedron-based and Octet-truss cells. The mathematical problem 
formulation is generally expressed as: 

Min
ρ

: C(ρ) =
∑N

e=1

1
2

uT
e Ke(ρ)ue

Subjectto :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

V(ρ) =
∑N

e=1
veρe ≤ V∗

0 < ρmin ≤ ρ ≤ ρmax ≤ 1

K(ρ)U(ρ) = F

(1)  

wherein, ρe is the relative density of each element e corresponding to 
given strut thickness t and pore size p (Fig. 2), V∗is the prescribed vol
ume fraction constraint of the solid material, ve is the element volume, 
and N is the total number of elements. K is the global stiffness matrix of 
the structure, F is the global force vector, and U(ρ) is the global vector of 
nodal displacements, the state variables. The values of ρmin and ρmax 
depend on the selected cell topology (Section 2.2); for the Tetrahedron- 
based topology 0.25 ≤ ρ ≤ 0.5, and for the Octet-truss cell 0.28 ≤ ρ ≤
0.5. 

2.4.2. Filtering of design variables 
Filtering techniques are among other methods used to eliminate 

numerical instabilities and to ensure manufacturability of the optimized 
structure [86,87]. In this work, the density filtering method is used [68], 
among several techniques [88]. Each element density is recalculated as a 

weighted average of the densities of the neighborhood elements within a 
specified filter radius R. The element density ρi is updated to the filtered 
density ρ̃e as follows: 

ρ̃e =

∑

i∈Ne

w(xi)viρi

∑

i∈Ne

w(xi)vi
(2)  

wherein Ne is the neighborhood of element e, vi is the volume of element 
i, and w(xi) is a weighting function that is given as: 

w(xi) = R − ‖xi − xe‖ (3)  

where, xiand xe are the central coordinates of elements i and e 
respectively. 

2.4.3. Sensitivity analysis 
The first-order derivatives (sensitivity information) of both objective 

function and constraints are necessary for the optimizer, to solve the 
optimization problem. The compliance sensitivity, reported in the 
literature [66,89], with respect to the variation of element density ρe is 
calculated as: 

∂C(ρ̃)
∂ρe

=
∑Ne

i=1

∂C(ρ̃)
∂ρ̃i

∂ρ̃i

∂ρe
(4) 

The derivatives of the filtered density with respect to the design 
variable, ∂ρ̃i/∂ρe, are expressed as: 

Fig. 7. 3D polar plots of Young’s moduli (top), and 2D polar plots (bottom) of the normalized Young’s moduli along x, y, and z axes at given unit cell orientations, of 
as-designed (nominal) and imperfect models for the Tetrahedron-based topology, at relative density ρ = 0.4. 
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∂ρ̃i

∂ρe
=

w(xe)ve
∑

j∈Ni

w
(
xj
)
vj

(5) 

The compliance sensitivity with respect to the filtered density, 
∂C(ρ̃)/∂ρ̃e, is written in its final form as: 

∂C(ρ̃)
∂ρ̃e

= −
1
2

UT(ρ̃) ∂K(ρ̃)
∂ρ̃e

U(ρ̃) (6) 

In the above expression, the derivatives of the global stiffness matrix 
with respect to the filtered density,∂K(ρ̃)/∂ρ̃e, are calculated through the 
assembly of the elemental stiffness matrix derivatives, ∂Ke(ρ̃)/∂ρ̃e. Using 
the Gauss quadrature rule for volume integration, and for an eight-node 
brick solid element in the rst natural coordinate system with eight Gauss 
integration points, ∂Ke(ρ̃)/∂ρ̃e is written as: 

∂Ke(ρ̃)
∂ρ̃e

=
∑ngp=8

k=1
wkBT

rst(rk, sk, tk)
∂EH(ρ̃)

∂ρ̃e
Brst(rk, sk, tk)|J| (7)  

where ngp is the number of Gauss integration points in the parent 
element, wk is the weight of the Gauss point k, B is the strain- 
displacement matrix, and J is the Jacobian matrix. EH(ρ̃)is either the 
as-designed or imperfect homogenized elastic tensor of each element e 
(Appendix A), which is calculated using AH at different unit cell ori
entations, as a function of relative density. 

The derivatives of the material volume V with respect to the element 
density ρe are given as: 

∂V(ρ̃)
∂ρe

=
∑

i∈Ne

∂V(ρ̃)
∂ρ̃i

∂ρ̃i

∂ρe
(8)  

Here, ∂V(ρ̃)/∂ρ̃i is found as: 

∂V(ρ̃)
∂ρ̃i

= vs (9)  

where, vsis the volume of the base solid element. The sensitivity analysis, 
which directs the search path to the optimized solution, is followed by 
solving the optimization problem using the MMA optimizer [67] until 
convergence is reached. Convergence plots are given in Appendix B. 

3. Numerical examples and discussion 

In this section, we examine the role of geometric defects, cell to
pology, and unit cell orientation on the compliance and optimized 
relative density distribution. We solve two benchmarks problems in 3D 
(fixed beam and L-shaped beam (Fig. 9)), and compare the solutions 
provided by the as-designed and imperfect unit cells. To study the 
impact of cell topology, we consider both the Tetrahedron-based and 
Octet-truss cell (effective properties in Figs. 6–8), each with its own 
specific number and orientation of struts. We also investigate the role of 
cell orientation on the final compliance and optimized density 
distribution. 

Fig. 9 shows the two design domains (L=6 mm), boundary condi
tions, and external loads (vertical distributed load F = 1500 N). In both 
the problems, the design domain is discretized into elements with a size 
of 1.2 mm (Fig. 2), each representing a unit cell of the lattice. Eight-node 
brick elements are selected for the mesh, resulting in 48,000 elements 
and 54,571 nodes for the fixed-beam, and 165,375 elements and 
176,256 nodes for the L-shaped beam. Heat-treated Ti6Al4V alloy (Es =

114 GPa, Poisson’s ratio υs = 0.342 [80]) is used as base material. The 
structures are analyzed with the FEA software package ANSYS® (Can
onsburg, Pennsylvania, U.S.A). 

A design variable filter is applied with a filter radius of 1.5 times the 

Fig. 8. 3D polar plots of Young’s moduli (top), and 2D polar plots (bottom) of the normalized Young’s moduli along x, y, and z axes at different unit cell orientations, 
of as-designed (nominal) and imperfect models for the Octet-truss topology, at relative density ρ = 0.4. 
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element size. The optimization problem is solved until convergence is 
reached for prescribed volume fractions V∗ of the solid material, i.e. 37.5 
% for the Tetrahedron-based cell and 39 % for the Octet-truss unit cell. 
To satisfy manufacturing and bone ingrowth constraints (Fig. 2) as well 
as to reduce the computational cost, the effective properties for both the 
defect-free and imperfect geometries are used during the optimization 
process. 

3.1. Tetrahedron-based topology 

Figs. 10 and 11 show the results of the two benchmark problems 
solved with the Tetrahedron-based topology. Two cell orientations are 
examined, at rotation angles 0 (top) along the build direction and 60 
degrees (bottom) around the z-axis. The latter is chosen as a represen
tative value to show the sensitivity to imperfections; in this case it 

represents the maximum discrepancy in Young’s modulus (Fig. 7) along 
the x-direction, (Δ(Exx/Es)max = 23%). 

Fig. 10 shows the compliance and optimized relative density distri
bution for the fixed beam problem. A range of insights on considering 
the process-induced defects (Fig. 4) can be gained by comparing the 
results of as-designed and imperfect models. Along the build direction 
(top), the compliance is 19 % higher for the imperfect model, but the 
difference in density distribution is mild. This difference can be attrib
uted to the small discrepancies in Young’s and shear moduli, Exx and Gxy, 
the properties most relevant to this problem, where Δ(Exx/Es) = 4% and 
Δ
(
Gxy/Gs

)
= 10% (Fig. 7 and Figure D.1). At 60 degrees (bottom), the 

difference in density distribution is more pronounced, with less porosity 
in the middle region and 30 % higher compliance for the imperfect 
model. 

For the as-designed models, although we observe a similar density 

Fig. 9. Design domain, boundary conditions, and external loads for the optimization of (a) Fixed-beam, and (b) L-shape beam.  

Fig. 10. Optimized relative density distribution for the fixed-beam benchmark problem, of as-designed versus imperfect models using the Tetrahedron-based to
pology. Top: unit cells rotated with an angle 0o, and bottom: unit cells rotated with an angle 60o around the z-axis. 
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gradient for both cell orientations, there is a 12 % difference in 
compliance. This can be attributed to the scale effect of elastic properties 
shown in Fig. 7, which increases the stiffness by 20 % at 60 degrees. For 
the imperfect models, the compliance is similar with a clear change in 
density distribution. Process-induced defects for each cell topology in
fluence the optimized material distribution. The Tetrahedron-based to
pology contains struts that are oriented at 0 (horizontal, over melted), 
45 (diagonal, with decreased over melting) and 90 degrees (vertical, 
undersized) with respect to the building direction. These manufacturing 
defects, which are strongly dependent on the strut orientation [36], are 

different for both rotation angles. Hence, they alter the density distri
bution over the fixed beam. 

In the case of the L-shaped beam shown in Fig. 11, similarly due to 
small discrepancies in elastic properties (Exx and Gxy) of as-designed and 
imperfect models, a small change is noticed in the density distribution 
for unit cells tessellated along the build direction (top). The compliance 
of the imperfect model is found to be 25 % higher than that of the as- 
designed model. At 60 degrees (bottom), the difference in density dis
tribution is more obvious; the structure of the imperfect model is more 
porous in the bottom bar and near the location where the load is applied. 

Fig. 11. Optimized relative density distribution for the L-shaped beam benchmark problem, of as-designed versus imperfect models using the Tetrahedron-based 
topology. Top: unit cells rotated with an angle 0o, and bottom: unit cells rotated with an angle 60o around the z-axis. 

Fig. 12. Optimized relative density distribution for the fixed-beam benchmark problem, of as-designed versus imperfect models using the Octet-truss topology. Top: 
unit cells rotated with an angle 0o, and bottom: unit cells rotated with an angle 45o around the z-axis. 
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In addition, its compliance is 21 % higher compared to the as-designed 
model. Similarly, comparing the as-designed models at dissimilar unit 
cell orientations shows that the compliance is 10 % higher at rotation 
angle 0 with approximately uniform density distribution. For the 
imperfect models, where cell topology plays a significant role in 
manufacturing defects, the structure features a different density distri
bution and higher porosity at 60 degrees, while the compliance is 14 % 
higher for unit cells tessellated along the building direction. 

3.2. Octet-truss topology 

Figs. 12 and 13 pertain to the results provided by the Octet-truss cell 
for the benchmark problems. For both cases (fixed-beam and L-shaped 
beam), unit cell orientations are selected at rotation angles 0 (top) and 
45 degrees (bottom) around the z-axis. The two orientations are selected 
in an identical fashion to those for the Tetrahedron-based cell; one along 
the build direction and the other at the orientation that features the 
maximum discrepancy in Young’s moduli found along the x direction, 
(Δ(Exx/Es)max = 25% shown in Fig. 8). Unlike the tetrahedron-based unit 
cell, the discrepancy in elastic properties appears in all orientations and 
along given directions. Along the build direction, there is approximately 
14 % difference in Young’s modulus Exx and 35 % difference in shear 
modulus Gxy, between as-designed and imperfect models. In both 
benchmark problems, dissimilar relative density distributions are found 
at the two cell orientations. For the imperfect models, lower porosity is 
noticed in the middle region of the fixed beam, while it is higher for the 
L-Shape beam in the bottom bar regions and close to the location of the 
applied load. In terms of compliance, the imperfect models are typically 
less stiff than the as-designed models. For fixed-beams, their compliance 
is 32 % and 52 % higher at unit cell orientations of 0 and 45 degrees 
respectively. For the L-shape beams, the compliance is higher by 35 % 
and 46 % at given orientations respectively. 

Similarly, by analyzing the as-designed models at the two cell ori
entations, we can notice that the density distribution is equivalent with 
compliance 15 % and 14 % higher at 0 degrees for fixed-beam and L- 
shaped beam problems respectively. This is due to the higher stiffness 

(20 %) of unit cells at 45 degrees than those oriented along the build 
direction. For the fixed-beam problem using imperfect models, the 
change in compliance and density distribution is mild. This might be due 
to the small discrepancy noticed in elastic and shear moduli between the 
two orientations (Δ(Exx/Es) = 6% and Δ

(
Gxy/Gs

)
= 11%). However, for 

the L-shaped beam problems under other loading and boundary condi
tions, the change in relative density is evident with 7% higher compli
ance at rotation angle 0. The reason may be attributed to manufacturing 
defects, reported to be dependent on strut orientation and cell topology 
[36]; these influence the material distribution and compliance of the 
structure. The Octet-truss cell has over melted struts oriented at 0 de
grees (horizontal), and struts with decreased over melting at 45 degrees 
(diagonal) to the building direction. 

The observations above point out the role of manufacturing defects, 
unit cell orientation, and cell topology on the mechanics discrepancy, 
and their effect on both compliance and optimized density distribution 
of cellular structures. From the results, we gather that the compliance of 
the optimized structure is affected by the elasticity tensor that is rescaled 
by changing the rotation angle of the building block. As per the density 
distributions, the difference within the design domain is demonstrated 
to be proportional to the discrepancy in elastic properties resisting 
deformation under the specific loading and boundary conditions of each 
problem. 

While promising, this work has a number of limitations. First, only 
some geometric defects were here examined through defect quantifica
tion. Others, of course, exist, such as mass agglomeration at the strut 
joints, surface roughness caused by attached beads of un-melted powder, 
and other material defects. Their dispersion needs to be quantified and 
their role on the mechanics and optimized density distribution assessed. 
Besides, further work is required to compare the results obtained with 
the methodology presented in this work and other existing approaches 
for robust topology optimization. Second, the issue of incomplete 
tessellation for unit cells close to the boundary of the design domain has 
not been considered. Finally, this work has studied lattice materials with 
a set of prescribed unit cell orientations, i.e. the unit cells do not change 
their angle within the design domain. Future work is needed to optimize 

Fig. 13. Optimized relative density distribution for the L-shaped beam benchmark problem, of as-designed versus imperfect models using the Octet-truss topology. 
Top: unit cells rotated with an angle 0o, and bottom: unit cells rotated with an angle 45o around the z-axis. 
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the design of lattices with differently oriented cells [90–92]. Further 
work is needed to address these points in the future. 

4. Conclusions 

This work has presented a general framework to assess the role of 
geometric imperfections on the mechanics and topology optimization of 
additively built lattice materials. The methodology has been applied for 
demonstrative purposes to two unit cells satisfying given geometric 
constraints. The results have shown the role of cell orientation and 
manufacturing defects, which impart unit cell anisotropy and impact 
mechanical properties. For the Tetrahedron-based unit cell, a maximum 
discrepancy in Young’s modulus of 23 % is observed at an angle of 60 
degrees around the build direction, while for Octet-truss unit cells, the 
maximum difference of 25 % is observed at 45 degrees. As for the in
fluence on the compliance and optimized relative density distribution, 
the difference within the design domain of each problem is shown to be 
proportional to the discrepancy in elastic properties between as-built 
and defect-free microarchitectures. The current study emphasizes the 
importance of including process-induced geometric defects during the 
design process of lattice structure, since doing so gives a more realistic 
picture of their structural performance. Future work involves the 
experimental validation of the optimized structures here obtained for 
imperfect lattice materials. 
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