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a b s t r a c t 

Elastic thin shells are well-known for their highly unstable post-buckling, a response that 

exhausts their pressure bearing capacity and leads to catastrophic collapse. This paper ex- 

amines elastic thin shells with a large axisymmetric imperfection that can escape the clas- 

sical bifurcation of perfect spherical shells. We employ a shell theory formulation with 

exact expressions of the middle surface strains, curvature changes, and live pressure along 

with validating experiments and numerical simulations. The results show that a large ax- 

isymmetric imperfection in the form of a circular arc can induce snap-through buckling 

followed by a stable post-buckling that offers increasing resistance to pressure over a 

large change in volume. In addition, a sensitivity analysis on the role of defect geome- 

try and shell radius to thickness ratio reveals the emergence of four buckling modes. For 

small imperfections, bifurcation buckling (mode 1) is dominant and resembles the typi- 

cal dimple-like mode of perfect spherical shells. For larger imperfections, the shell attains 

the maximum pressure at the snap-through buckling where strain localization appears ei- 

ther within the imperfection (mode 2) or just below (mode 3). In the fourth mode, snap- 

through buckling precedes the attainment of the maximum pressure following a post- 

buckling path characterized by a large change of volume that makes the shell harder and 

stronger. These findings show that harnessing defect geometry and shell radius to thick- 

ness ratio can be effective in programming the post-buckling characteristics and transition 

between buckling modes, thus offering potential routes for the design of soft metamateri- 

als with application to soft robotics and other sectors. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Spherical thin shells are ubiquitous in nature from the cell wall of baker’s yeast ( Arfsten et al., 2010 ), virus shells

( Vaziri and Mahadevan, 2008 ), to pollen grains ( Katifori et al., 2010 ), and coconut shells ( Nguyen et al., 2016 ). They are

also widespread in engineering across the spectrum of length scale, from microcapsules for drug delivery ( Jose et al., 2014 ),

to pressure vessels ( Błachut and Magnucki, 2008 ), and underwater pressure hulls ( Pan et al., 2010 , 2012 ). The mechan-

ics of spherical thin shells, in particular their nonlinear buckling behaviour, has been extensively studied over the past

decades. One of the main findings is that under a uniformly applied external pressure, spherical thin shells exhibit a highly

unstable post-buckling response characterized by a sudden drop of load bearing capacity and a strong sensitivity to im-
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perfections. In his seminal work, Zoelly (1915) was the first to study defect-free shells through classical linear theory and

to derive expressions for the theoretical pressure at which buckling occurs. These predictions offer a buckling load base-

line that substantially departs from experimental measures, which typically reach only 1/5 of their theoretical values. This

discrepancy is conveniently gauged by the knockdown factor, the ratio of the experimentally measured buckling pressure

over its theoretical counterpart, which is commonly used for shell design, and for as-built shells it has a wide span from

0.05 to 1.1 ( Carlson et al., 1967 ; Evkin and Lykhachova, 2017 ; Homewood et al., 1961 ; Kaplan and Fung, 1954 ; Krenzke and

Kiernan, 1963 ; NASA, 1969 ; Seaman, 1962 ; Tsien, 1942 ; Wagner et al., 2018 ). 

The causes for the low tested values of buckling pressure have been extensively studied for spherical shells

( Bushnell, 2014 ; Hutchinson and Koiter, 1970 ; Thompson and Heijden, 2014 ). Among the first were von Kármán and Tsien

(1939 , 1941 ), who proposed the notion of a “lower buckling pressure” to indicate the minimum load necessary to keep the

shell in the buckled shape. This pressure was arguably supposed to be independent of the load arrangement and the ini-

tial imperfections of the shell. Only thereafter, the issue was elucidated by Koiter (1945) with his theory of elastic stability

under conservative loadings, corroborated later via experiments ( Carlson et al., 1967 ). From this theory the critical role of

geometric imperfections has been unveiled with results showing the high sensitivity of both the critical load and the initial

post-buckling behavior to geometric defects, even when these are very small in amplitude. 

Geometric imperfections induced by fabrication are typically distributed randomly in a real shell. Since their geometry

and size are not always easily quantifiable, a practical approach to obtain at most a qualitative account of the real shell

response is to intentionally introduce as-designed imperfections in their ideal geometry. This approach has been widely

adopted in the literature of thin shells. For example, Koga and Hoff (1969) were among the first to study the role of im-

perfections introduced in the form of increased-radius and dimple geometries. Their investigation shed light into the role of

a number of geometric defects including defect amplitude, angular width and radius to thickness ratio of the shell. Asym-

metric pie-shaped imperfections in spherical caps were also studied ( Kao, 1972 ) through a strain-displacement formulation

similar to that of Donnell’s cylindrical shell theory ( Donnell, 1934 ; Donnell and Wan, 1950 ). The computational results shows

a buckling pressure lower than those previously found ( Kao and Perrone, 1971 ). Imperfections in the form of Legendre poly-

nomials ( Fan, 1989 ) were also later studied with the goal of assessing the post-buckling behavior and the sensitivity to

defect size. More recently Błachut ( Błachut, 2015 , 2016 ; Blachut and Galletly, 1993 ) performed a series of studies on the

buckling of geometrically imperfect domes embedding a set of defects defined by Legendre polynomials, localized flatten-

ing, eigenmode imperfections, local inward dimple of arbitrary shape, and force-induced inward dimple. A direct relationship

was established by Lee et al. (2016b) between the experimental buckling pressure and a set of imperfections with varying

geometry. The results reveal that defect sensitivity diminishes with the amplitude of the imperfection reaching a threshold

value (larger than the shell thickness), above which the knockdown factor of the buckling pressure levels out on a plateau. 

Most of the existing works on defect sensitivity of shell buckling have so far studied the post buckling regime, i.e. a

monotonic drop of pressure which rapidly exhausts the shell resistance until sudden collapse occurs. This phenomenon de-

prives shell functionality and has two main features. First, prior to bifurcation, the shell deformation, in particular the dis-

placement of the pole, is tiny compared to the shell radius, thereby yielding almost no change in volume ( Hutchinson, 2016 ).

Second, under a given pressure the shell is unstable for the entire post-buckling regime ( Hutchinson, 2016 ), showing the in-

ability to resist any increase in pressure and spontaneous marching towards full eversion. 

In this work, we examine an elastic thin shell shaped with a large axisymmetric imperfection that can bypass the catas-

trophic collapse typically observed in hemispherical shells under external pressure. While previous works aiming at tuning

the post-buckling characteristics of thin shells examine certain types of imperfections, such as soft spots ( Paulose and Nel-

son, 2013 ) and creases ( Bende et al., 2015 ), here we explore an alternative route. More specifically, we introduce a para-

metric set of geometric imperfections ( Section 2 ) that can alter the post-buckling response from a pure monotonic fall of

pressure to a stable response with pressure resistance gained through large volumetric deformation. Experiments on proof-

of-concepts shells ( Section 3.1 ), theoretical analysis ( Section 3.2 ), and finite element method (FEM) simulations ( Section 3.3 )

are presented to show a buckling response over a large volume change (above 20% the initial volume), a behaviour pre-

viously unobserved in the literature of hemispherical thin shells. Finally, a sensitivity study ( Section 4 ) unveils a direct

relation between shell response, defect characteristics and shell geometry, which altogether can be tuned to render three

distinct snap-through modes besides bifurcation buckling, which can be exploited for the design of soft metamaterials for

soft robotics, mechanism-based structures and smart actuators. 

2. Shell geometry with large geometric imperfection 

We consider a hemispherical thin shell ( Fig. 1 ) with a large geometric imperfection in the form of an axisymmetric

circular-arc indentation that can vary in amplitude, angular width and location. The cross-section of the shell is defined by

the radius R and thickness t , defining its slenderness, R / t . The large imperfection traces a circular arc with center O 2 and

extent defined by h / l , i.e. the amplitude h to width l ratio, and the angular width θw 

. We examine the cases where the

imperfection can vary in angular width θw 

( Fig. 1 c), in position through the meridional angle θm 

( Fig. 1 d), defining the

position of its center O 2 , and in amplitude h / l from 0 and 0.5 ( Fig. 1 e), the former describing the case of an arc collapsed to

a line segment, and the latter being a defect in the form of a semicircle. The imperfection is also assumed to lie between

the equator and the upper pole of the semi circumference ( Fig. 1 e), hence satisfying the constraint on the meridional angle
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Fig. 1. (a) Three-dimensional view with an intersecting symmetry plane of a shell with a large geometric imperfection. (b) Shell cross-section on the in- 

tersecting plane, with shell geometry described by radius R , radius to thickness ratio R / t , imperfection angular width θw , imperfection amplitude h / l , and 

meridional angle θm . Effect of varying defect size and location: (c) increase in defect width through change of θw , (d) defect center location through varia- 

tion of meridional angle, θm , (e) defect amplitude for increasing h / l . (f) Special cases: h/l = 0 yields a linear profile generating a conical shell, h/l = ( 
√ 

2 −1 ) / 2 

gives a concave profile, i.e. an arc generatrix for a surface of revolution that departs from the spherical and conical geometry. 

Fig. 2. Fabrication steps. (a) 3D printed hemispherical shape mold with axisymmetric circular-arc indentation. A groove at the bottom of the mold is 

introduced to collect excessive polymer deposition. (b) VPS liquid poured onto the mold surface. (c) Stablized shell sample removed from the mold. 

 

 

 

 

 

 

 

 

 

 

θm 

and the angular width θw 

: 

θw 

2 

< θm 

< 

π

2 

− θw 

2 

(1)

Fig. 1 f shows two special cases for extremely large imperfections with width θw 

= π/ 2 and meridional angle θm 

= π/ 4 .

The hemispherical shell degenerates into either a cone for amplitude h/l = 0 , or for h/l = ( 
√ 

2 −1 ) / 2 into a surface of revolution

obtained by rotating the generatrix, a concave arc, around the vertical axis. 

3. Methods 

3.1. Experiment 

3.1.1. Manufacturing of elastic thin shells and shell geometry assessment 

Fig. 2 shows the basic steps of the manufacturing process adapted from the literature ( Lee et al., 2016a , b ) to build shell

samples with thin hemispherical smooth geometry. We first used fused deposition modeling (FDM) to 3D print a 1 mm-

thick mold ( Fig. 2 a) made of Onyx filament, and then poured a silicone-based elastomer solution onto its surface to form

a thin shell. Table 1 lists the nominal surface geometry of the as-designed mold, which slightly differs from that of the

as-built mold. Measures of the radius made with a digital caliper at the equator of the hemisphere provided R = 24.72 mm,

a value 1% below from the nominal one. 

For the shell material, we chose Vinylpolysiloxane (VPS, Elite Double 32, Zhermark), whose Young’s modulus and Pois-

son’s ratio ( Table 2 ) were previously measured ( Pezzulla et al., 2015 ). After mixing catalyst and base with equal volume
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Table 1 

Nominal geometry of the 3D printed mold. 

R (mm) θw ( °) h / l θm ( °) 

24.86 25.2 0.2 43.3 

Table 2 

Measured elastic properties of VPS ( Pezzulla et al., 2015 ) and 

computed coefficients of the neo-Hookean model. 

Linear elastic model Neo-Hookean model 

E (MPa) υ C10 (MPa) D1 (MPa –1 ) 

0.96 0.5 0.16 0 

Fig. 3. (a) Photograph of half cross-section of a representative sample cut along the symmetry plane. Red curves trace lower and upper boundaries of 

shell surfaces. (b) Shell thickness, t , variation traced from (a) and plotted against the normalized arc length s from pole to equator, where s 0 is the total 

arc length from the upper pole to the equator. The thickness profile is relatively uniform at about 0.2 mm, with peaks of t = 0 . 61 mm at s/ s 0 = 0 . 36 and 

t = 0 . 88 mm at s/ s 0 = 0 . 68 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fraction, VPS was poured on the surface of the 3d printed mold ( Fig. 2 b). During the pouring process, excessive liquid ac-

cumulated at the bottom of the mold and formed a band of 2 mm thickness, which acted as clamp at the low boundary of

the hemispherical shell. After the complete VPS stabilization at room temperature, the thin shell was peeled off the mold

( Fig. 2 c). 

The protocol above was followed to manufacture eight samples of identical geometry, and Fig. 3 a shows the cross-section

of a representative along the symmetry plane. From a detailed assessment of the shell thickness across the entire shell do-

main ( Fig. 2 c), we observe thickness uniformity along the circumferential direction only. In contrast, along the meridional

direction major divergences appear. This is evident in Fig 3 a, where the inner and outer profiles (red) are fitted with two

splines (NURBS). From a top to bottom inspection, we notice the VPS pouring onto the mold surface resulted in two sets

of local non-uniform thickening: one above the large imperfection and the other of larger amplitude at its bottom. The

distance between the inner and outer profiles (red curve in Fig. 3 a) were assessed at 196 points along the arc length direc-

tion, and the thickness profile was adjusted by comparing the maximum thickness obtained from the optical image to the

measurement from the digital caliper. Fig. 3 b plots the scaled thickness profile as a function of the normalized arc length

from the upper pole to the equator. The maximum thickness of the eight samples is t = 0 . 88 ± 0 . 03 mm . The thickness pro-

file is relatively uniform with t = 0 . 20 mm and minor fluctuations of 0.07 mm along the normalized arc length, except for

peaks appearing at s/ s 0 = 0 . 36 and 0.68, which respectively correspond to maximum thickness values of t = 0 . 61 mm and

t = 0 . 88 mm . 

3.1.2. Experimental apparatus 

To reduce the volume enclosed by the thin shell and monitor the pressure evolution acting on it, we assembled the

experimental setup shown in Fig. 4 . Its main components include a polypropylene syringe to extract the air inside the shell

at a controlled flow rate, a Bose ElectroForce 3510 tester (Bose Corporation, Framingham, Massachusetts) used to impart a

displacement load on the piston of the syringe, an acrylic fixture to constrain any sample movement, along with a pressure

sensor (SM9333, SMI, California) and a microcontroller (Arduino UNO, Arduino, Italy). The thin elastic shell was mounted

on an acrylic fixture, which consists of two supporting plates. The upper round plate had a circular hole at the center, with

radius slightly larger than the radius of the hemispherical shell R . The thick band at the bottom of the shell was clamped

between the acrylic plates, whereas the hemispherical part of the thin shell was allowed to freely deform without entering
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Fig. 4. Experimental setup: the shell sample is mounted on the basal fixture and connected with two hollow rubber tubes, one to the syringe and the 

other to the pressure sensor. The syringe is pulled by the Bose ElectroForce 3510 tester to extract air at a constant flow rate of 54 ml/s. A microcontroller 

regulates the operation of the pressure sensor which measures the internal pressure of the shell. 

Table 3 

Convergence of flow rate. 

Flow rate (ml/s) 13 27 54 108 215 

Snap through pressure (Pa) 13.55 13.64 13.88 13.82 14.03 

Maximum pressure (Pa) 32.05 32.32 32.68 33.38 33.15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in contact with the fixture. The upper plate was tightly fastened to the lower acrylic plate with six equally spaced screws

to prevent any leakage of air. The lower square plate was connected to the syringe and the pressure sensor. The syringe

extracted air from the shell at a constant flow rate of 54 ml/s and was pulled by the Bose ElectroForce 3510 tester with

displacement control at a constant speed. The sensor had a calibrated pressure range from −125 Pa to 125 Pa and a typical

accuracy of ±0.5% of the full pressure span, which is ±1.25 Pa. The pressure sensor was controlled by the microcontroller,

which was programmed to read the pressure data from the sensor at a frequency of 20Hz. 

The testing results from our experiments converged at a flow rate of 54 ml/s ( Table 3 ). When the flow rate was decreased

further, the variations in the snap-through pressure and the maximum pressure were below 0.33 Pa and 0.63 Pa, values

below the accuracy of the sensor ( ±1.25 Pa). 

3.2. Theoretical model 

A number of formulations exist in the literature for predicting the buckling pressure of elastic thin shells. Among them

for shells undergoing small strains of the middle surface and moderate rotations, approximate expressions of the stretching

and bending strains, e.g. the small strain-moderate rotation theory ( Hutchinson, 2016 ) and the Donnell–Mushtari–Vlasov

(DMV) theory ( Budiansky, 1968 ; Hutchinson, 2016 ; Koiter, 1966 , 1967 ; Sanders, 1963 ), can be used to predict buckling pres-

sure. These theories are accurate for perfect spherical shells, but their precision degrades for shells with relatively large

displacements and rotations ( Hutchinson, 2016 ). Because the shells examined in this work experience large displacements

and rotations, we use exact expressions of the Lagrangian stretching strains and changes in curvature as well as live pres-

sure, i.e. the force per current area acting normal to the deformed middle surface, and compute the potential energy of

the pressure. We assume the constitutive relation to be linear due to the small strains involved, and present a formulation

that enables us to write the shell buckling equations without any restrictions on the magnitude of displacements and rota-

tions ( Hutchinson, 2016 ; Niordson, 1985 ). Furthermore, we follow the tensor analysis given by Niordson (1985) as well as

Koiter and van der Heijden (2009) (see Appendix B ) to derive the nonlinear buckling equations of the middle surface for

axisymmetric deformations. The following section presents first the theory for spherical shells with perfect geometry, while

Section 3.2.2 provides the formulation for shells with large imperfection. Appendix C reports the numerical method used to

obtain the solutions. 
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Fig. 5. Definition of coordinates θ and r : (a) Euler coordinate system ( θ , ω, r ) for a spherical shell; (b) modified Euler coordinate system ( θ , ω, r ) for shell 

with large imperfection. The thick line refers to the shell middle surface. 

 

 

 

 

 

 

 

 

 

 

 

3.2.1. Shell theory for axisymmetric deformations of a spherical shell 

Fig. 5 a shows the Euler coordinates ( θ , ω, r ) for a perfect spherical shell. θ is the meridional angle, ω is the circumfer-

ential angle (not shown), and r is the distance from the origin O 1 . The meridional angle θ is measured from the equator

( θ = 0 ) to the upper pole ( θ = π/ 2 ). R is the radius of the shell and ( θ , ω, R ) represents the coordinates of a material point

on the middle surface of the shell. For the deformed shell, the location of a material point on the middle surface is 

r̄ = u θ i θ + u ω i ω + ( R + w ) i r (2) 

where ( u θ , u ω , w ) are the displacements tangent and normal to the undeformed middle surface, and ( i θ , i ω , i r ) are the corre-

sponding unit vectors. For axisymmetric deformations, the circumferential displacement is null ( u ω = 0 ), and the other two

displacements, u θ and w , are independent of the circumferential angle ω. 

The nonlinear middle surface strains and the change in curvature of the middle surface are functions of the linear com-

ponents of both strains ( e θθ , e ωω , e θω ) and rotations ( ϕθ , ϕω , ϕr ), the former given by 

e θθ = 

1 

R 

(
∂ u θ

∂θ
+ w 

)

e ωω = 

1 

R 

(
1 

cos θ

∂ u ω 

∂ω 

− tan θu θ + w 

)

e θω = 

1 

2 R 

(
∂ u ω 

∂θ
+ 

1 

cos θ

∂ u θ

∂ω 

+ tan θu ω 

) (3) 

where the circumferential displacement u ω and the partial derivatives with respect to the circumferential angle ω in e ωω and

e θω equal to zero for axisymmetric deformations, On the other hand, the latter, i.e. the linear rotations about the tangents

and the normal to the middle surface are: 

ϕ θ = 

1 

R 

(
∂w 

∂θ
− u θ

)

ϕ ω = 

1 

R 

(
1 

cos θ

∂w 

∂ω 

− u ω 

)

ϕ r = 

1 

2 R 

(
∂ u ω 

∂θ
− 1 

cos θ

∂ u θ

∂ω 

− tan θu ω 

) (4) 

For axisymmetric deformations, the non-vanishing components of the nonlinear middle surface strains and bending

strains are given by 

E θθ = e θθ + 

1 

2 

e 2 θθ + 

1 

2 

ϕ 

2 
θ

E ωω = e ωω + 

1 

2 

e 2 ωω 

(5) 

and 

K θθ = 

1 

R 

[
( 1 + e θθ + e ωω + e ωω e θθ ) 

(
−1 + 

∂ ϕ θ

∂θ
− e θθ

)
− ϕ θ ( 1 + e ωω ) 

(
∂ e θθ

∂θ
+ ϕ θ

)
+ 1 

]

K ωω = 

1 

R 

[ ( 1 + e θθ + e ωω + e ωω e θθ ) ( −1 − tan θϕ θ − e ωω ) + tan θϕ θ ( 1 + e ωω ) ( e θθ − e ωω ) + 1 ] 

(6) 

We note that in Eqs. (4) and (6) , the sign of both rotation and change in curvature is opposite to that of previous works

( Budiansky, 1968 ; Hutchinson, 2016 ; Lee et al., 2016b ; Sanders, 1963 ), because here the definition of rotation and curvature
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change follow that of Niordson (1985) . For axisymmetric deformations, the last two terms in Eq. (4) vanish, i.e. ϕ ω = 0 and

ϕ r = 0 . 

The resultant membrane stresses ( N θθ , N ωω , N θω ) and the bending moments ( M θθ , M ωω , M θω ) for a shell with isotropic

linear elastic material are 

N αβ = 

Et (
1 − v 2 

)[
(1 − v ) E αβ + v E γ γ δαβ

]
M αβ = D 

[
(1 − v ) K αβ + v K γ γ δαβ

] (7)

where E is the Young’s modulus, t is the shell thickness, ν is the Poisson’s ratio, and D = E t 3 / [12(1 − ν2 )] is the bending

stiffness. The subscripts in Eq. (7) take on values 1 or 2, and the Einstein summation convention applies. The non-vanishing

components in the membrane stress and bending moments are ( N θθ , N ωω ) and ( M θθ , M ωω ). 

The sum of the stretching and bending energy gives the elastic strain energy (SE) expressed as: 

SE ( u θ , w ) = 

1 

2 

∫ 
S 

(
M αβK αβ + N αβE αβ

)
d S (8)

where S is the area of the perfect spherical surface in its undeformed state ( Fig. 5 a). 

The potential energy of the uniform external pressure is 

PE = p
V (9)

where 
V is the volume change. For small deformations, the volume change can be approximated with the pressure acting

on the initial middle surface in the direction normal to the initial middle surface, namely the dead pressure: 


V ( u θ , w ) = 

∫ 
S 

w d S (10)

For large axisymmetric deformations, the volume change 
V is obtained with the pressure acting on the deformed mid-

dle surface in the direction normal to the deformed middle surface, i.e. the live pressure, whose exact expression is here

derived as: 


V ( u θ , w ) = 

∫ 
S 

{ 

w + 

1 

2 

[ w ( e θθ + e ωω ) − ϕ θ u θ ] + 

1 

3 

( w e θθ e ωω − e ωω ϕ θ u θ ) 

} 

d S (11)

Eq. (11) contains both the linear term, i.e. dead pressure, and the products of displacements, rotations and strains. While

the former term only is sufficient to study the buckling pressure of perfect spherical shells ( Hutchinson, 2016 ; Lee et al.,

2016b ), the latter cannot be neglected for a shell with pole displacement comparable to its radius, which experiences large

nonlinear deformation, as is the case of the shell examined here. 

The total potential energy � of the spherical shell is given by the sum of the elastic strain energy SE and the potential

energy PE of the external pressure 

�( u θ , w ) = SE + PE (12)

3.2.2. Imperfect shell theory for axisymmetric deformations 

To account for the large geometric imperfection (axisymmetric circular-arc), we introduce the modified Euler coordinates

( θ , ω, r ) shown in Fig. 5 b. Here, the difference from the Euler coordinate system ( Fig. 5 a) pertains to the coordinates θ and

r , which are defined with respect to the center of the imperfection O 2 , rather than the origin of the Euler coordinate system

O 1 . Following the geometry parameters introduced in Section 2 , the coordinates of O 2 ( θ2 , ω, R 2 ) are given by 

θ2 = θm 

R 2 = R cos 
θw 

2 

− 2 R sin 

θw 

2 

h 

l 
+ R sin 

θw 

2 

(
l 

4 h 

+ 

h 

l 

)
(13)

In the general case, the coordinates of a material point on the middle surface of the imperfection is ( θ , ω, R I ), where the

radius of the imperfection, R I ( Fig. 5 b), is given by: 

R I = R sin 

θw 

2 

(
l 

4 h 

+ 

h 

l 

)
(14)

The location of a material point on the deformed middle surface of the imperfection is 

r̄ = R 2 i 2 + u θ i θ + u ω i ω + ( R I + w ) i r (15)

where R 2 i 2 is the location of the center of the imperfection, ( u θ , u ω , w ) are the displacements tangent and normal to the

undeformed middle surface, and ( i θ , i ω , i r ) are the corresponding unit vectors. For axisymmetric deformations, the circumfer-

ential displacement equals to zero u ω = 0 , and the other displacements, u θ and w , are independent of the circumferential

angle ω. 
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The nonlinear strains and the change in curvature of the middle surface are functions of the linear components of the

strains ( e θθ , e ωω , e θω ) and the rotations ( ϕθ , ϕω , ϕr ), the former given by: 

e θθ = 

1 

R I 

(
∂ u θ

∂θ
+ w 

)

e ωω = 

1 

R I cos θ + R 2 cos θ2 

(
∂ u ω 

∂ω 

− tan θu θ + cos θw 

)

e θω = 

1 

2 R I ( R I cos θ + R 2 cos θ2 ) 

[
( R I cos θ + R 2 cos θ2 ) 

∂ u ω 

∂θ
+ R I 

∂ u θ

∂ω 

+ R I sin θu ω 

] (16) 

For axisymmetric deformations, the circumferential displacement u ω and the partial derivatives with respect to the cir-

cumferential angle ω in e ωω and e θω equal to zero. 

The linear rotations about the tangents and normal of the middle surface are expressed as: 

ϕ θ = 

1 

R I 

(
∂w 

∂θ
− u θ

)

ϕ ω = 

1 

R I cos θ + R 2 cos θ2 

(
∂w 

∂ω 

− cos θu ω 

)

ϕ r = 

1 

2 R I ( r cos θ + R 2 cos θ2 ) 

[
( R I cos θ + R 2 cos θ2 ) 

∂ u ω 

∂θ
− R I 

∂ u θ

∂ω 

− R I sin θu ω 

] (17) 

For axisymmetric deformations, the last two terms vanish ( ϕ ω = 0 and ϕ r = 0 ), whereas the non-vanishing components

of the nonlinear middle surface strains for axisymmetric deformations are given by Eq. (5) . The non-vanishing changes in

curvature for axisymmetric deformations are 

K θθ = 

1 
R I 

[
( 1 + e θθ + e ωω + e ωω e θθ ) 

(
−1 + 

∂ ϕ θ
∂θ

− e θθ

)
− ϕ θ ( 1 + e ωω ) 

(
∂ e θθ

∂θ
+ ϕ θ

)
+ 1 

]
K ωω = 

cos θ

R I cos θ + R 2 cos θ2 

[(
1 + e ϕϕ + e ωω + e ωω e ϕϕ 

)
( −1 − tan θϕ θ − e ωω ) 

+ tan θϕ θ ( 1 + e ωω ) ( e θθ − e ωω ) + 1 ] 

(18) 

From a comparison of Eqs. (16) –( 18 ) with Eqs. (3) , (4) and (6) , we find that the linearized strains of the middle surface,

the linearized rotation and the change in curvature of the imperfection, have expressions identical to those of a spherical

shell with R I = R and R 2 = 0 . This describes the limiting case, where the geometry of the imperfection becomes a sphere

( R 2 = 0 ), and its size matches that of the spherical shell ( R I = R ). 

The stress strain relations, the elastic strain energy, the volume change for live pressure, and the total potential energy

are then given by Eqs. (7) , (8) , (11) , and (12) . 

3.3. Finite element modelling 

To investigate the shell response controlled by an imperfection varying in size and location, a set of FEM simulations

(ABAQUS/STANDARD) were also conducted in parallel to the experimental and theoretical work described above. The com-

plimentary results not only provide context for validation but also serve to study shell sensitivity to defect amplitude and

position as well as radius to thickness ratio ( Section 4.2 ). For the base material (VPS elastomer), we adopted an incompress-

ible neo-Hookean model, whose coefficients were calculated from previously obtained measures ( Pezzulla et al. (2015) of

Young’s modulus and Poisson’s ratio ( Table 2 ). Clamped boundary conditions were applied at the equator of the hemispher-

ical shell, while a uniform external pressure was imposed on the outer surface of the shell. Due to the unstable post-buckling

behavior, the search for the equilibrium path was carried out through the modified Riks method ( Riks, 1979 ). 

Two geometries were examined for the shell. The first replicates the non-uniform thickness ( Fig. 3 b) induced by the

manufacturing process (see Appendix A for inclusion of thickness variation), while the latter reproduces the ideal uniform

thickness of the perfect shell, providing a baseline for comparison. Furthermore, since spherical shell deformation can be

either axisymmetric or non-axisymmetric ( Hutchinson, 2016 ), both scenarios were examined. For the former, the linear

line element SAX1 was used due to its ability to capture only axisymmetric deformation, and for the latter, we built a

three-dimensional model with two types of shell elements (linear quadrilateral shell elements S4R with reduced integration,

and 3-node triangular shell elements S3R) that together can capture the non-axisymmetric deformation. A set of mesh

convergence studies ( Appendix D ) was performed to determine the sufficient number of elements for each type: 80 elements

for the SAX1 axisymmetric line element, and around 10 0 0 0 for S4R and S3R shell elements. 
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Fig. 6. Responses of perfect and imperfect spherical shells under uniform pressure. (a) Pressure versus change in volume for perfect and as-designed 

imperfect shell with uniform thickness, with volume change normalized by the negative of the volume within the middle surface of the undeformed 

hemisphere, V 0 = −2 πR 3 / 3 . Loss of stability for the perfect shell appears with a small volume change, as opposed to the imperfect shell, which remains 

stable post snap-through buckling for a wide range of volume change. The theoretical solution accounts for axisymmetric deformations, whereas non- 

axisymmetric modes are captured by FEM. (b) Cross-section view (above) and three-dimensional view (below) of deformed modes and corresponding 

strain energy density of as-designed imperfect shell with uniform thickness. Changes in the inclination of the horizontal dashed lines below the cap 

indicate buckling transition from axisymmetric to a non-axisymmetric mode. (c) Pressure versus change in volume obtained from experiment and FEM 

simulation for as-manufactured imperfect shell with as-measured non-uniform thickness. (d) Deformed configurations from experiments on shell samples 

(above) and FEM accounting for non-axisymmetric deformations in as-built shell samples (below) along with corresponding strain energy density. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Results and discussion 

4.1. Buckling of imperfect spherical shells with large axisymmetric imperfection 

We present here a set of theoretical, computational and experimental results of the shell response to a uniform externally

applied pressure under two scenarios: i) as-designed imperfection with a priori assumed thickness (uniform profile), and ii)

as-built imperfection with actual thickness variation induced by manufacturing (non-uniform profile). 

4.1.1. Effects of as-designed and as-manufactured imperfections 

Fig. 6 a shows the baseline response of a perfect hemispherical shell along with that of a shell with as-designed im-

perfection with uniform thickness and shell geometry given in Table 1 . The blue dashed line is for the perfect baseline

hemispherical shell and represents the classical buckling response extensively investigated in literature ( Hutchinson, 2016 ;

Wagner et al., 2018 ). Normalized with the Zoelly’s buckling pressure p C = 2 E (t/R ) 2 / 
√ 

3(1 − ν2 ) ( Zoelly, 1915 ), the pressure

rapidly increases with tiny changes in volume up to unity. Post bifurcation, a monotonic plunge of pressure appears, fol-

lowed by a gradually descending plateau (just below 0.1) that spans the entire range of 
V / V 0 . 

The purple and red curves in Fig. 6 a refer to the imperfect shell with as-designed uniform thickness. The former (purple

dots) is the pressure provided by our theoretical model ( Section 3.2 ), which assumes axisymmetric deformations, and the

latter (red) that obtained by our numerical models ( Section 3.3 ), one accounting for axisymmetric (dash-dot) and the other

for non-axisymmetric (solid line) deformation. For axisymmetric deformations, the difference between theoretical and FEM

models is below 1%. In addition, the responses from the FEM models for both axisymmetric and non-axisymmetric defor-

mations are well aligned with 3.6% relative difference in maximum pressure, a result implying shell deformation being close
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to axisymmetric. At the volume change of 
V/ V 0 = 0 . 04 , the pressure of the imperfect shell enters a region of snap-through

buckling, after which the pressure monotonically increases to reach a maximum value of p/ p C = 0 . 34 at 
V/ V 0 = 0 . 40 . 

The divergence between axisymmetric and non-axisymmetric modes occurs at the snap-through region, where the FEM

simulation captures an additional peak, which can be attributed to the non-axisymmetric buckling mode. This is shown in

Fig. 6 b; here the sequential stages of deformation reveal the start of a buckling transition mode from axisymmetric to non-

axisymmetric, the latter requiring lower strain energy than the former and hence most likely to appear. The second peak

corresponds to the return of the deformation to the axisymmetric response. After the second peak, the value of pressure

gradually approaches the solution of our theoretical model for axisymmetric deformations. Despite the qualitative difference

between the red and purple curves, the pressure value of the second peak is only 10% higher than the pressure value at the

identical volume change predicted by the theoretical and FEM models for axisymmetric deformations. This result suggests

that the axisymmetric mode can provide a sufficient level of approximation for shell design. 

A number of differences emer ge between the perfect and imperfect shell shown in Fig. 6 a. The main one is their buckling

mode. The imperfect shell first undergoes snap-through buckling at a pressure lower than the maximum pressure, and

then it regains stability as the pressure increases to the maximum, a phenomenon not observed in the perfect spherical

counterpart. The perfect shell undergoes bifurcation buckling for a tiny value (below 1%) of the normalized volume change,

where the pressure reaches its maximum without undergoing snap-through instability. After the bifurcation point, the post-

buckling pressure decreases monotonically until the shell is everted, thereby denying the chance for the shell to regain

stability ( Gomez et al., 2019 ; Hutchinson, 2016 ; Taffetani et al., 2018 ). 

Maximum pressure and corresponding volume change are other attributes (besides the buckling mode) that differ in

value between the perfect and imperfect shells ( Fig. 6 a). The maximum pressure in the imperfect case (point B) decreases

to 34% of the theoretical maximum pressure ( p/ p c = 1 ) of the perfect shell baseline (not shown in figure). This drop is minor

compared to the buckling pressure of perfect shells fabricated with conventional processes; for perfect shells, the experi-

mental values measured in the literature show a large spread with severe drops (up to 90%) from the ideal case ( Lee et al.,

2016b ; Wagner et al., 2018 ). These well-known results attest to the large sensitivity of perfect shells to geometric defects. On

the other hand, the imperfect shell under investigation in this study can provide a maximum pressure value (point B) com-

parable to that of its perfect counterpart. A similar observation applies to its impact on the volume change. For the perfect

hemispherical shell, a tiny value of 
V / V 0 < 0.01 is required to attain maximum pressure before proceeding spontaneously

to catastrophic collapse without an increase in the magnitude of the applied pressure. In contrast, the imperfect shell after

the first peak features a gradual and stable response over a large volume change, thereby demonstrating its capacity to resist

deformation upon an increase of the applied pressure up to the maximum pressure value reached at 
V/ V 0 = 0 . 40 . 

Fig. 6 b shows sequential stages of deformation for the imperfect shell with uniform thickness (solid red curve in Fig. 6 a).

At the onset, the shell stays axisymmetric, and its cap reseats without tilting, as shown by the white dashed line tracing

the bottom of the imperfection. When the pressure reaches the first peak, a non-axisymmetric response starts to develop.

As illustrated in Fig. 6 b (ii), with an increase of the volume change the strain energy density localizes on the right-hand

side of the imperfection, and the cap sinks with a tilt to the right hand side. Here the strain energy refers to the energy

stored in the shell due to stretching and bending. After the second buckling peak, the localized strain energy starts to

propagate circumferentially along the axisymmetric imperfection. At the second local minimum of pressure, the left-hand

side of the imperfection also tilts until its height equals that of the right-hand side ( Fig. 6 c (iii)). From this stage onward,

shell axisymmetry is preserved and no further changes in deformation mode occur up to the maximum pressure ( Fig. 6 c

(iv)). 

Thickness non-uniformity ( Fig. 2 ) caused by the fabrication process is another factor influencing the snap-through buck-

ling, as shown in Fig. 6 c. The dashed blue line represents the experimental measure of the normalized pressure for one

representative sample, and the shaded domain (light blue) is the envelope of responses generated by the eight samples

here tested. Similar to Fig. 6 a, the imperfect shell first undergoes snap-through buckling with two local peaks in pressure,

followed by a stable response that requires additional deformation to reach the maximum pressure. Aligned with the exper-

imental curves is the computationally obtained response in red with two peaks in pressure in the snap-through region that

capture non-axisymmetric deformation. By comparing the solid line curves for the imperfect shell in Figs. 6 a and c, we can

gain insights into the effect of thickness variation on the maximum pressure (point B versus point D) and its corresponding

volume change, as well as the snap through pressure (point A versus point C). For the maximum pressure, the deviation

is minor (2%) and it occurs with relatively modest change of volume change (29%). This infers a minor sensitivity of the

maximum pressure to thickness variations. For the snap through pressure, on the other hand, the impact is severe (93%

increase) attesting a high sensitivity as opposed to the volume change which is almost unaffected (5% difference). 

Similar to the as-designed imperfect shell ( Fig. 6 b), Fig. 6 d shows snapshots of deformation for the as-manufactured

shells obtained from experiments (above) and FEM (below). After the first snap-through ( Fig. 6 d (ii)), the as-manufactured

shell undergoes non-axisymmetric buckling, characterized by strain energy localization mainly in the middle of a given

cross-section of the large imperfection. After the second snap-through, the deformation returns to an axisymmetric mode

( Fig. 6 d (iii)) until the pressure reaches the maximum ( Fig. 6 d (iv)). 

In general, the results presented above from shell theory, experiments and FEA are very well aligned with a maximum

5.9% relative difference in maximum pressure. We attribute the reason for these deviations to other imperfections that might

be present in our samples but that were neglected in our models. During fabrication, defects intrinsic to the manufactur-

ing process, such as thickness variation along the meridional and circumferential direction, geometric imperfections of the
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Fig. 7. Pressure-volume change response of an imperfect shell undergoing axisymmetric deformations. The pressures at the limit points p 1 and p 2 along 

with the volume change V 1 and V 2 are introduced to describe the snap-through behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mold, and impurities in the base material, e.g. microvoids, might appear and contribute to the mild departure from the

experimental results ( Lee et al., 2016b ). In addition, the thickness profile, which was modelled with a relative high level of

accuracy (see Appendix A ), is still an approximation that could play a role in overestimating the minimum pressure in the

snap-through region ( Fig. 6 c). 

4.2. Sensitivity to as-designed large geometric imperfection 

Here we investigate the buckling sensitivity of a uniform thickness shell with an as-designed imperfection to a set of

defects varying in size and location within its hemispherical geometry. We focus on axisymmetric deformations only, given

that Section 4.1 has shown the assumption of axisymmetric deformation leads to a deviation of the normalized maximum

pressure of 3.6% from the non-axisymmetric case, hence retaining a sufficient level of accuracy for the study here under-

taken. 

Let us first define the parameters governing the snap-through buckling response for an imperfect shell with axisymmetric

deformation. Fig. 7 shows a representative response of pressure-volume change, where p 1 and p 2 specify the pressure at the

limit points of the initial snap-through buckling, and p max represents the obtainable maximum pressure. For the metrics

here used, we adopt the normalized maximum pressure p max / p C , the snap-ratio | p 1 − p 2 | / p 1 , and the ratio between snap-

through pressure and the maximum pressure p 1 / p max , along with their counterparts in volume change V max / V 0 , | V 1 − V 2 | / V 1 ,
and V 1 / V max . p C is Zoelly’s buckling pressure. V 0 is the volume of a perfect hemisphere. The definition of these snap ratios

enables the assessment of the relative difference in pressure and volume change between the limit points of the snap-

through buckling branch ( Vieira et al., 2017 ). 

Although the large imperfection here presented applies also to degenerate imperfect shells reducing to a cone ( Fig. 1 f),

in this section we restrict our sensitivity study to hemispherical geometries with imperfection parameters falling within

given geometric ranges. Specifically, the angular width θw 

is assumed to range from 2.4 ° to 24 °, the amplitude h / l from

0.05 to 0.5, the meridional angle θm 

from 30 ° to 70 °, and the radius to thickness ratio R / t from 20 to 150. We prescribe

also the radius of the shell to be R = 25 mm. To ease a systematic interpretation of the results, we divide the other four

geometric parameters into two groups. The first describes the size of the imperfection, including the angular width θw 

and

the amplitude h / l . The second designates the location of the imperfection and the slenderness of the shell, including the

meridional angle θm 

and the radius to thickness ratio R / t . The study then is carried out by exploring the impact of changing

the values of one group at a time, i.e. assuming the parameters of the other group are given. 

4.2.1. Sensitivity to imperfection size 

Here, the imperfection size is meant to describe changes in both the angular width θw 

ranging from θw 

= 2.4 ° to 24 ° and

the defect amplitude h / l spanning the interval from 0.05 to 0.5. These are the variables, as opposed to the meridional angle

and the radius to thickness ratio which are prescribed ( θm 

= 45 ° and R/t = 100). 

Fig. 8 shows four possible modes for the imperfect shell to respond to pressure. We classify them with respect to the

deformation mechanism that corresponds to the maximum pressure achievable within the entire response, i.e. the curve:

p / p C versus 
V / V 0 . Mode 1 resembles the classical instability of a perfect spherical, i.e. an inward dimple-like shape ( Fig

8 a) and it is governed by small values of the imperfection (e.g. θw 

= 4 . 6 ◦ and h/l = 0 . 1 ) ( Audoly and Hutchinson, 2019 ;

Hutchinson, 2016 ). Here the pressure first increases linearly up to the bifurcation point p/ p C = 0 . 81 at 
V / V 0 = 0 . 01 , before

dropping abruptly to a plateau around p/ p C = 0 . 1 . Post bifurcation, there is a deviation in pressure at 
V / V 0 = 0 . 18 , which

is caused by the dimple deformation reaching and interacting with the imperfection, a secondary phenomenon that follows

shell collapse. This is a secondary peak of pressure much smaller than the maximum value characterizing mode 1, hence it

is of negligible significance. It should also be noted that for a real shell, the maximum pressure may be significantly reduced

by other types of defects, e.g. small dimple at the pole, which might be introduced by the manufacturing process. 
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Fig. 8. Possible deformation modes leading to shell collapse. (a) Mode 1: Bifurcation buckling characterized by a dimple-like shape response. (b) Mode 

2: Snap-through buckling 1 describing localized deformation within the imperfection. (c) Mode 3: Snap-through buckling 2 representative of localized 

deformation below the imperfection. (d) Mode 4: Snap-through buckling combining mode 2 and 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mode 2 identifies a post-buckling response with deformation localized within the imperfection region ( Fig. 8 b). This

mode indicates a transition from bifurcation to snap through buckling. It is governed by a larger imperfection size with

values (e.g. θw 

= 20 . 8 ◦ and h/l = 0 . 1 ) above a lower critical bound, as illustrated and further explained in a subsequent

figure ( Fig. 9 ). The pressure here increases monotonically to the maximum at the limit point 1 ( p/ p C = 0 . 33 ) before starting

to descend. While the pressure at the limit point 1 is much smaller than the bifurcation pressure in mode 1, the maximum

volume change ( 
V / V 0 = 0 . 03 ) is still close to that of mode 1. Following snap-through, the pressure may reach a second

peak, i.e. limit point 2, at a larger volume change. Its value, however, does not define mode 2 because it is lower than the

maximum attainable pressure, i.e. limit point 1, hence it is not considered further. 

Fig. 8 c illustrates mode 3, a snap-through buckling controlled by a localized deformation accrued below the imperfection.

This response is caused by increasing values of the imperfection size (e.g. θw 

= 20 . 8 ◦ and h/l = 0 . 43 ). Snap-through buckling

occurs at limit point 2, which is the maximum attainable pressure ( p/ p C = 0 . 39 ) achieved at 
V / V 0 = 0 . 23 , a value much

larger than that observed in mode 1 and 2. 

For all of the aforementioned buckling modes (1, 2, and 3), the shell collapses once the prescribed pressure exceeds the

buckling pressure. Mode 4 ( Fig. 8 d) is hybrid case combining modes 2 and 3. It describes a scenario where snap-through

buckling with mode 2 arises before the attainment of the maximum pressure with mode 3. This behaviour is triggered by

a large width and moderate amplitude of the imperfection (e.g. θw 

= 20 . 8 ◦ and h/l = 0 . 19 ). In addition, this mode can also

be triggered in full spheres that are not clamped at the equator (see Appendix E ). Although the modes in Fig. 8 is obtained

from one imperfection, they can also form a cascade of snap-through buckling in a shell with multiple imperfections (see

Appendix F ). 
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Fig. 9. Role of imperfection size on (a) the normalized maximum pressure and (b) the normalized volume change at the maximum pressure. With an 

increase in imperfection size, the buckling mode transitions from bifurcation buckling to snap-through buckling. 

 

 

 

 

 

 

 

 

 

A map summarizing the buckling modes obtained for a range of combinations of imperfection width θw 

and amplitude

h / l is shown in Fig. 9 a. This map helps gain insight into the transition between buckling modes for a given set of imper-

fection parameters. From visual inspection, we gather that small imperfections lead to mode 1, visualized as the zone in

the lower-left corner and below the solid red bound. Within this domain, the lower bounds of the two parameter ranges

( θw 

= 2 . 4 ◦ and h/l = 0 . 05 ), i.e. the smallest imperfection size, generate the highest maximum pressure ( p max / p C = 0 . 91 ),

which approaches the theoretical buckling pressure of a perfect spherical shell. As the imperfection size increases, snap-

through buckling becomes dominant and replaces bifurcation buckling. From the map, we further observe a set of buckling

mode transitions, first to mode 2, and then to mode 4 and mode 3 as controlled by the geometric descriptors of the im-

perfection. For mode 2, the maximum pressure (at limit point 1) decreases monotonically – as it is the case for mode 1 - if
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Fig. 10. Role of imperfection size on snap-through properties. (a) and (b) Snap ratios of pressure and volume change. (c) Ratio of snap-through pressure 

over maximum pressure. (d) Ratio of snap-through volume change against maximum volume change. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

either the imperfection width θw 

or amplitude h / l is increased. When limit point 1 is lower than limit point 2, the buckling

mode switches to mode 4, which combines modes 2 and 3. This mode is sandwiched between the zones of mode 3 and

mode 2 on the middle-low part of the right hand side of the map, characterized by imperfections with large width θw 

and

moderate amplitude h / l . As limit point 1 continues to decrease with increasing θw 

and h / l , it may disappear leaving limit

point 2 as the only limit point. The buckling mode here switches to mode 3, which lies in the upper-right corner of the

map. In both domains of mode 3 and mode 4, the maximum pressure is attained at limit point 2, and has a reversed trend

with the maximum value increasing with both imperfection width and amplitude. The highest maximum pressure in these

modes ( p max / p C = 0 . 44 ) appears at the upper-right corner for the largest imperfection size ( θw 

= 24 ◦ and h/l = 0 . 5 ). 

Fig. 9 b shows a corresponding map of the normalized maximum volume change. In mode 1 and 2, V max / V 0 is small, typ-

ically below 0.07, indicating that here the slightly imperfect shells start to collapse in a configuration resembling its unde-

formed state. For shells in mode 3 and mode 4, the maximum volume change is attained at limit point 2 with larger values

ranging from V max / V 0 = 0 . 08 to V max / V 0 = 0 . 38 . In these domains, the maximum volume change increases with the imper-

fection width θw 

and decreases with the amplitude h / l . In addition, V max / V 0 is continuous across the boundary between

mode 2 and mode 3, but discontinuous across the boundary between modes 2 and 4. In the former case, the transition in

buckling mode is smooth and determined by the condition of volume change equality at limit points 1 and 2. In the latter

case, the discontinuous transition to mode 4 implies snap-through occurs prior to the maximum pressure with limit point

1 existing at a volume change lower than that of limit point 2. 

Another important insight into the snap-through response of imperfect shells can be gained by plotting ( Fig. 10 a and

b) the snap ratios of both pressure | p 1 − p 2 | / p 1 and the volume change | V 1 − V 2 | / V 1 , with terms defined in Fig 7 . In these

plots the domain of mode 4 is the only domain mapped, since for the others snap-through cannot take place prior to the

attainment of the maximum pressure. A reduction of the imperfection amplitude h / l increases the snap ratios | p 1 − p 2 | / p 1 
and | V 1 − V 2 | / V 1 , which translate into the attainment of larger ranges of pressure and volume change. Despite its minor

influence, θw 

has an impact on the snap-through response; if θw 

becomes too small, the capacity to snap-through prior to

the attainment of the maximum pressure is lost and the shell may enters the domain of mode 1 or mode 2. 
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To further characterize the competition between limit points 1 and 2 in mode 4, we compare the values of their pressure

( Fig. 10 c) and volume change ( Fig. 10 d). The change in the snap-through pressure with respect to reduced values of the

defect amplitude h / l and width θw 

is shown in Fig. 10 c. Here smaller values make p 1 at limit point 1 approach the maximum

pressure p max at limit point 2, a condition that describes the points on the lower bound of the mode 4 domain. A further

decrease of h / l and θw 

make the shell transition to failure mode 2, i.e. the pressure at limit point 1 becomes higher than that

of limit point 2 and catastrophic collapse occurs with snap-through. A similar comparison between limit points attributes

is shown in Fig. 10 d for the volume change. Here, for all combinations of h / l and θw 

in mode 4, the volume change at limit

point 1 is well below that at limit point 2 ( V 1 / V max ≤ 0.45), a condition that corresponds to the jump in the maximum

volume change V max / V 0 ( Fig. 9 b) from mode 2 to mode 4. We also find that the difference in volume change between the

limit points reduces with increasing imperfection amplitude h / l and decreasing width θw 

until the point where mode 2

and mode 3 tend to take place at the identical value of volume change. This observation agrees with the discontinuity in

V max / V 0 shown in Fig. 9 b, where at the boundary between mode 2 and mode 3 (left-hand side) the discontinuity in V max / V 0

diminishes for large imperfection amplitude h / l and small width θw 

. 

4.2.2. Sensitivity to meridional location of imperfection and radius to thickness ratio of shell 

Complementary to the sensitivity plots of the previous section, here we map the role of the other geometric parameters

of the imperfect shell, i.e. the defect meridional angle ranging from θm 

= 30 ° to 70 °, and the radius to thickness ratio ranging

from R/t = 20 to 150. This time the prescribed quantities are the angular width ( θw 

= 20 °) and the amplitude ( h/l = 0.2) of

the defect. 

Fig. 11 a depicts the competition between failure modes for varying values of the meridional angle θm 

and radius to

thickness ratio R / t . Since in this case sizeable values of h / l and θw 

are assumed, snap-through buckling occurs at a pressure

much lower than the theoretical bifurcation pressure of perfect shells. As a result, the domain of mode 1 recedes in the

map, and only failure mode 2 emerges for small θm 

and R / t , with the highest maximum pressure p max / p C obtained at point

A. The maximum pressure p max / p C is attained with limit point 1 and decreases with both the meridional angle θm 

and

the radius to thickness ratio R / t . As R / t increases, a switch from failure mode 2 to mode 4 occurs at the boundary of the

domains representing the range of R / t values that enable limit point 1 to equal limit point 2. On the other hand, for mode 3

to appear, θm 

should assume large values. For both mode 3 and mode 4, there is a minor change in the maximum pressure

for increasing values of R / t and θm 

. 

Fig. 11 b shows the maximum volume change V max / V 0 for each buckling mode. Mode 2 features a low maximum volume

change, typically below 0.17, meaning that the shell collapses immediately without departing much from its undeformed

state. Similar to Fig. 9 b, a jump in the maximum volume change is found between mode 2 and mode 4, caused by the

difference in volume change between the limit points. For both mode 3 and mode 4, the maximum volume change V max / V 0

is attained at limit point 2, which decreases monotonically with the meridional angle θm 

but it is insensitive to the radius

to thickness ratio R / t . The highest maximum volume change of V max / V 0 = 0 . 52 appears in mode 4 for a meridional angle at

its lower bound ( θm 

= 30 ◦). 

Similarly to Fig. 10 , Fig. 12 depicts the snap-through landscape prior to the attainment of the maximum pressure in

mode 4. The snap ratios | p 1 − p 2 | / p 1 and | V 1 − V 2 | / V 1 are plotted for varying values of θm 

and R / t , showing the dominant

role of the meridional angle θm 

as opposed to that of R / t ; the larger the meridional angle, the smaller the snap ratios. This

observation points to the choice of a low meridional angle θm 

to attain more sizable and exploitable variation in pressure

and volume change. On the other hand, the radius to thickness ratio R / t has minor influence on the snap ratios, yet a very

small R / t is still capable of switching mode 4 into mode 2. 

Fig. 12 c and d show the buckling mode competition between the limit points of domain 4. The former is a plot of

p 1 / p max , the ratio of the snap-through pressure at limit point 1 over the maximum pressure at limit point 2. The latter

is the corresponding plot for V 1 / V max . p 1 / p max increases with the decrease of both the meridional angle and the radius to

thickness ratio, with a value close to unity at the boundary between the domains of mode 2 and mode 4. With further

decrease in θm 

and R / t , the pressure at limit point 1 overcomes that at limit point 2, hence resembling the conditions of

mode 2. In Fig. 12 d, the ratio of volume change between the limit points V 1 / V max has a small value from 0.1 to 0.37, a result

indicating the large difference between limit points 1 and 2, the former being far below the latter. This explains the abrupt

change in the maximum volume change V max / V 0 observed in Fig. 11 b at the boundary between mode 2 and 4. In addition,

the value of V 1 / V max increases with θm 

and decreases with R / t , a trend that indicates the occurrence of the limit points at

identical values of the volume change, as further corroborated in Fig. 11 b for large θm 

and small R / t . 

In summary, the sensitivity investigation carried out above provides valuable insights into the competition between the

four buckling modes. The snap ratios quantify the variations in pressure and volume change caused by snap-through buck-

ling at limit point 1, while the ratio of snap-through pressure over the maximum pressure and its counterpart in volume

change allows to assess the difference in pressure and volume change between limit points 1 and 2. With these metrics it

is possible to characterize the four domains. Bifurcation (mode 1) is triggered by small-sized imperfections and provides the

highest maximum pressure. However, since an extremely small volume change leads to bifurcation, the collapse is sudden

and spontaneous with no warning of departure from the undeformed shape; the shell here exhausts its capacity to provide

further resistance to deformation. As the imperfection increases in size, however, the snap-through modes (2, 3, 4) become

dominant, thereby providing additional resistance before the attainment of the maximum pressure. Harnessing defect lo-

cation and size enables to channel the buckling mode and, as needed by the application, the transition between domains,
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Fig. 11. Role of the meridional angle θm and the radius to thickness ratio R / t on (a) the normalized maximum pressure and (b) the normalized volume 

change at the maximum pressure. 

 

 

 

 

 

 

 

 

escaping mode 1 to access mode 2 and mode 3, each corresponding to a maximum pressure value attained at either limit

point 1 (mode 2), or at limit point 2 (mode 3). Mode 4 combines mode 2 and mode 3 and represents the failure mechanism

for which the pressure at limit point 1 is below that of limit point 2. 

On the limitations of the sensitivity study here presented, we recall that our numerical analysis can only predict axisym-

metric deformations. Peaks of pressure caused by non-axisymmetric modes, such as those in Fig. 6 b, cannot be captured,

but these peaks should be accounted for, should the application require it. Yet again, the choice of focusing in this sensi-

tivity study on the axisymmetric case rather than the non-axisymmetric one is motivated by the minor discrepancy (3.6%)

between their maximum pressure. We also recall that for hemispherical shells, the bifurcation pressure can be significantly

‘knocked down’ by as-manufactured imperfections, which were not considered here. Their impact on the failure mode, how-

ever, would be apparent in the mode 1 domain, which would fill a larger area. 
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Fig. 12. Role of meridional angle θm and radius to thickness ratio R / t on snap-through properties. (a) and (b) Snap ratios of pressure and volume change. 

(c) Ratio of snap-through pressure over maximum pressure. (d) Ratio of the snap-through volume change over maximum volume change. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Concluding remarks 

This paper has investigated the impact of a large axisymmetric imperfection on the buckling response of a thin elas-

tic shell subject to uniform external pressure. Our shell theory formulation employs exact stretching and bending strain

measures as well as live pressure loading, and can predict buckling for imperfect shells with uniform thickness. For shells

of non-uniform thickness, results from experiments and numerical solutions are in quantitative agreement. A number of

findings have emerged from the results. 

First, a large axisymmetric imperfection can cause the shell response to depart from bifurcation buckling, i.e. the classical

dimple-like shape of perfect shells typically triggered by a tiny change in volume. Integrating a large axisymmetric defect

into the shell geometry can localize the deformation at the site of the imperfection, which causes snap-through followed

by an increase in the post-buckling pressure until the attainment of the maximum pressure. The benefit here is twofold.

The maximum achievable volume can reach as high as 0.4, and the maximum attainable pressure is reduced only by 66%

from the theoretical buckling pressure of an ideal perfect shell, as opposed to the 90% drop reported in the experimental

measurements for as-manufactured perfect shells in the literature. 

Second, the buckling response of the imperfect shell can be approximated with an axisymmetric mode. The symmet-

ric breaking of deformation only occurs during the snap-through buckling prior to the attainment of maximum pressure,

causing minor (below 4%) deviation in the maximum pressure. This result suggests that the axisymmetric deformation can

provide a sufficient level of approximation for shell design. 

Third, a sensitivity study on imperfections of varying size and location along with shell radius to thickness ratio has

unveiled a number of insights into the buckling landscape of imperfect elastic shells. 

• Buckling modes. Four modes have been identified for an imperfect shell with axisymmetric defect: bifurcation insta-

bility caused by small-sized imperfections, and three snap-through responses yielded by large-sized imperfections. Their

domains have been mapped into charts that show their boundaries and buckling mode competition over a range of
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combinations of their defect descriptors (defect amplitude h / l , angular width θw 

, and meridional angle θm 

) and shell

geometry (radius to thickness ratio R / t ); 
• Attainable maximum pressure. Defect size and location as well as shell radius to thickness ratio can be harnessed to

modify the normalized maximum pressure over a large range of values. The bifurcation mode (mode 1), which resembles

the response of a perfect shell, yields the highest normalized maximum pressure ranging from p max / p c = 0 . 78 to 0.91.

The snap-through modes (modes 2, 3, and 4) provide a wide range of maximum pressure from p max / p C = 0 . 21 to 0.81.

Despite the reduction in maximum pressure, the imperfect shell can still attain values comparable to those measured in

literature for as-manufactured perfect shells. 
• Attainable maximum volume change. Similarly to the maximum pressure, the normalized maximum volume change

can also be increased by harnessing the defect geometry and shell radius to thickness ratio. In particular, 
V / V 0 for

mode 1 remains low (2%) and close to the value for a perfect shell (below 1%), whereas for the snap-through modes 2,

3, and 4, V max / V 0 increases substantially up to 17%, 31%, and 52% respectively. 
• Competition of snap-through buckling modes . Imperfection amplitude h / l and meridional angle θm 

are the most influ-

ential parameters that govern snap-through buckling in mode 4. By harnessing these parameters within the geometric

ranges here investigated, the snap ratio of pressure can span the interval from 0 to 0.61, and the snap ratio of volume

change can range between 0.12 and 3.35. These ranges offer a sizeable snap-through tunability that could be exploited

for the design of soft robots and morphing metamaterials. 
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Appendix A. Approximation of the non-uniform thickness profile of the as-manufactured shell 

In Fig. A.1 a, we partitioned the thickness profile of the shell into eight sections (i)-(viii) so as to linearly approximate

the thickness profile in each section. The acquired data was then used to generate the corresponding FEM model ( Fig. A.1 b).

The nodal thickness profile in the FEM model was expressed using a cylindrical coordinate system ( ρ , ϕ, z ) whose origin is

located at the center of the spherical shell. As such, the thickness in each of the eight sections is: 

t i = 0 . 25 

t ii = ( ρ − 10 . 15 ) / 2 . 59 ∗ 0 . 37 + 0 . 25 

t iii = −( ρ − 12 . 74 ) / 1 . 13 ∗ 0 . 50 + 0 . 62 

t i v = 0 . 25 − ( z − 14 . 51 ) / 5 . 95 ∗ 0 . 13 

t v = ( ρ − 16 . 22 ) / 3 . 59 ∗ 0 . 63 + 0 . 25 

t v i = −( ρ − 19 . 82 ) / 1 . 45 ∗ 0 . 80 + 0 . 88 

t v ii = 0 . 20 − ( z − 11 . 20 ) / 1 . 40 ∗ 0 . 12 

t v iii = 0 . 20 

(A.1) 

where ρ is the radial distance from the z -axis, ϕ is the azimuth angle, and z is the height from the plane of equator. 

Appendix B. Tensor analysis of the middle surface of a shell 

Here we present the main equations of the exact shell theory formulation given by Niordson (1985) . With a focus on a

shell of an arbitrary shape, the parametric relations f i between the Cartesian coordinates x i and the coordinates ( u 1 , u 2 ) on

the middle surface of the shell can be written as: 

x i = f i 
(
u 

1 , u 

2 
)

(B.1) 

The first fundamental tensors (metric or fundamental tensor) of the undeformed and the deformed coordinated systems

are 

a αβ = f i ,α f i 
,β (B.2) 
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Fig. A.1. Partition of (a) the thickness profile and (b) the FEM model. 

 

 

 

 

 

 

and 

a ∗αβ = 

(
f i + ̄v i 

)
,α

(
f i + ̄v i 

)
,β

(B.3)

where v̄ i is the displacement in the Cartesian coordinates. An asterisk marks quantities in the deformed state. The second

fundamental tensors (curvature tensor) of the undeformed and the deformed coordinated systems are 

d αβ = X 

i f i 
,αβ (B.4)

and 

d ∗
αβ

= 

(
a 
a ∗

) 1 
2 
[(

1 + p ε 
ε + 

p 
a 

)(
d αβ + D βq α + d 

γ
β

p αγ

)
−
(
q ρ + ε ρβε γ δq γ p δβ

)(
D β p αρ − d βρq α

)] (B.5)

where X 

i is a unit vector normal to the middle surface, p αβ = D αv β − d αβw is the two-dimensional displacement gradient,

D α is the symbol for covariant derivative, q α = d αβv β + w ,α is the rotation perpendicular to the normal of the surface, and
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ɛ αβ is the alternating tensor. The quantities without indices are given by the determinants: 

a = det 
(
a αβ

)
= a 11 a 22 − a 12 a 21 

a ∗ = det 
(
a ∗αβ

)
= a ∗11 a 

∗
22 − a ∗12 a 

∗
21 

p = det 
(

p αβ

)
= p 11 p 22 − p 12 p 21 

(B.6) 

The rotation around the normal of the middle surface is 

� = 

1 

2 

ε αβ p αβ (B.7) 

The strain tensor is defined by 

E αβ = 

1 

2 

(
a ∗αβ − a αβ

)
= 

1 

2 

(
p αβ + p αβ + p α

λ p αλ + q αq β
)

(B.8) 

where the factor 1 
2 is employed to make the definition of strain measure conform with the Lagrangian stretching strain. 

The change in curvature is 

K αβ = d ∗αβ − d αβ = 

(
a 

a ∗

) 1 
2 
[ (

1 + p ε 
ε + 

p 

a 

)(
d αβ + D βq α + d 

γ
β

p αγ

)
−
(
q ρ + ε ρβε γ δq γ p δβ

)(
D β p αρ − d βρq α

)]
− d αβ

(B.9) 

Since the stretching strains are small in the current study, we assume a/a ∗ ≈ 1 in the expression of the curvature change

(Eq. (B.9)). This approximation is consistent with previous equations in the literature ( Hutchinson (2016) ). 

According to Koiter and van der Heijden (2009) , the volume change is 


V = 

∫ 
S 

{ 

w + 

1 

2 

( w p α
α − q αu 

α) + 

1 

6 

[
w 

(
p α

α p β
β − p α

β p α
β
)

− 2 u 

α
(
q β p α

β − q α p β
β
)]} 

d S (B.10) 

Appendix C. Solution method for axisymmetric deformations with the shell formulation 

We solved the axisymmetric problem of the imperfect shell based on the shell formulation in Section 3.2 with a numer-

ical method ( Hutchinson (2016) ). The hemispherical shell with as-designed large imperfection is divided into three parts:

the imperfection, and the parts above and below the imperfection. These parts are connected by imposing the following

continuity condition on displacement and rotation for axisymmetric deformation: 

u 

+ 
1 

= u 

−
1 

u 

+ 
2 = u 

−
2 

ϕ 

+ 
θ

= ϕ 

−
θ

(C.1) 

where u 1 is the displacement along the horizontal direction, u 2 is the displacement along the vertical direction, ϕθ is the

rotation, and the signs + and – indicate the two sides at a boundary. 

Within each domain, the shell is discretized into N sections of equal length. We assign displacements tangent and normal

to the middle surface, u θ and w , as 6 N + 6 unknowns to the nodes. An additional unknown is the external pressure p . The

6 N + 7 unknowns form a vector λ of unknown displacements and pressure. Within each section, we use the shell theory for

axisymmetric deformations presented in Section 3.2 to calculate the average of the potential energy density. Then, the total

potential energy is obtained by integrating the potential energy density in each section. The integrations and derivatives are

computed numerically. 

The solution is steered with the pole displacement w pole . For each step, we prescribe the displacement at the upper pole

w pole . Then, we update the increment of the vector of unknowns 
λ with Newton iterations to find a new equilibrium state


λ = −H 

−1 G (C.2) 

where G is the gradient of the total potential energy, and H 

−1 is the inverse of the hessian matrix. For each step, the

Newton iteration is repeated until the solution converges. While this method is straightforward to code as mentioned by

Hutchinson (2016) , it posed a limitation. When the number of unknowns is large, the computation of the hessian and its

inverse becomes too expensive and reaching convergence in the process of finding a solution might be challenging. 

Appendix D. Convergence study for theoretical and FEM models 

We first performed a set of convergence studies for both the axisymmetric solution based on the shell formulation and

the FEM simulations. The geometry parameters of the shell for both cases are listed in Table 1 ( Section 3.1.1 ). The conver-

gence study is performed by assuming a uniform thickness profile with a radius to thickness ratio R/t = 123 . 6 . 

Fig. D.1 shows the convergence study for the axisymmetric solution based on shell theory. By increasing the number

of nodes, the solution gradually approaches the curve of the FEM simulation for axisymmetric deformations. The results of
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Fig. D.1. Convergence study of the axisymmetric solution based on shell theory. The green curve with SAX1 elements for axisymmetric deformation is 

shown as a reference. 

Fig. D.2. Convergence study of FEM simulations with SAX1 axisymmetric line elements 

 

 

 

 

 

 

 

 

 

 

shell theory match well with the FEM results when 270 nodes are used in the numerical solution. Any further increase in

the number of nodes makes the solution difficult to converge. Thus in this work, we use 270 nodes. 

Fig. D.2 shows the results for FEM simulations with SAX1 axisymmetric line elements. The simulation with 79 elements

converges to the simulation employing 161 elements. Hence in this work we select an average of 80 elements. 

Fig. D.3 shows the results of the convergence study for FEM simulations with S4R and S3R shell elements. The simulation

result with 10288 elements converges to that with 15220 elements. Hence in this work, we use around 10 0 0 0 elements for

the FEM simulations with shell elements. 

Appendix E. The role of clamped support on the development of mode 4 

Here we aim at understanding the role of clamping the shell equator to trigger mode 4, i.e. snap-through buckling

combining mode 2 and 3. A set of axisymmetric simulations have been performed to compare the buckling responses of

two cases: a full sphere and a hemispherical shell, both with a prescribed imperfection. Fig. E.1 (below) shows the results.

As observed, their normalized pressure curves and shell deformations show no difference for almost the entire response

(stages (i) to (iii)), indicating that the influence of the clamping at the equator is not sizeable for shell buckling. This shows

that mode 4 does appear also for the full sphere and it is not caused by clamping the equator. The difference between a full
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Fig. D.3. Convergence study of FEM simulations with S4R and S3R shell elements 

Fig. E.1. Responses of full and hemispherical shells with prescribed imperfection ( h/l = 0 . 2 , θw = 20 ◦ , R/t = 124 , and θm = 50 ◦). (a) Pressure versus change 

in volume normalized by the negative of the volume within the middle surface of the undeformed hemisphere, V 0 = −2 πR 3 / 3 . (b) Cross-section view of 

deformed modes (mode 4). 

 

 

 

 

 

sphere and a hemisphere becomes significant only when the deformation zone reaches the equator (stage (iv)), an instance

that shows that clamping the equator does constrain shell deformation. At this stage, collapse appears as shell eversion, a

condition not examined in this work. 

Appendix F. Cascade of snap through buckling in a shell with multiple imperfections 

A cascade of snap through buckling can occur for certain combinations of defects. Fig. F.1 shows an example where two

imperfections are examined in a shell with radius of 25 mm and radius to thickness ratio of 124 (Table F.1 lists the geometric

parameters). The result shows that the shell undergoes twice snap-through buckling with mode 2, before attaining the

maximum pressure with mode 3 ( Table R.1 ). 
Table. R.1 

Geometric parameters of the imperfections. 

h / t θw ( °) θm ( °) 

Upper imperfection 0.21 15 47 

Lower imperfection 0.26 15 24 
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Fig. F.1. Responses of shell with two imperfections. (a) Pressure versus change in volume normalized by the negative of the volume within the middle 

surface of the undeformed hemisphere, V 0 = −2 πR 3 / 3 . (b) Cross-section view of deformed modes (mode 4). 
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