Topography optimization of 3D-printed structurally porous cage for acetabular reinforcement in total hip arthroplasty

Ahmed Moussa a,1, Shakurur Rahman a,1, Manman Xu a, Michael Tanzer b, Damiano Pasini a,∗

a Department of Mechanical Engineering, McGill University, Montreal, Quebec, H3A0C3, Canada
b Division of Orthopaedics, Department of Surgery, McGill University, Jo Miller Orthopaedic Research Laboratory, Montreal, Quebec, H3G1A4, Canada

ARTICLE INFO

Keywords:
Pelvis cage
Porous load-bearing biomaterials
Homogenization
Topology optimization
Additive manufacturing
Interfacial stress
Micromotion

ABSTRACT

Aseptic loosening and mechanical failure of acetabular reinforcement components are among the main causes of their reduced service life. Current acetabular implants typically feature a structural solid layer that provides load bearing capacity, coated with a foam of uniform porosity to reduce stress shielding and implant loosening. This paper presents an alternative concept for a 3D printed cage that consists of a multifunctional fully porous layer with graded attributes that integrate both structural function and bone in-growth properties. The design comprises a hemispherical cup affixed to a superior flange with architecture featuring an optimally graded porosity. The methodology here presented combines an upsampling mechanics scheme of lattice materials with density-based topology optimization, and includes additive manufacturing constraints and bone ingrowth requirements in the problem formulation. The numerical results indicate a 21.4% reduction in the maximum contact stress on the bone surface, and a 26% decrease in the bone-implant interface peak micromotion, values that are indicative of enhanced bone ingrowth and implant long-term stability.

1. Introduction

Acetabular reinforcement components are essential in restoring proper biomechanical functioning of the hip, following Total Hip Arthroplasty (THA) (Ma et al., 2013). The complexity of acetabular reinforcements amplifies in case of severe bone defects (Paprosky et al., 1994), sub-par bone quality on the bone-implant interface (Ma et al., 2013; Perka and Ludwig, 2001) or considerable proportions of bone grafts on the acetabulum (Pollock and Whiteside, 1992). Several approaches have been proposed for acetabular revisions, such as the use of metallic acetabular rings and cages (Winter et al., 2001; Kawanabe et al., 2007), either cemented (Hirst et al., 1987; Mendes et al., 1984) or cementless (Paprosky et al., 1994; Padgett et al., 1993; Paprosky and Magnus, 1994; Rosson and Schatzker, 1992); a high hip center positioning of the implants (Dearborn and Harris, 1999; Schutzer and Harris, 1994); and the use of jumbo cups (Ito et al., 2003; Hendricks and Harris, 2006; Patel et al., 2003) or triflange cups (Moore et al., 2018). An alternative to these approaches is the Burch-Schneider (BS) reinforcement cage, introduced in the mid-1970s with so far a notable short-term to mid-term success (Hoell et al., 2012). Its structural characteristics provide a large contact area with the pelvic bone, thereby distributing the concentrated load from the femoral head (Hoell et al., 2012). Aseptic loosening, however, has been observed along with mechanical failure in 10.5% of patients over a five-twenty one years’ follow-up (Symeonides et al., 2009). Other problems of BS cage have been reported for both septic (3.2%) and aseptic (4.8%) loosening after a mean of 5.45 years (Perka and Ludwig, 2001).

Acetabular cages have been conventionally made of fully-solid biocompatible material, such as titanium alloy (Ti6Al4V) (Dall’Ava et al., 2019), which is typically much stiffer than the host bone tissue. The mismatch in elastic properties between implant and bone tissue results in stress shielding, with the former carrying a significant proportion of the applied load and the latter lacking the adequate mechanical stimuli for its remodeling. This leads to bone resorption, followed by implant loosening and subsequent failure (Huiskes et al., 1992; Katoozian et al., 2001). To circumvent stress shielding, flexible composite implants have been used, but their success rate is very low mainly due to micromotion leading to bone-implant interface debonding (Huiskes et al., 1992; Katoozian et al., 2001). Other strategies employ the use of a porous coating not only to facilitate bone ingrowth, but also to improve biological fixation and reduce later-stage micromotion (Jasty et al., 1997; Levine, 2008; Bose et al., 2013). These porous coatings,
however, have uniform porosity and very low mechanical strength due to their stochastic arrangement of compliant unit cells. On the contrary, porous architectured biomaterials with load bearing unit cells have the advantage of providing high tunability of their morphological parameters (cell topology, nodal connectivity and porosity), so as to enhance mechanical properties and biomechanical performance (Arabnejad et al., 2016, 2017; Bobyn et al., 1980, 1999).

Architectured porous biomaterials can be designed to improve performance and functionality of current orthopaedic implants (Arabnejad et al., 2017; Arabnejad Khanoki and Pasini, 2012; Moussa et al., 2018; Rahimizadeh et al., 2018; Lin et al., 2004; Fraldi et al., 2010; Abbas et al., 2018; Al-Tamimi et al., 2017). Their unit cell topology along with its characteristic morphological parameters (e.g. pore size and shape) can be selected to realize an optimal combination of structural and functional properties, hence by-passing any trial-and-error approach (Dall’Ava et al., 2018). In addition, the distribution of their mechanical properties can be systematically tailored through structural optimization to generate complex architecture that can be built almost with no restrictions via additive manufacturing (AM), such as selective laser melting (SLM), selective laser sintering (SLS), or electron beam melting (EBM) (Wang et al., 2016; Murr et al., 2010; Sobral et al., 2011). In reality, however, AM poses manufacturing limits on architectured materials that are built with geometric features at the resolution limit of current technology, an outcome that can impact mechanical properties, bone ingrowth and other implant functions.

Current acetalabular implants in the market generally consists of a cup with a stochastic and periodic porous coating (Dall’Ava et al., 2019) that has no load bearing function. Their uniform porosity contributes minimally to the reduction of stress shielding and it gives no control over the stress levels and micromotion at the bone-implant interface. In contrast, minimizing stress levels would provide an ideal environment for the host bone healing and bone graft remodeling prior to bone ingrowth (Gross and Goodman, 2005; Kawanabe et al., 2011; Sembrano and Cheng, 2008); and lowering levels of micromotion at the early stage would directly contribute to bone ingrowth (Perona et al., 1992; Kienapfel et al., 1999).

This paper introduces the design of a cementless porous acetalabular reinforcement implant whose architecture is conceived to provide both load bearing capacity and bone ingrowth. Devised with the clinical guidance of an orthopedic surgeon for primary and revision hip surgeries, its macro-geometry consists of a hemispherical cup attached to a superior flange, characteristics that improve cage stability in the pelvic bone. A density-based topology optimization is used to tailor the elastic properties of its inner porous architecture via compliance minimization, which ensures the necessary stiffness and load bearing capacity required by an implant with thin depth. The method allows generating a graded porosity distribution that reduces bone-implant interface stress intensity and micromotion, the latter expected to reduce the probability of aseptic loosening in the long-term. Bone ingrowth and additive manufacturing constraints are systematically introduced in the problem formulation, as described in Section 2. Results of stress levels and micromotion are given in Section 3 and compared with those of two baselines, a fully-solid counterpart and another fully-porous one but with uniform porosity distribution. A discussion of the limitations of the current design follows, along with a set of recommendations for future improvements.

2. Methodology

Our goal here is to develop a 3D printed porous cementless acetabular reinforcement cage with tailored elastic modulus resulting in an optimally graded porosity distribution that can achieve a primary and secondary goal. The former is to provide load bearing capacity and sufficient bone ingrowth, and the latter is to reduce contact stress intensity and micromotion, two critical bottlenecks of current pelvis implants which are fully solid with uniform mechanical properties. The macro-geometry of our implant design consists of a perfectly hemispherical cup for the acetabulum and a flange that rests on the ilium of the pelvic bone. This distributes the load from the femoral head into a large surface area. The implant has screw holes on both the cup and the flange for stable fixation until bone ingrowth occurs. The numerical model here consists of an assembly of components: femoral head, liner, solid layer, fully-porous structural layer and the pelvic bone. The focus of this work is on the fully-porous layer. Topology optimization is used to generate a graded porosity distribution with tuned elastic properties, expressed as a function of relative density. Anatomical boundary conditions as well as clinical (both porosity and bone ingrowth) and additive manufacturing constraints are included in the problem formulation.

The combination of multi-scale mechanics and density-based topology optimization underlies the conceptual framework underpinning this work. While a methodology has been developed to design knee and vertebral implants addressing the specific clinical and structural requirements of their application (Moussa et al., 2018; Rahimizadeh et al., 2018), this work extends it to cope with the design of a load bearing pelvis cage which poses its own design requirements. The method allows to generate a structural porous implant that differs substantially from the fully solid cage implants currently available in the orthopedic market. Fig. 1 illustrates the steps summarized below:

- **Adoption of pelvic bone geometry and assignment of elastic properties.**
 1877 computed tomography (CT) scan images of a 38-year-old male are obtained from the Visible Human Project (VHP) database of the US National Library of Medicine. The three-dimensional (3D) model of the pelvis is created from the CT scans and assembled with 3D models of the implant, liner and femoral head for the numerical analysis. The Hounsfield Unit values (HU) of the CT scan voxels are used to assign elastic properties to the 3D model of the bone.

- **Choice of unit cell geometry.**
 An open cell, tetrahedron-based unit cell topology is used as the building block of the porous implant. Its topology is stretch-dominated; it offers load bearing capabilities and enables bone ingrowth (Arabnejad et al., 2016; Melancon et al., 2017). Asymptotic homogenization is used under the assumption of length scale separation between unit cell and implant geometry, to calculate the elastic constants of the unit cell as a function of its relative density (Hassani and Hinton, 1998; Hollister and Kikuchi, 1992; Khanoki and Pasini, 2013; Arabnejad and Pasini, 2013; Fang et al., 2005).

- **Finite Element Analysis (FEA).** An initial, uniform relative density distribution is assigned to the implant and prescribed loading and boundary conditions are applied to the 3D assembly. The applied load consists of the forces experienced by the pelvis during one-legged standing. Distributions of stress, strain, strain energy and displacement are obtained from the numerical results for the pelvis as well as the implant.

- **Topology Optimization.** Due to the very low thickness of the implant, the topology optimization is solved for minimum strain energy, to ensure the necessary load bearing capacity. The relative density ρ of each element is the design variable, which is updated by using the Method of Moving Asymptotes (MMA) (Svanberg, 1987). The unit cell homogenized properties and the nodal displacements of each mesh element are used to construct the global stiffness tensor. The gradient of the objective function is calculated by partially taking the derivatives of the stiffness tensor components with respect to the relative density. The compliance of the implant is minimized until an optimized distribution of relative density is achieved.

2.1. Numerical model

Data from 1877 computed tomography (CT) scan images of a 38-year-old male, weighing 80 kg, are used to create the three-dimensional (3D) model of the pelvic bone. The CT scan slice spacing is 1 mm and the pixel size in each image is 0.9375 mm. A semi-automatic
The bone tissue of the pelvis is heterogeneous, consisting of mainly cortical and cancellous bones, each corresponding to a specific HU in the CT scan data (Leung et al., 2009). The HU of each node is first assigned from the nearest CT sampling point. The HU of each element is then calculated by averaging the nodal HU values (Moussa et al., 2018; Peng et al., 2006). The apparent bone mineral density \(\rho_B \) of each element is thereafter determined from the corresponding HU values. From previous studies (Leung et al., 2009; Iqbal et al., 2019), the bone mineral density \(\rho_B \) of the pelvic bone, as a function of HU, can be shown as:

\[
\rho_B = 6.9141 \times 10^{-4} \times HU + 1.026716
\]

Subsequently, the elastic properties of each mesh element of the bone can be directly calculated from \(\rho_B \). The relation between elastic properties and BMD varies with anatomical position (Leung et al., 2009; Morgan et al., 2003). Assuming isotropic linear elastic properties, an empirical relationship is here adopted for the pelvic bone (Leung et al., 2009; Dalstra et al., 1993):

\[
E = 2017.3\rho_B^{0.46}
\]

where, \(E \) is the Young’s modulus in MPa and \(\rho_B \) is the bone mineral density in g/cm\(^3\); while, the Poisson’s ratio \(\nu \) has been selected to be 0.3. However, due to partial volume effect from reading HU values, the elastic properties of the surface elements, comprising the cortical bone only, are generally underestimated; hence, the Young’s modulus of the cortical bone elements are assumed constant at 17 GPa (Leung et al., 2009; Dalstra et al., 1995). This completes the material property assignment for the pelvic mesh elements, with the elastic modulus ranging from 6.49 GPa to 17 GPa and the Poisson’s ratio constant at 0.3.

\[\text{T}6\text{Al}4\text{V}\] is a titanium alloy (Dall Ava et al., 2019) with biocompatibility, desirable mechanical properties and corrosion resistance necessary for orthopedic implants. It is used here for the implant and the femoral head, whereas polyethylene is selected for the liner. Both materials are assumed isotropic. The material properties of heat-treated,
additively manufactured Ti6Al4V are E = 114 GPa and ν = 0.349 (Melancon et al., 2017). The elastic properties of polyethylene are E = 945 MPa and ν = 0.45. The choice of the material properties for Ti6Al4V further incorporates additive manufacturing considerations into the implant design.

As per the boundary conditions, the human pelvis is constrained by joints as well as a complex network of ligaments. Several simplifications are suggested in the literature (Hao et al., 2011); and, in this work, only the pubic symphysis and sacroiliac joint are constrained to be fixed in all degrees of freedom. Also, for the purpose of this study, the load is applied to the femoral head stem, inclined at 78 degrees of freedom. Also, for the purpose of this study, the load is applied through the femoral head stem, inclined at 78 with the horizontal/axial plane (Kawanabe et al., 2011). A safety factor of 2 is additionally used for the load to produce a more conservative design (Lin et al., 2004). This compressive load is applied through the femoral head stem, inclined at 78 with the horizontal/axial plane (Kawanabe et al., 2011). Finally, frictionless, bonded contact conditions are applied to the respective contact interfaces.

2.2. Homogenized material properties of the implant

A detailed finite element analysis of a fully-porous implant is computationally expensive, but it can be circumvented by assuming the implant to be a homogenized medium (Arabnejad et al., 2013). This enables the use of a unit cell as a representative volume element (RVE), the effective properties of which is ‘representative’ of the porous implant. The theory of asymptotic homogenization (AH) (Hollister and Kikuchi, 1992) is used to compute the effective elastic properties of the RVE, which can be used to assemble the global stiffness tensor of the implant. This homogenization approach has been widely used in previous studies for orthopedic implants (Arabnejad et al., 2017; Moussa et al., 2018; Rahimizadeh et al., 2018; Wang et al., 2018); hence, only a brief discussion is reported here.

By solving a problem formulated locally on the RVE, the effective stiffness tensor of the porous unit cell, \(E_{ijkl}^p \), can be calculated as (Hollister and Kikuchi, 1992):

\[
E_{ijkl}^p = \frac{1}{|Y|} \int_{Y} E_{ijkl} M_{ijkl} dY
\]

Here, \(|Y|\) is the total unit cell volume, including the void space; \(Y\) corresponds to the solid material of the unit cell only and \(E_{ijkl} \) is the local stiffness tensor, the value of which spans from zero to the bulk material elastic tensor itself, corresponding to the voids and the solid materials respectively. Additionally, a local structure tensor, \(M_{ijkl} \), is defined that relates the local macro-strain, \(\varepsilon_{ijkl}^m \), to the local micro-strain, \(\varepsilon_{ijkl} \) as follows (Hollister and Kikuchi, 1992):

\[
\varepsilon_{ijkl}^m = M_{ijkl} \varepsilon_{ijkl}^p
\]

\[
M_{ijkl} = \frac{1}{2} (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) - \varepsilon_{ijkl}^* W
\]

Here, \(\delta_{ij}\) is the Kronecker delta, and \(\varepsilon_{ijkl}^* W\) is the microscopic strain corresponding to the component \(kl\) of the macroscopic stain. Assuming small deformation and linear elasticity, \(\varepsilon_{ijkl}^* W\) is calculated by solving a problem formulated locally on the RVE as (Hollister and Kikuchi, 1992):

\[
\int_{Y} E_{ijkl} \varepsilon_{ijkl}^p \varepsilon_{ijkl}^m (u) dY = \int_{Y} E_{ijkl}^p \varepsilon_{ijkl}^p (\varepsilon_{ijkl}^m) dY
\]

with, \(\varepsilon_{ijkl}^m (\varepsilon_{ijkl}^p)\) as the virtual strain.

In three dimensions, six arbitrary unit strains are required to construct \(M_{ijkl}\). By applying periodic boundary conditions on the edges of the RVE, the periodicity of the strain field and equal nodal displacements on the opposite edges are ensured (Hollister and Kikuchi, 1992; Hassani, 1996). With \(M_{ijkl}\) being computed, the homogenized stiffness tensor of the unit cell, \(E_{ijkl}^p\), is calculated using (3) (Arabnejad et al., 2017; Arabnejad Khanoki and Pasini, 2012; Hollister and Kikuchi, 1992).

This procedure is used to calculate the effective elastic properties of the tetrahedron-based unit cell at given values of relative density. The tetrahedron-based unit cell has six independent elastic constants expressed in terms of Young’s modulus, shear modulus and Poisson’s ratio (Melancon et al., 2017). The effective elastic moduli normalized with the corresponding properties of the bulk solid is plotted as a function of relative density \(\rho\) in Fig. 2.

2.3. Topology optimization

Density-based topology optimization is used to optimize material distribution within the porous domain of the implant (Bendsoe and Sigmund, 2003). Asymptotic homogenization is used to express the elastic properties of the porous implant as a function of relative density, as described in Section 2.2. The allowable relative density range is constrained, subjected to bone ingrowth and additive manufacturing requirements, and the elastic properties are optimized to enhance the functional performance of the implant.

2.3.1. Bone ingrowth and manufacturing constraints

To ensure clinical functionality and manufacturability via additive manufacturing, the porous domain of the implant must be optimized, subjected to bone ingrowth and manufacturing constraints. A previous study characterized the interplay between bone ingrowth and manufacturing constraints, which effectively translates into a constraint on the allowable range of relative densities of the unit cell (Melancon et al., 2017). Two unit cell topologies were examined, tetrahedron-based and octet-truss, because of their high-strength topology stemming from their stretch-dominated behaviour. For bone ingrowth to occur, the pore size of the unit cell has to be between 50 \(\mu\)m and 650 \(\mu\)m and the porosity is required to be over 50%; while for manufacturability, the minimum allowable strut thickness is 200 \(\mu\)m. This translates into an allowable design space with upper and lower bounds on the relative density for a given choice of unit cell size, relations that account for both bone ingrowth and manufacturing constraints. Validated through a campaign of experiments, these design maps are specific to a given unit cell topology, and provide knockdown factors that guide the elastic and yield strength design of high-strength porous biomaterials (Arabnejad et al., 2016; Melancon et al., 2017). For this work, a tetrahedron-based unit cell of 1.5 mm is chosen. Within the admissible design space that it results, a relative density range of 0.3–0.5 is selected as the design variable.
range for the optimization framework, and the mean value of 0.4 is selected as the volume fraction constraint to allow for the generation of optimum gradients in porosity. This results in approximately 89% decrease in Young’s modulus (Fig. 2) from 114 GPa (fully solid) to 12.54 GPa (fully porous).

2.3.2. Problem formulation and sensitivity analysis

Topology optimization is solved for minimum compliance to ensure sufficient load bearing capacity of the porous implant with very low thickness. The numerical scheme tailors the elastic properties of the implant and, thereby, reduces the stiffness mismatch with the bone. This lowers the stress levels and micromotion at the bone-implant interface and, thereby, reduces the stiffness mismatch with the bone. This sufficient load bearing capacity of the porous implant with very low relative density can be expressed as:

\[
\rho = \frac{\text{Base solid volume}}{\text{Total volume}}
\]

where, \(\rho \) is the relative density of the implant, \(F \) is the global force vector applied to the implant, \(U(\rho) \) is the global nodal displacement vector, \(K \) is the global stiffness matrix of the implant, \(\rho \) is the vector of relative densities, \(\rho_e \) is the relative density of each element \(e \), \(\nu^\text{v} \) is the prescribed volume fraction of solid material, \(\nu_e \) is the volume of each element and \(N \) is the total number of elements. Here, \(\rho_{\text{min}} = 0.3 \) and \(\rho_{\text{max}} = 0.5 \), while \(V^\text{v} \) is selected to be 0.4 (refer to Section 2.3.1).

The density filter (Bruns and Tortorelli, 2001) is implemented here, as it helps avoid numerical instabilities and mesh dependency, and also ensures manufacturability:

\[
\bar{\rho}_e = \frac{\sum_i \nu_i w(x_i) \rho_i}{\sum_i w(x_i) \nu_i}
\]

Here, \(\bar{\rho}_e \) is the filtered relative density of element \(e \), \(\nu_i \) is the volume of element \(i \), \(K_e \) corresponds to the neighborhood elements of element \(e \) and \(w(x_i) \) is a weighting function defined as:

\[
w(x_i) = R - ||xi - x_e||
\]

where, \(R \) is the specified filter radius, \(x_i \) and \(x_e \) are the coordinates of the center of elements \(i \) and \(e \) respectively.

Since the sensitivity calculations of minimum compliance topology optimization have been comprehensively reported in the literature (Moussa et al., 2018; Rahimizadeh et al., 2018), it is only briefly discussed here. The derivative of the objective function can be calculated as:

\[
\frac{\partial C(\rho)}{\partial \rho_e} = \sum_{i=1}^{N_e} \frac{\partial C(\rho)}{\partial \rho_i} \frac{\partial \rho_i}{\partial \rho_e}
\]

(10)

where, the sensitivity of the filtered relative density with respect to the design variable, \((\partial \rho_i/\partial \rho_e) \) can be found as:

\[
\frac{\partial \rho_i}{\partial \rho_e} = \frac{w(x_i)\nu_i}{\sum_j w(x_j)\nu_j}
\]

(11)

The derivative of the objective function with respect to the filtered relative density can be expressed as:

\[
\frac{\partial C(\rho)}{\partial \rho_e} = -\frac{1}{2} U(\rho) \frac{\partial K(\rho)}{\partial \rho_e} U(\rho)
\]

(12)

Here, \(\frac{\partial K(\rho)}{\partial \rho_e} \) is the derivative of the homogenized stiffness matrix with respect to the filtered density, which is found for a ten-node quadratic tetrahedral solid element in the rst natural coordinate system with five Gauss points as (Moussa et al., 2018; Rahimizadeh et al., 2018):

\[
\frac{\partial K(\rho)}{\partial \rho_e} = \sum_k w_k B'_e(I_1, \ldots, I_5) \frac{\partial F'(\rho)}{\partial \rho_e} D_{s} \left[B_{e,rst}(I_1, \ldots, I_5) \right] \]

(13)

where, \(B \) is the strain-displacement matrix, \(F' \) is the homogenized elastic tensor of element \(e \) as a function of its relative density, \(J \) is the Jacobian matrix and \(w_k \) is the weight of the Gauss points \(k \).

The sensitivity of the base solid volume of the porous implant \(V(\rho) \) with respect to the design variable \(\rho \) can be found as:

\[
\frac{\partial V(\rho)}{\partial \rho_e} = \sum_{i=1}^{N_e} \frac{\partial V(\rho)}{\partial \rho_i} \frac{\partial \rho_i}{\partial \rho_e}
\]

(14)

where,

\[
\frac{\partial V(\rho)}{\partial \rho_i} = \nu_i
\]

(15)

with, \(\nu_i \) as the volume of the base solid material used in the porous implant.

The sensitivity analysis provides the search direction towards the optimized solution, which is used in the Method of Moving Asymptote (MMA) (Svanberg, 1987) algorithm to update the design variables until convergence is reached.

3. Results and discussion

The methodology explained in Section 2 is applied to design the acetabular cage with a functionally graded fully-porous side on the region of contact with the bone tissue. We start with a description of the optimized architecture and then we discuss the pelvis cage performance, mainly the implant stiffness, which is the objective function of the optimization framework, the contact stress distribution on the bone surface, the micromotion at the bone-implant interface and the structural capacity of the cage to resist the applied loads. Comparisons with results from a corresponding uniform porosity implant and a baseline fully-solid implant are given to assess the performance gain of the implant presented in this work.

Fig. 3 shows the optimized relative density distribution of the functionally graded structurally porous layer of the implant, along with the corresponding porous cage obtained by mapping the density distribution into a tetrahedron-based lattice micro-architecture. The lattice generation is done via an in-house mapping script developed for Rhinoceros 3D (Robert McNeel & Associates, Seattle, Washington, USA) (Wang et al., 2017).

For comparison of the objective function values (Table 1), we calculate the strain energy of the porous optimized implant and a uniform porosity implant for the prescribed value of volume fraction of 0.4 and given loading condition. A lower strain energy implies lower compliance, i.e. higher stiffness; the porous optimized implant shows lower values of the total, average and maximum strain energy compared to its porous uniform counterpart. The same conclusion is also drawn from strain energy density (SED) calculation, with the porous optimized implant showing a lower SED under the same loading condition, which implies higher stiffness than the porous uniform implant. This highlights the benefit of using topology optimization for this application, as a higher stiffness is desired to ensure the necessary load bearing capacity for a reinforcement cage that is very thin. The porous optimized implant also provides lower contact stress and micromotion; such a gain in the
clinical metrics over the uniform porosity has also been reported in a previous work on a knee implant (Rahimizadeh et al., 2018). The rest of this section focuses on the comparison of the porous optimized implant with its fully-solid counterpart, as it is representative of the currently available implant in the market. Details on the importance of the respective clinical metrics are provided, along with a comprehensive comparison between the performance of the two implants.

Lower stress levels at the bone-implant interface are essential to provide initial implant stability and reduce the risk of interface debonding in the long-term. Additionally, in case of bone deficiency requiring bone grafts, lower stress levels on the acetabulum allow better maturation and incorporation of bone grafts and aid in bone graft remodeling (Kawanabe et al., 2011), which in turn contributes to the success of implant survival (Sembrano and Cheng, 2008). This work

Table 1

<table>
<thead>
<tr>
<th>Strain energy (J)</th>
<th>Average</th>
<th>Total</th>
<th>Contact stress (MPa)</th>
<th>Micromotion (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform porosity</td>
<td></td>
<td></td>
<td>Maximum</td>
<td></td>
</tr>
<tr>
<td>0.00418279</td>
<td>1.8212E-07</td>
<td>1.3956E-05</td>
<td>16.6</td>
<td>6.87</td>
</tr>
<tr>
<td>Porous optimized</td>
<td>0.0040203</td>
<td>1.75E-07</td>
<td>1.173E-05</td>
<td>16.5</td>
</tr>
<tr>
<td>% gain</td>
<td>3.88</td>
<td>3.91</td>
<td>15.95</td>
<td>0.602</td>
</tr>
</tbody>
</table>

![Density distribution](image1)

Fig. 3. Optimized relative density distribution of the implant and the corresponding lattice architecture with, (A) front side adjacent to the solid layer and (B) back side adjacent to the bone.

![Lattice generation](image2)

![Optimized porous cage](image3)

![Fully-solid baseline](image4)

Fig. 4. Comparison of the contact total stress distribution at the bone-implant interface for fully-solid and fully-porous implants. The stress state includes both pressure and friction, and the distribution is plotted on the surface of the pelvic bone.
optimally tunes the elasticity of the implant through compliance-based optimization, which has been shown to be effective in reducing also the levels of interface stress (Moussa et al., 2018; Lin et al., 2004). As a comparison, the total contact stress distributions of the optimally porous cage and its fully-solid baseline are shown in Fig. 4. The former shows a better distribution with maximum peak of contact stress of 16.5 MPa; the latter, on the other hand, while showing a similar trend, features a 21 MPa peak stress. In particular, the fully-solid implant - as opposed to the optimized one - generates higher stress levels (mainly appearing in patches) on the ilium, with local concentrations in the middle and in the regions of contact with the implant edges. For both the implants, the bone tissue is almost unloaded on the acetabular regions close to the ischium and on the ilium regions farthest from the acetabulum. The 21.4% reduction of peak contact stress with the optimized cage (Fig. 4) indicates a considerable improvement in bone graft remodeling and host bone healing, factors that contribute to the long-term performance of the implant.

Micromotion at the bone-implant interface has been reported to affect bone ingrowth in the case of cementless fixation (Perona et al., 1992). Lower micromotion (typically below 28 μm) results in bone ingrowth, whereas excessive micromotion (above 150 μm) results in the growth of fibrous tissue, which inhibits biological fixation (Kienapfel et al., 1999). Bone-implant interface micromotion is largely dependent on the implant primary stability, which in turn depends on several factors. These include implant macro-geometry, elastic modulus mismatch with the bone, fixation technique as well as the quality of the host bone tissue and its defects (Rahimizadeh et al., 2018; Kienapfel et al., 1999). In this work, we focus on the reduction of the mismatch of elastic modulus with the bone tissue for given macro-geometry, mechanical fixation and bone tissue properties. Here, the micromotion is computed as the relative sliding distance between the bone and the implant surfaces. Fig. 5 illustrates the micromotion distribution on the bone surface for both the optimized cage and the fully-solid baseline. The former results in lower micromotion with a peak value of 6.69 μm, whereas the latter features a maximum value of 9.04 μm, with noticeably higher values of micromotion on the ilium. Furthermore, compared to the porous cage, the fully-solid one induces locally high micromotions along the implant flange edges. Although the peak micromotions are below the threshold for both cases, a further reduction of 26% with the optimized porous implant further contributes to its primary stability.

Adequate mechanical strength is essential to prevent structural failure of the porous cage here introduced. Fig. 6 shows the von Mises stress distributions for the optimized porous cage and the fully-solid implant. The results show lower von Mises stress distributions for the former with a maximum stress of 49.5 MPa, representing a 43% reduction from the fully-solid cage. This peak stress is well below the yield strength experimentally measured for the tetrahedron-based unit cell (Melancon et al., 2017), thereby validating its mechanical viability in this application. Additionally, the reduction in stresses contributes to prevent stress shielding and to provide a better load transfer to the surrounding bone tissue. This prevents bone resorption, which is essential for implant survival in the long-term.

As a preliminary proof-of-concept, the cage has been additively built with a photopolymer resin (FormLabs) using stereolithography (Formlabs, Somerville, Massachusetts, USA). Fig. 7 shows the 3D printed cage with a particular focus on the micro-architecture at two representative regions (Fig. 7A and B). Upon close visual inspection, the gradient of porosity can be easily observed, with thicker struts in regions of lower porosity and thinner struts in regions of higher porosity. The prototype generally retained the micro-architecture, with some defects, missing struts, arising from the 3D printing process as well as from the support removal. While this preliminary build demonstrates its manufacturability with a photopolymer resin, the next step involves the cage manufacturing via selective laser melting (SLM) with the Ti6Al4V alloy (Arabnejad et al., 2017). As demonstrated in previous studies on metallic implants, lattice structures made of Ti6Al4V have been successfully manufactured via SLM and experimentally tested with micro-architecture and graded porosity resembling those of the acetabular cage presented in this work (Arabnejad et al., 2017; Melancon et al., 2017).

Overall, the functionally graded fully-porous implant shows better clinical performance (lower contact stress and micromotion) compared to both the baselines. The gain over the fully-solid counterpart is significant (21.4% and 26% respectively), whereas that over the porous uniform one is relatively low. Such performance, i.e. stiffness, stress and micromotion, however, is expected to be further superior if a wider range of relative density could be used; the current range here used is a uniform one is relatively low. Such performance, i.e. stiffness, stress and micromotion, however, is expected to be further superior if a wider range of relative density could be used; the current range here used is a narrow one, as dictated by bone ingrowth and manufacturing requirements. Future improvement in additive manufacturing technology can potentially enable the fabrication of even finer struts, thereby enabling the use of wider range of relative density.

Despite the promising results of this numerical investigation, further work is required to address a number of limitations. First, a clinical loading case of one-legged standing is used for the analysis; however, the

Fig. 5. Comparison of the micromotion distributions at the bone-implant interface for fully-solid and fully-porous implants. The distributions are plotted on the bone surface.
performance of the cage under other loading scenarios, such as walking, running, and stair-climbing, need to be tested (Iqbal et al., 2019). In addition, fatigue and local stress constraints can be incorporated into the analysis and optimization scheme to further enhance the fatigue life of the implant. Another source of error comes from the manufacturing process. The lattice micro-architecture consists of strut thicknesses in microns that need to be manufactured with high fidelity to ensure biomechanical performance. Manufacturing induced imperfections, such as strut over-melting, of additively manufactured porous biomaterials can result in a shift of the design space of the unit cells (Aрабнеяд et al., 2016; Melancon et al., 2017). This can hamper the biomechanical performance of the implant and, hence, should be incorporated into the optimization framework. Lastly, the mechanical performance of the implant should be experimentally assessed in vitro and in vivo before clinical adoption.

4. Conclusions

This work has presented the numerical investigation of a novel pelvis cage design with a 3D-printed structurally porous architecture composed of high strength unit cells of optimally graded porosity. The design is expected to improve the clinical performance of current implants by lowering stress levels and micromotion at the bone-implant interface. Multiscale mechanics and density-based topology optimization have been systematically used to find the optimum gradient of porosity, and additive manufacturing has been used to fabricate a proof-of-concept of the fairly complex micro-architecture. The additive manufacturing requirements are incorporated into the optimization scheme via inclusion of heat-treated, additively manufactured titanium alloy material properties and requirements on the minimum manufacturable strut thickness.

The numerical results indicate that the porous implant leads to a 21.4% reduction in the maximum stress on the bone surface and a 26%
decrease in the peak micromotion at the bone-implant interface compared to its fully-solid counterpart. The low stress levels shield the acetabulum from detrimental high level of stress and allow host bone healing before bone ingrowth can occur, in addition the lower initial micromotion enhances bone ingrowth and biological fixation. This reduces the risk of interface debonding and aids in long-term implant stability. The numerical results here presented are indicators of significant functional improvements that warrant further experimental and clinical validation in the near future.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Ahmed Moussa: Conceptualization, Formal analysis, Methodology, Software, Validation, Writing - original draft, Writing - review & editing, Funding acquisition.

Shakur Rahman: Formal analysis, Methodology, Software, Validation, Writing - original draft, Writing - review & editing.

Manman Xu: Methodology, Michael Tanzer: Conceptualization, Damiano Pasini: Conceptualization, Methodology, Supervision, Writing - original draft, Writing - review & editing, Funding acquisition.

Acknowledgements

The authors acknowledge funding from the Natural Sciences and Engineering Research Council of Canada through the Discovery Grant Program and the Network for Holistic Innovation in Additive Manufacturing.

References

