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Encoding kirigami bi-materials to 
morph on target in response to 
temperature
Lu Liu, Chuan Qiao, Haichao An & Damiano Pasini*

Shape morphing in response to an environmental stimulus, such as temperature, light, and chemical 
cues, is currently pursued in synthetic analogs for manifold applications in engineering, architecture, 
and beyond. Existing strategies mostly resort to active, namely smart or field responsive, materials, 
which undergo a change of their physical properties when subjected to an external stimulus. Their 
ability for shape morphing is intrinsic to the atomic/molecular structure as well as the mechanochemical 
interactions of their constituents. Programming shape changes with active materials require 
manipulation of their composition through chemical synthesis. Here, we demonstrate that a pair of off-
the-shelf passive solids, such as wood and silicone rubber, can be topologically arranged in a kirigami 
bi-material to shape-morph on target in response to a temperature stimulus. A coherent framework 
is introduced to enable the optimal orchestration of bi-material units that can engage temperature 
to collectively deploy into a geometrically rich set of periodic and aperiodic shapes that can shape-
match a predefined target. The results highlight reversible morphing by mechanics and geometry, thus 
contributing to relax the dependence of current strategies on material chemistry and fabrication.

Natural systems often exhibit an effortless propensity to shape morph in response to light, humidity and other 
environmental stimuli. Conifer cones, for instance, respond to the moisture content of wet or dry environment 
through the closure or opening of their overlapping scales, thus displaying a capacity for hygroscopic actuation1. 
Heliotropism of sunflowers is another elegant example of response to sunlight, where solar tracking movements 
enhance the photosynthesis process and increase growth rates2. The array of strategies biological systems offer 
are currently pursued in synthetic analogs through alternative pathways of broad technological diversity3–9. 
Controlled formation of shape morphing has a number of distinct hallmarks, the most notable being spatial 
reconfigurability delivered post-fabrication, generation of prescribed motions, morphing induced functionalities 
(such as actuation, amplified extensibility, and folding), and time-dependent control10–12. These along with other 
benefits have so far contributed to brand shape morphing as a topical theme of research with widespread promise 
of application across the spectrum of technology, such as autonomous robotics13,14, smart textiles15, shape-shifting 
metamaterials12, minimally invasive devices16, drug delivery17,18, and tissue engineering16,19.

Shape morphing in artificial materials has been demonstrated with a range of external stimuli and 
field-responsive materials. Swelling, light, temperature, and other cues, are typical triggers in smart solids, i.e. 
active materials that undergo a change of their physical properties as a result of phase transformations, conforma-
tion shifts of their molecular structure and mechanochemical interactions of their constituents. Active materials 
appear either individually, e.g. shape memory alloys (SMAs)20, or in composite formations, e.g. hydrogel compos-
ites4,21, ferromagnetic materials with localized inclusions of electrically conductive microparticles22–24, hybrids 
with gradation of particle concentrations in given directions25, and patterning of anisotropic materials26–30 among 
others. They require a priori synthesis of their composition and molecular architecture. For example, in SMAs 
shape changes are obtained by programming the transition temperature, and are the net result of an orderly 
shift (twinning) of a large group of atoms in their crystal lattice, from the austenite to the martensite phase31. 
Shape memory polymers are another example of smart materials. They consist of a polymer network comprising 
two segregated phases with either covalent cross-link bonds or physical interactions. The switch between them 
occurs at a temperature programmed through the synthesis process of their polymer network32. Hydrogels are 
also known for their phase-transition properties responsive to a temperature stimulus. Their polymer network 
consists of covalently cross-linked polymer chains that can aggregate with water to form an elastomeric hydrogel. 
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Here volumetric shrinking, which is exploited for shape shifting, is caused by specific temperature-induced 
interactions between hydrophilic/hydrophobic segments of the polymer chains and the water molecules33. 
Programming shape shifting with active materials, therefore, involves a tight intertwine between the chemical 
recipes and the fabrication process used to dispense them. Their typical realizations mainly extend to materials 
that can be polymerized5,34, cross-linked35–38, and formulated as customized ink of composites9,39. For most of 
them, morphing is irreversible with some exceptions, such as hydrogel composites, which do exhibit reversibility 
but slow actuation response40. In addition, most active materials, especially shape memory polymers, respond 
with an on-off switch of deformation at a transition temperature set through chemical recipes, and their perfor-
mance typically degrades steadily under thermomechanical cycles. This characteristic may pose limits of appli-
cation in regimes operating with temperature-fluctuating stress, where actuation is sought through successive 
heating/cooling cycles.

In parallel, complementary routes that use passive solids, either standalone or in combination thereof, exist. 
Those that resort to a single passive solid have been explored to achieve reconfigurability, deployment41,42, folding 
of planar sheets via origami43–45, kirigami46,47, and combinations thereof48, as well as in 3D tessellations of pris-
matic unit cells49,50. Most of them are periodic with a paucity featuring spatial heterogeneity in flat thin sheets45 
and textured metamaterials51, but they all cannot respond to an external stimulus since an external force is needed 
to induce morphing.

On the other hand, two or more passive materials have been combined in layouts to attain desired thermal 
expansion performance52. Concepts with distinct coefficient of thermal expansion (CTE) arranged in certain 
configurations, such as bilayer systems53,54, and structural layouts in 2D and 3D, such as compliant55–57 as well as 
stiff topologies58–62, can generate responses for given magnitude and directionality of thermal expansion. These 
realizations, however, consist of individual repeated units with tailored CTE, typically yielding zero or negative 
values, and cannot generate large global deformation of an ensemble of units that can shape-morph on target. 
These are characteristics often sought in soft robotics, for example when locomotion is prescribed to trace a spe-
cific path, and deployable structures, when the deployed state should match non-classical, e.g. freeform, surfaces.

In this work, we demonstrate large temperature-driven morphing from a pair of passive solids, aperiodi-
cally arranged in a kirigami bi-material through a basic fabrication process. Temperature-responsive metaunits 
and aggregation rules are presented to generate a variety of single-piece metaensembles that can conform to a 
large number of planar shapes. Soft modes of deformation are individually encoded into the morphology of each 
unit, and a coherent framework is presented to deterministically predict and optimally program the global shape 
transformaton of the entire kirigami bi-material. Highlighting the notion of functionality induced by the inter-
play between geometry and mechanics, this work brings to light reversible shape-shifting from passive solids in 
response to temperature and contributes to relax the dependence on fabrication parameters and material compo-
sition. It also provides freedom to program the characteristics of the shape response, including both abrupt and 
smooth transitions that can gradually evolve even within a large range of temperature, as opposed to the on-off 
actuation of active solids that takes place at a given temperature value.

Methodology
General framework.  At the roots of our scheme (Fig. 1), there are three basic notions with two routes that 
enact shape-matching on demand and in a reversible fashion: (i) the definition of a functional metaunit, a building 
block (BB) comprising two passive solids, capable of expressing distinct modes of deformation upon a change 
in temperature (Fig. 1a, top); (ii) the assignment of a deformation-property profile to the BB, which systemati-
cally correlates the achievable amplitude of deformation a BB can deliver to its material and geometric attributes 
(Fig. 1a, bottom); (iii) the provision of aggregation rules to adjacent BBs, which enable monolithic tessellations of 
broad geometric diversity (Fig. 1b). With these notions, access to morphing is through two ports of entry. The first 
promotes and predicts morphing from a predefined metamaterial architecture (Fig. 1c). The second generates a 
morphed state that can match a prescribed target (Fig. 1d).

We first start with a descriptive outlook of the salient points underpinning our framework, demonstrating 
hereafter the details. The metaunit (Fig. 1a) consists of a rigid frame with low coefficient of thermal expansion 
(CTE) (grey) that encloses a soft core with high CTE (blue), each responding to temperature at a different rate. 
The former confines the propensity of the latter to volumetrically expand under temperature due to their CTE 
mismatch. At their vertical edges, the two are fully bonded, whereas a slit appears along the entire length of 
their horizontal interfaces. The core is partially riven along its horizontal axis of symmetry with a ligament, d, 
connecting the upper and lower parts. By harnessing the position of the core ligament, we can seal onto BB two 
distinct deformation modes. Enforced reflection symmetry across the vertical midplane (dash-line) imprints a 
unidirectional floppy mode (U), where U-BB resembles an accordion that axially expands by Δh. A loss of sym-
metry, on the other hand, combined with end core closure instills a rotational (R) mode, where R-BB responds as 
a clothespin that can open by an angle θ.

While the mode of deformation is mainly conferred by topology (U versus R), temperature, as well as materi-
als and geometry of each unit, govern the magnitude of the response. To capture this dependence, we gauge the 
attainable range of elastic deformation the metaunit can attain at a given temperature upon manipulation of its 
material and geometric attributes. This defines the property-deformation profile, which we cast here in two sets. 
The first maps the role of materials, Δα = αc − αf versus Ef/Ec (f: frame, c: core), and the second that of geome-
try, l/h versus d/l, the groups of parameters that most influence BB response. As an illustrative example, Fig. 1a 
(bottom) shows both the material and geometry spaces at T = 120 °C obtained for a representative U-BB with 
given materials (Δα = 210 × 10−6/K; Ef/Ec = 3200, point A coordinates) and geometry (l/h = 9; d/l = 0.05, point B 
coordinates). The former correlates the amount of uniaxial deformation to a change in material properties, while 
the latter that to a change in its inner architecture. While specific to this example, the property-deformation profile 
provides a systematic route to assess the deformation a BB can render at a given temperature through control of 
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Figure 1.  Framework overview for temperature-driven morphing. (a) top, Building block (BB) with high and 
low CTE constituents. Enforced mid-plane symmetry seals a unidirectional (U) soft mode (Δh/h), whereas 
broken symmetry combined with core-end closure releases a rotational (R) mode (θ). (a) bottom, Assignment of 
deformation-property profile. Attainable range of elastic deformation for BB, measured in the material 
(Δα = αc − αf versus Ef/Ec (f: frame, c: core)) and geometric space (l/h versus d/l), at temperature 120 °C for 
l/h = 9 and d/l = 0.05 (point B), and Ef/Ec = 3200, αc − αf = 210 × 10−6/K (point A). (b), Metaunit aggregation. 
Pathways for BB periodic and aperiodic aggregates monolithically connected in parallel, series, and 
combination thereof, from repeated (top) and compound units (bottom) (R≡ indicates the reflection of R). (c), 
Forward problem. Morphing prediction from predefined sequence of m BBs in series (genotype) described 
through the string ±Bt h

h l h d l
/

( , / , / ), where B stands for U or R, the superscript collects the geometric parameters of 
the high CTE material, and the subscript those of the low CTE material, +/− indicates direction of rotation for 
R-BB (+clockwise). Below, laser cut of a single piece bi-material panel and morphed configuration (phenotype). 
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its material and geometric attributes, hence being the key to predict and program deformation at the rank of the 
metaunit.

At the next level, there are BB aggregates (Fig. 1b), which we aim here to generate from a single piece, a mon-
olithic dual material panel, as opposed to an assembly of individual parts connected together, as described in the 
following section. The intrinsic characteristics of BB are conducive to the generation of an array of BB aggregates 
with rich geometric diversity (See Supplementary Movie 1 for illustrative demonstrations). Figure 1b shows a 
collection of options, among others. Here BBs are shown to form spatially invariant periodic and aperiodic tessel-
lations not only from primitive units, e.g. R-R or U-U (top), but also from hybrid cells, e.g. U-R-U (bottom), that 
provide access to a diverse set of morphologies. Interaction between adjacent BBs takes place through monolithic 
connections that impose the way BBs act collectively, e.g. parallel, series and combination thereof, via either the 
low CTE material (grey), or at a collection of high CTE locations (blue).

With the notions above, we now tackle the morphing problem of an ensemble of BBs along two pathways 
facing the questions: how to predict, and how to program global transformations. The forward route is depicted 
in Fig. 1c with a basic example. Shown here is a sequence of 20 BBs of a given pair of materials monolithically 
connected in series; the goal is to predict their deployment upon a cycle change of temperature. The undeformed 
state, the metamaterial genotype, realized through a purposely conceived simple process, as explained in the fol-
lowing section, is defined by a string of information, the BB sequence code. This carries the order and functional 
instructions that enable cooperative, frustration-free, shape changes with closely matched deformation at the 
BB interfaces; it fully connotes the collective deformed state of the metamaterial, physically expressed by the 
phenotype. The complimentary route is depicted in Fig. 1d with another illustrative example. The goal here is to 
program the genotype with a BB sequence code that elicits reconfiguration into a phenotype matching a given 
target. Two main steps are involved: extraction and translation. The former retrieves the shape descriptors of the 
target domain, described here with a central axis and two symmetric boundaries of varying width. The latter acts 
on the target descriptors to decode a tailored BB sequence for a phenotype that shape-transforms into the target. 
As detailed later, the underlying rationale is to make the morphed layout of an off-target phenotype, which is 
assigned with an arbitrary sequence of BBs, conform to the target domain; and we do so by minimizing the gaps 
between their central axes and their unmatched widths. The result is a tailored BB code that enacts morphing 
on target upon heating and directs a reversal upon cooling. Details on this and other parts underpinning the 
framework follow.

Fabrication of kirigami bi-materials.  While typical kirigami materials are cut from a single solid, here we 
present a fabrication process for bi-material kirigami that is purposely conceived to be as simple as possible while 
making use of off-the-shelf passive solids. The aim is to emphasize the notion of shape-matching in response to 
other than mechanical input by mechanics and geometry, and thus to relax the dependence from manufacturing 
technology and material chemistry, which are key to programming the response of active materials.

Figure 2 shows the steps describing the realization of an illustrative kirigami specimen comprising 3 by 5 
units made of a silicone elastomer (R-2374A silicone rubber compound, Silpak Inc., USA) and hardwood (Black 
walnut panel, Midwest Products Co., USA), the former representing the high CTE solid and the latter the low 
CTE. A periodic array of 15 voids aggregated in a hybrid arrangement (3 columns of units in parallel, each with 5 
units connected in series), is laser cut (CM1290 laser cutter, SignCut Inc., CA) from a 1/8-inch-thick hardwood 
panel to create a void-patterned mould subsequently bonded (Instant Adhesive CA4, 3 M Inc., USA) onto a 
1/8-inch-thick acrylic substrate. Each void is shaped to host the characteristic geometry of the unit core featuring 
a semielliptical groove on both its upper and lower edges (Fig. 2a). The silicone elastomer in liquid form is mixed 
with a platinum-based catalyst to create a cross-linking reaction and then injected to entirely fill the voids of the 
wooden array. The curing process performed at room temperature for 24 hours turns the silicone elastomer of 
the building block (BB) core from a liquid into solid (Fig. 2b). During the process, the silicone elastomer bonds 
to the wooden frame, thus offering the adequate strength for the formation of a monolithic kirigami bi-material. 
Finally, a laser cutter perforates a set of slits into the kirigami bi-material (Fig. 2c), a step that precedes the sample 
detachment from the substrate. In the physical specimens, the strait cuts of the BB geometry shown in Fig. 1 are 
amended with semielliptical slits to facilitate the onset of deformation during experiments. Figure 2d,e show 
respectively the bi-material kirigami specimen in its undeformed and deformed shape in response to a change of 
temperature. While this specimen becomes periodically porous with thermal response governed by a single unit, 
the fabrication process here presented enables the straightforward production of aperiodic kirigami bi-materials 
with global morphing controlled by the collective response of all the units.

Results and Discussion
Metaunit response.  In this section, we use solid mechanics theory to elucidate the deformation response of 
the kirigami bi-material unit subject to a uniform thermal field for both the unidirectional and rotational floppy 
modes shown in Fig. 1a. R-BB differs from U-BB for the end closure of the core and a mere symmetry breaking 
that shifts the position of the connection d of the core at an offset e from the left end of R-BB. While the underly-
ing mechanism of thermal deformation of both R- and U-BB is caused by the CTE mismatch of the constituents, 
their topological difference is responsible for each floppy mode. Here we first focus on R-BB in Fig. 3a(i), from 

(d), Inverse problem. Extraction of shape descriptors from target domain, assumed here as arc spline axis, made 
of G1 continuous arcs and straight-line segments, and symmetric boundaries. Translation of shape descriptors 
into a tailored BB sequence code that enables the central axis and varying width of an off-target phenotype (red) 
to conform to those of the target domain (blue). Qualitative sketches out of scale at given temperature.
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which the U-BB response can be derived (see Supplementary S3-a). Due to the symmetry of deformation in R-BB 
under temperature, we examine the lower half of R-BB, and make the following assumptions: the low CTE frame 
is rigid with negligible thermal expansion, the length d of the connection between the upper and lower portions 
of the high CTE core is significantly smaller than the BB length ( d l), and the semielliptical portion of the 
groove is simplified with two straight inclined beams attached to the horizontal parts (Fig. 3a(i) bottom). Due to 
the negligible thermal expansion of the low CTE solid, an effective boundary condition is enforced to replace the 
frame action onto the core which is clamped on both its ends. The reaction from the upper part of R-BB is equiv-
alent to a bending moment (MS) applied at A, i.e. the core connection. The clamped boundary at the left end is 
released by applying two effective forces (FA, FV) and a moment (MR), all dependent on temperature. The analysis 
of the building block subjected to uniform temperature is now reduced to the solution of a statically indetermi-
nate problem of a beam-column, which can be solved via Timoshenko’s theory of elastic stability (see 
Supplementary S3-a). For the elastic properties and CTE (point A in Fig. 1a) of the constituent solids used in the 
analysis, we used experimentally obtained data (see Supplementary S1 for description of thermal and mechanical 
testing) with statistical values showing invariance to temperature within the investigated range (see 
Supplementary S2 for characterization of thermal and mechanical properties).

The results of the theoretical analysis shed light onto the relations of the internal forces (Fig. 3a(ii,iii) and as 
well as the elastic deflection (Fig. 3b(i)) of R-BB with temperature. The magnitude of FV and MS are respectively 
two and one order lower than FA and MR indicating that the transverse force and bending moment at the connec-
tion contribute only slightly to the R-BB deformation. Two sequential regimes of deformation can be observed, 
each controlled by temperature. For low values of temperature, the axial force FA dominates the bending moment 
MR and increases linearly with temperature; here, axial compression governs the R-BB response. With a further 
increase of temperature, the deformation mode switches through a transition zone above which the axial force 
flattens at a plateau. Here, BB responds with internal bending with a deformation that is rapid and sensitive to the 
temperature change at higher values.

The nonlinear response triggered by the core instability can be used to amplify deformation and release it 
in either a short or long temperature range. Geometric tuning enables temperature to act onto BB not simply 
as driver of deformation but also as regulator for type (stretch versus bend), magnitude (modest versus large), 
and gradient of deformation (shallow versus steep). BB can be designed to offer a distinct evolution of deforma-
tion that is regulated by temperature with two modes occurring sequentially through a transition zone (around 
T = 60 °C), after which the deformation gradient and the span along which the deformation occurs can be pro-
grammed through geometry. In particular, the position of the transition zone can be programmed by manipu-
lating the aspect ratio of the BB core, while the span of the transition zone by the size of the elliptical groove and 
other geometric parameters (see Supplementary S3-c). This provides a large design space to tune both the defor-
mation gradient and the range of temperature upon which deformation continuously occurs. Deformation can 
thus be amplified by working near instability, hence generating abrupt changes in response in a short temperature 
range, or it can be calibrated to ensure a steady and gradual expansion rate over a sizeable temperature span. These 
characteristics are distinct from those offered by active materials, e.g. shape memory polymers, which through 
chemistry manipulation can typically shows an on-off switch of deformation at the glass transition temperature.

Figure 2.  Fabrication process at room temperature. (a) Laser cut of a wooden panel forming a mould with 
an array of voids, each shaped with the geometry of the BB core. (b) Casting of silicone rubber filler into the 
array of voids. (c) Laser cut of the kirigami bi-material along the slits of each BB. (d) Sample removal from the 
substrate for the release of a monolithic kirigami bi-material in its undeformed state. (e) Deformed kirigami bi-
material sample in response to temperature change.
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Figure 3.  (a) Deformation mechanism of BB subject to a uniform thermal field. (i) Geometry of rotational 
building block in undeformed state with its reduced model, where the high CTE core is condensed to a statically 
determinate beam-column with reaction and internal force FA, FV and moment MS MS. (ii) Evolution of the 
normalized FA, MR, and FV, MS as a function of temperature solved by Timoshenko’s elastic stability theory. 
Deformation assessment and evolution of R-BB (b) and U-BB (c) subject to increasing temperature from 20 
to 120 °C. Four deformed states of a representative set of fabricated BBs (h = 7 mm, d/l = 0.05, l/h = 9) with 
experimental measures of deformation (θ and Δh/h) overlaid onto continuous curves obtained through (i) 
mechanics theory of simplified BB geometry and computation of BB geometry identical to the fabricated 
samples. (ii) and (iii): prediction maps for θ and Δh/h depicting the role of the main geometric descriptors of 
BB, l/h and d/l, as a function of temperature within defined ranges of l/h and d/l values. Horizontal and vertical 
bars indicate the standard deviation around the mean from a pool of measures taken for both temperature and 
deformation, the former measured at three distinct sites in the heating chamber, the latter obtained from three 
repeated measurements.
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The experimental response validating the theoretical results are shown in Fig. 3b,c for both R-BB and U-BB. 
On the top four deformed states (I to IV) are shown each rendered at a given temperature. The corresponding 
experimental measures of deformation, θ and Δh/h, are illustrated in the plots below as a function of temper-
ature. Superimposed are also the theoretical results and computational results, both in quantitative agreement. 
Additional sets of results obtained for units with other dimensions (see Supplementary S3-b) validate the the-
ory with differences between the experimentally measured deformation and theoretical predictions in the high 
temperature regime below 15%, a value attributed to frictional dissipation accrued during testing as well as the 
adoption of a simplified structural analog for our theoretical model (see Supplementary S3-a).

Computational models provide further guidance in assessing the role of the geometric attributes that most 
and least influence BB response. Figure 3a(ii),(iii),b(ii),(iii) show the outcome of harnessing the prime attributes 
(h/l and d/l) of U-BB and R-BB within defined ranges. The maps depict the deformation potential that evolves 
with temperature, thereby supplementing the maps (Fig. 1a and Supplementary Fig. S9) given for T = 120 °C (see 
Supplementary S3-c for the generation of the deformation-property profile). The longer the BB as well as the 
smaller the core ligament, the larger the response. Temperature and BB geometry tuning can thus generate a size-
able deformation for a given pair of materials. For example, at T = 40 °C, a reduction of d/l from 0.4 to 0.1 gener-
ates a 4.3x gain of Δh/h for U-BB, and a 3.2x gain of θ for R-BB; these values boost to 4.8x and 1.9x at T = 120 °C. 
Besides h/l and d/l, other geometric parameters, such as the size of the BB groove and the offset of the flexural 
hinge, play a role in the BB response, but the tunability they can offer is quite narrow (see Supplementary S3-c for 
sensitivity to least influential parameters). Yet as described above, these parameters are effective in calibrating the 
type and rate of deformation with temperature.

BB integrity and time response are further descriptors of the structural and functional performance of the 
kirigami unit. The prospect of BB failure involves a balance between the CTE and strain energy of the two con-
stituents, as well as the force of adhesion at their interfaces. Quantitative assessment of the distribution of the 
interfacial stress (see Supplementary S4 for assessment of bond strength) along with pull-out tests measuring the 
bonding strength shows a predominant compression state exerted by the BB core onto the enclosing frame with 
interfaces largely compressed at a magnitude dependent on h/l and temperature. The analysis shows a sturdy bond 
at the interfaces with strength value preventing detachment during deformation.

For the temporal response to temperature, the BB deformation is caused by the CTE mismatch of the constit-
uent solids, which do not undergo any atomic or molecular changes, as in the case of active materials. As soon as 
BB reaches the final temperature, the deformation induced by the internal forces is instantaneous and the mode, 
magnitude and rate of deformation can be designed through geometry without resorting to chemistry. For shape 
memory polymers and other active materials, on the other hand, there is a time span involved for the tempera-
ture to create configurational changes in the polymers crosslinking. For our kirigami-bimaterials, the time span 
that we measured to morph does not depend on the properties of the constituent materials, rather mainly on the 
heating strategy and the experimental setup: the medium surrounding the sample, and the thermal conductivity 
of the BB surfaces through which the heat transfer takes place. In our experiments, specimens were tested in two 
heated media, air and oil. Both results showed a deformation evolving over a relatively short period with values 
(about 5 mins with fan-propelled air and 2 mins in oil bath) in quantitative agreement with those from transient 
heat transfer analysis (see Supplementary S5).

Morphing prediction of kirigami bimaterial from given BBs sequence.  Figure 1c shows a sche-
matic of the forward problem for a monolithic ensemble of BBs stacked in series, each with a predefined set of 
geometric attributes casted in the BB sequence code. A scheme that uses affine transformations correlates the 
local deformation of each BB to the global deflection of the phenotype axis and predicts the collective behaviour 
of BBs at a given temperature (see Supplementary S6 for morphing response from preassigned BB sequence). 
Its implementation is shown in Fig. 4 on a set of representative genotypes with morphing traits experimentally 
validated through fabricated samples (h = 4.5 mm, l/h = 9). On the top of Fig. 4a (left) is the simplest case, where 
a periodic sequence of identical U-BBs is assigned to the genotype, whereas on the bottom there is a stack of BBs 
with monotonically decreasing d/l. Similarly, Fig. 4b (left) shows two sequences of R-BB, one sharing prescribed 
geometric attributes (top), and the other featuring two sets of five R-BBs with opposite direction of rotation (bot-
tom). In Fig. 4c (left), the genotype is dispensed with a BB sequence code defined by a logarithmic spiral. For all 
three cases, the central (undeflected) axis (red) intersecting the interface mid-points, Pi, between adjacent units 
(red dot) is overlaid on the genotype, and the predicted deflected axis of the phenotype lies on top of the morphed 
configuration obtained via computations (shaded colour). The counterpart experimental versions are shown on 
the right of Fig. 4a–c. Here the testing occurred in an oil bath to reduce frictional losses. The relative discrepancy 
between predictions and experimental measures is below 7% (3% and 2.8% for samples in Fig. 4a, and 5% and 
7% for those in Fig. 4b). Overall, the values depicting dimensional differences between genotype and phenotype 
demonstrate sizable morphing predicted with high-level accuracy. In addition, the experimental results shown in 
the Supplementary Movies S2–S5 demonstrate fully reversible morphing under the conditions here investigated, 
i.e. temperature cycle between Troom and 120 °C.

Morphing on target via encoded BBs sequence.  The response to temperature of our morphable mate-
rials can be programmed such that adjacent units can act collectively to reconfigure into a desired form. Here the 
target to match is a domain (Fig. 1d) with a central axis, an arc spline consisting of G1 continuous arcs and straight 
segments, and two boundaries that are symmetric and continuous with varying width. We match this target by 
first enforcing equality constraints to guarantee frustration-free motions between adjacent units and inequality 
constraints that restrict BB deformation within feasible ranges. We then frame these conditions into a constrained 
optimization problem (see Supplementary S7 for the morphing on target scheme) that mathematically restruc-
tures the string of information contained in the BB sequence code of an unprogrammed (off-target) phenotype, 
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Figure 4.  Prediction (left) and experimental (right) validation of a demonstrative array of morphing responses 
from a series of BBs with predefined sequence, geometry (h = 4.5 mm, l/h = 9, t/h = 0.2) and materials (wood 
and silicone rubber). Tested configurations at T = 120 °C morphed from their genotype state at room 
temperature. (a) Extensional morphing achieved from a stack of 10 U-BBs: uniform (above) and linear 
gradation (below) of geometric attributes defined by their BB sequence code. (b) Rotational morphing attained 
from 10 R-BBs in series: uniform distribution of geometric attributes with identical (above) and opposite 
(below) rotation. (c) Spiral morphing predicted and validated from a hybrid sequence of 2 U-BBs and 16 R-BBs. 
The contents of only two BBs is shown as representatives of the whole BB sequence code. ±Bt h

h l h d l
/

( , / , / ) indicates 
BB geometric descriptors (B = U for U-BB, B = R for R-BB). Superscripts for high CTE material (+: clockwise 
rotation for R-BB), subscripts for low CTE material. ±Bt h

h l h d l
/
( , / , / )

1 1
1 1 1 1 1 , … ±Bt h

h l h d l
/

( , / , / )
i i

i i i i i  connotes a sequence of i 
BBs, and condenses to ±B( )t h

h l h d l
m/

( , / , / ) for a stack of m repeating units.
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which is far from the target because it is randomly assigned with an arbitrary sequence of BBs. Because the central 
axis and boundaries of the off-target phenotype are incompatible with those of the target domain (Fig. 1d), we 
minimize the sum of the squares of the distance between their central axes and the mismatched widths of their 
boundaries.

Figure 5.  Demonstrations of morphing on target through tailored sequence of metaunits made of hardwood 
and silicone rubber. (a) Target domain of varying width (left) with nominal and fabricated realization of 
metamaterial genotype comprising 22 BBs (middle) along with predicted and tested configurations of morphed 
phenotype at T = 120 °C (right). (b) Domain target of the letter “M” with functions of the axis and varying 
width to match. 46 units make up the genotype (half is shown) transforming into a phenotype that shape-
matches the target with R2 = 0.997. The BB parameter sequence shows the stem plot of the optimized values 
of 4 dimensionless sets of design variables optimized to align the phenotype to the target domain. Below is the 
genotype (only of shown in the undeformed state) with the BB sequence code given only for representative 
units, i.e. BB1, BB20 and BB46.
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With this scheme, conformal morphing can be realized from several pairs of passive materials. Two illustrative 
examples (Fig. 5) are demonstrated with two representative materials, wood and silicone rubber. The first (Fig. 5a) 
shows a simple shape target domain with varying width and an arc spline of two primitives that are G1 continuous 
at their blending points. Here, the BB sequence code of an arbitrary genotype with 22 randomly assigned BBs is 
decoded to match the shape descriptors of the target. Our morphing scheme restructures the BB sequence code 
to yield a shape-matching phenotype that is experimentally validated through fabricated samples. A good agree-
ment is observed between the predicted and experimental results. In the second example, the outline of an “M” 

Figure 6.  Illustrative example of conformal morphing to a spatial freeform surface. (a) Top, front, right and 
perspective of the target domain: a NURB surface generated from the control points of 16 arc splines used as 
primitives. (b) Extraction (above) of shape descriptors (arc length and opening angle) of #3 primitive, and 
translation (below) into a conforming genotype defined by its BB sequence code. (c) Ensemble of 16 genotypes 
anchored to a low CTE base (left) and morphed into its phenotype (right); reversible morphing for increasing 
temperature from 20 °C to 120 °C. (d) Morphed configuration (T = 120 °C) of #3 phenotype made out of hard 
wood and silicone rubber: superimposed crosses for points of BB interfaces and target axis (left), and their 
absolute distance (right). (e) Deviation between predicted phenotypes and arc spline targets.
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is chosen as the central axis of the target domain with varying width specified through a set of four continuous 
functions of varying size along the target axis. With the goal of conforming to the central axis and width of the 
target, our scheme yields an aperiodic tailored sequence of 46 BBs, which are aperiodic in both their internal and 
external sizing. This is shown by a stem plot reporting the optimized values of the design variables along with 
the relevant ratios of the metamaterial genotype at the initial temperature (Fig. 5b and Supplementary S8 and 
Movie 6). As per the testing results of the “M” shape in Fig. 5b, we note that the limited size of our heating tester 
prevented us from performing a full-size experiment of the ‘M’ shape sample. Yet, the tested sample in Fig. 5a is 
representative of the “M” shape because its geometry replicates the varying width domain with a reduced extent, 
i.e. only 22 building blocks, a requirement that could meet the dimensions of our heating chamber.

Outlook and Conclusion
Underpinned by three distinctive notions (Fig. 1), our framework can deterministically predict and precisely 
impart morphing into a single-piece metamaterial made of passive solids upon a change in temperature. The 
shape matching of the phenotype to a target domain can be accurately controlled in space through a decoded 
BB sequence. The constitutive solids are passive, yet their topological arrangement into our metaunit can form 
aperiodic aggregates that can yield reconfigurations of broad geometric diversity. Figure 6 shows an outlook for 
our platform applied to drape a three-dimensional surface. Here the target is a spatial freeform surface described 
by a sweep of 16 arc splines (Fig. 6a), and the goal is to match the shape of the full array of arc splines. Figure 6b 
shows a representative with its shape descriptors first extracted, and then translated into the BB sequence code. 
The implementation to all 16 arc splines is depicted in Fig. 6c, where a low CTE cordon monolithically ties them 
all at the front base, the anterior boundary of the target. Overlaid onto the phenotype ensemble is the target 
surface (red) with an insert showing precise local conformity (see Supplementary Movie 7). A remarkably good 
agreement with the target domain and predictions is evinced in Fig. 6d, where experimental results are given 
for the third arc spline (see Supplementary Movie 8), while Fig. 6e extends the assessment to the global domain.

Despite their shape-shifting promise, there are limits to the approach here presented. First, the deformation 
of R-BB is an arc whose curvature is dominated by the opening angle and its length scale. If the latter is not con-
strained, R-BB can in principle capture an arc with any curvature, even one with tiny values resembling a sharp 
corner. In practice, however, the accuracy and resolution of the manufacturing process might pose restrictions 
in matching abrupt variations of curvature in the shape target. In addition, the proof-of-concepts tested in this 
work feature a trade-off between thermal and mechanical performance. In Fig. 6c, gravity was not considered in 
the morphing direction, since an additional body force could collapse the compliant kirigami material. The low 
stiffness is typically of kirigami concepts, where the open cuts naturally generate a severe penalty on the mate-
rial resistance to deformation. Strategies to create stiff and durable kirigami have been proposed and could be 
implanted here63. Another approach is to change the base materials, here hardwood and silicone rubber, as well as 
the aspect ratio of BB, here quite large (l/h = 9). For example, a change of silicone rubber, the core material, with 
a solid of higher elasatic modulus yet distinct CTE, such as polytetrafluoroethylene (PTFE)64, and the selection of 
less slender BB can contribute to compensate the low stiffness observed in our proof-of-concepts. A third option 
to enhance stiffens in the deformed state is to envision an interlocking strategy that autonomously locks the mate-
rial phenotype. While these seem promising paths to follow, further work is required to explore them.

The kirigami concepts here presented are complementary yet distinct to the morphing routes currently pur-
sued with active materials. For shape memory polymers and other smart materials, the programming stage of the 
deformation response goes through a molecular design of their polymer network architectures which are either 
chemically or physically crosslinked. Through a synthesis process, the switching temperature is programmed, and 
in a small range of values nearby that temperature, the deformation is fully released with a switch-type response. 
In addition, the performance of shape memory polymers often worsens under thermomechanical cycles. The 
kirigami concepts here presented, on the other hand, do no require chemical, rather geometric, strategies appli-
cable to several pairs of off-the-shelf solids including metals. If needed, the selection of the base materials can 
address the requirement of robustness to fluctuating thermal stress. In addition, the rational manipulation of 
their geometry, such as the size of the BB groove and the offset of the flexural hinge, allows to calibrate both the 
rate of deformation and the temperature range within which the response occurs. This geometric tuning offers 
significant freedom to generate desired types of response, including both sudden and smooth deformation, which 
could be gradually dispensed even over a large temperature span.

There are a number of potential applications for shape-matching materials across multiple sectors, espe-
cially where folding, packaging, and conformational changes are paramount requirements to meet65, such as 
self-reconfigurable medical devices7,66, drug delivery systems18,33, autonomous soft robotics67, and conformable 
stretchable electronics68. The advantages of the concepts here introduced can be capitalized in two primary appli-
cations. The first targets repeated and reversible reconfigurability in extreme climates on Earth and in space. Here 
the transportation of components is typically required in a flat configuration, the deployment is to occur in-situ, 
such as unfolding shelters in unsafe settings69,70 or reconfigurable antennas in space71,72, and reconfigurability can 
entail multiple loops of closure and opening, each controlled by temperature cycles. In these conditions, shape 
memory polymers and other active materials might not be the best fit, not only because their response is typically 
irreversible, but also because thermomechanical cycles can steadily decrease their performance. The second appli-
cation is thermal management. Besides shape morphing, our concepts can be programmed to feature adaptive 
change in their out-of-plane porosity in response to temperature change. The transformation from a fully solid 
to a fully porous state through temperature change can bring about a large area of voids for heat exchange, condi-
tions that can become an asset for cooling and thermal regulation.

Overall, our framework engages a fine interplay between geometry and mechanics of metaunits to enact mor-
phing in response to temperature. It requires neither manipulation of constituent compositions nor chemical pro-
cesses. It can predict local and global morphing, as well as reconfigure the morphology of aperiodic architectures 
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into predefined targets. Reversibility through temperature is one of its assets, along with the passive nature of 
the constituents, and the elimination of external power and control. A large design freedom to tune the thermal 
response (type, magnitude and rate of deformation) is at hand through manipulation of the internal architecture. 
Other pairs of passive solids including metals can in principle be used, as long as they offer a sizable distinction in 
CTE. Purposely implemented with simple yet efficient means of fabrication, our platform is well-suited to other 
technologies, e.g. multi-material 3D printing8,73, offers routes for upscaling and downscaling, and can be also 
extended to active materials and other stimuli.

Data availability
The data that support the findings of this work are available from the corresponding author upon request.
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S1. Testing apparatus  

 Supplementary Fig. S1 shows the schematic of the experimental set-up built to test the thermal deformation 

of the fabricated metamaterials. The heating chamber consisted of two 200-Watt strip heaters (McMaster-

Carr, USA) placed underneath the testing plate, where the temperature was adjusted through a proportion-

integration-differentiation (PID) controller (CN7800, OMEGA, USA & Canada). A data acquisition system 

(cDAQ-9174, National Instruments, USA) was used to collect the temperature values from the 

thermocouples placed at different locations in the heating chamber with the goal of assessing any instance 

of temperature heterogeneity throughout the heating chamber. A borosilicate glass cover was placed on the 

top of the testing system to provide a thermal insulation shield. Specimens were tested both in air and oil, 

the latter to provide a uniform source of heating and eliminate frictional dissipation between the specimen 

and the testing plate.  

  Digital Image Correlation was used to capture the full-field displacement and effective thermal strain of 

the specimen at increasing levels of temperature. Supplementary Fig. S2 illustrates a representative set of 

testing on a periodic metamaterial with compound units. Any rigid body movement of the specimen was 

prevented by anchoring one point (highlighted in red in Supplementary Fig. S2a) of the specimen to the 

testing plate. Two pairs of black speckles were applied on the rigid frame to trace their movement. 

Temperature gradually increased from 20 to 120 °C. Sample deformation was first captured by a digital 

camera (EOS Rebel T6i, Canon USA), and then processed with a correlation algorithm (Vic-2D, Correlated 

Solutions Inc., USA) that provided the full-field displacement and strain data between pairs of black 

speckles in the deformed specimen. The effective thermal strains (𝜀𝑦𝑦
∗ ) was then obtained from the relative 

displacement normalized by the initial distance between pairs of black speckles. As an illustrative example, 

Supplementary Fig. S2 on the bottom of each of the six snapshots provides the 𝜀𝑦𝑦
∗  values at two specimen 

locations for varying levels of temperature. 
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Supplementary Fig. S1: Schematic of the experimental set-up. 

 

Supplementary Fig. S2: Illustrative snapshots of thermal deformation measures at given values of 

temperature. Effective values of thermal strain 𝜀𝑦𝑦
∗  obtained from measurements between pairs of elliptical 

regions with speckles dispensed on the wooden frame (see insert on the top of (a)). 
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S2. Characterization of constituent properties: thermal expansion coefficient and Young’s modulus 

  A thermomechanical analyzer (TMA Q400, TA Instruments Inc., USA) was used to measure the 

coefficient of thermal expansion (CTE) of the constituent solids, silicone rubber and hardwood. For the 

latter, the CTE was measured in both directions, parallel and perpendicular to the wood grain. 

Supplementary Fig. S3a reports the CTE for both materials with measured values (  𝛼𝑟𝑢𝑏𝑏𝑒𝑟 =

215 × 10−6𝐾−1, 𝛼//𝑔𝑟𝑎𝑖𝑛 =  5 × 10
−6𝐾−1,  and 𝛼⊥𝑔𝑟𝑎𝑖𝑛 =  32 × 10

−6𝐾−1) almost constant throughout 

the temperature range under investigation (20 to 120 ℃).  

  To assess the tensile elastic modulus of the constituents, we tested a set of laser-cut dumbbell-shaped 

specimens (Supplementary Fig. S3b) with an Instron tensile tester (5982 Series Universal Testing Systems, 

Instron Inc., USA). For silicone rubber, 3 uniaxial tensile tests were performed under displacement control, 

from which the most representative nominal stress-strain curve was obtained. To capture the experimental 

measures, a first order Ogden model was adopted (Supplementary Fig. S3c) with strain energy function 

given by: 

𝑊(𝜆1, 𝜆2, 𝜆3) =
𝜇

𝛼
(𝜆1
𝛼 + 𝜆2

𝛼 + 𝜆3
𝛼 − 3)                                                          (1) 

where 𝜇 and 𝛼 are the material constants chosen to fit the experimental data (in this case 𝜇 = 1.03 and 𝛼 =

6.20), and 𝜆1, 𝜆2, and 𝜆3 denotes the principal stretches. In addition, the elastic modulus of silicone rubber 

was extracted from the curve at 25% strain (𝐸25% = 3.7 MPa) and used in our analyses.  

  For the elastic response of wood, uniaxial tensile tests were performed on specimens with orientation 

either parallel or perpendicular to the wood grain direction (Supplementary Fig. S3b). Ten dumbbell-shaped 

specimens were laser cut from a 1/8-inch-thick sheet of hardwood. Supplementary Fig. S3d reports the 

representative stress-strain curves of the experiments, from which we extracted the following mean values 

for the Young’s moduli:  𝐸//𝑔𝑟𝑎𝑖𝑛 = 12.0 ± 0.3 GPa,  and 𝐸⊥𝑔𝑟𝑎𝑖𝑛 =  0.97 ± 0.09 GPa.  
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Supplementary Fig. S3: Characterization of material constituents. (a) Experimental measures of the 

coefficient of thermal expansion for silicone rubber and hardwood. (b) Dumbbell-shaped specimens for 

uniaxial tensile test. (c) Experimental nominal stress-strain curve of silicone rubber and Ogden fit response. 

(d) Stress-strain curves obtained from testing hardwood specimens oriented in the direction parallel and 

perpendicular to the wood grain. 
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S3. Metaunit analysis: unidirectional and rotational response  

S3-A. Theoretical model  

  This section examines the mechanics of the functional building block shown in Fig.1a subject to a uniform 

thermal field. We theoretically study the temperature-driven deformation for both the unidirectional and 

rotational floppy modes. Theoretical expressions for the elastic deflection of both U-BB and R-BB are 

obtained as a function of temperature, 𝑇, under the following assumptions: 

• Both constituent solids have constant CTE within the temperature range here investigated. 

• Hooke’s law of elasticity holds for the high CTE core.  

• The low CTE frame is assumed rigid, therefore the deformation induced by the thermal mismatch 

of the two materials is neglected. 

• The length 𝑑 of the connection between the upper and lower portions of the high CTE core is 

considered significantly smaller than the BB length (𝑑 ≪ 𝑙). 

i. Unidirectional Building Block (U-BB) 

  Supplementary Fig. S4a shows U-BB in its undeformed state: two distinct portions joined centrally via a 

connection of length 𝑑 along the horizontal axis of symmetry. Each is shaped with a low CTE (grey) and 

high CTE (blue) material, where 𝑙 and width ℎ describe the length and width of the core, which is cut along 

semi ellipses with major axis of length 2𝑎 and minor axis of length 2𝑏. The thermal mismatch between the 

low CTE confinement (grey) and the high CTE expansion (blue) (Supplementary Fig. S4b) governs the 

unidirectional response that is endowed by the BB topology. A temperature increase expands the core, 

which is constricted horizontally by the surrounding frame, and thus forced along its floppy direction to 

space the upper and lower portion of the BB by ∆ℎ, here assumed anchored at its center. Due to the 

negligible thermal expansion of the low CTE solid, an effective boundary condition is enforced to replace 

the frame action onto the core. For the sake of symmetry, a quarter of the core is examined with one end 

clamped and the other free to move transversely via a guided support (Supplementary Fig. S4c). In addition, 

we simplify the semielliptical quarter of the groove by straightening its profile so as to form an inclined 

beam, which is in turn attached to the preceding horizontal part. The analysis of the building block subjected 

to uniform temperature is now reduced to the solution of a statically indeterminate problem of a Timoshenko 

beam-column (Supplementary Fig. S4d) with an equivalent CTE, 𝛼effective = 𝛼core − 𝛼frame , 

compensating the neglect of the thermal expansion of the frame. 
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Supplementary Fig. S4: (a) Geometry of unidirectional building block, U-BB, with its dimensional 

parameters. (b) Deformed U-BB with expansion ∆ℎ depicted at a given temperature, 𝑇. (c) Condensed 

model of U-BB, where the nominal geometry is reduced to that of an effective core with 𝛼effective =

𝛼core − 𝛼frame subject to ∆𝑇 and pertinent boundary conditions. (d) Further model reduction to a statically 

determinate Timoshenko beam-column subjected to reaction forces, 𝐹𝐴 and 𝑀𝑅, both dependent on T.  

  By releasing redundant constraints on the clamped end of the beam-column, the model in Supplementary 

Fig. S4c becomes statically determinate (Supplementary Fig. S4d). Its corresponding axial force (𝐹𝐴(𝑇)) 

and bending moment (𝑀𝑅(𝑇)) that both depend upon the level of temperature, as well as its deflection can 

be obtained through the solution of the following set of second-order differential equations: 

{
 
 

 
 𝑑

2𝑣

𝑑𝑥2
= −

𝐹𝐴(𝑇)

𝐸𝐼
𝑣 +

𝑀𝑅(𝑇)

𝐸𝐼
,                                           0 ≤ 𝑥 ≤ (

𝑙

2
− 𝑎)

𝑑2𝑣

𝑑𝑥2
= −

𝐹𝐴(𝑇)

𝐸𝐼
[𝑣 +

𝑏

𝑎
(𝑥 −

𝑙

2
+ 𝑎)] +

𝑀𝑅(𝑇)

𝐸𝐼
,           (

𝑙

2
− 𝑎) < 𝑥 ≤

𝑙

2
 

                        (2) 

where 𝑣 is the transverse deflection along the y axis of the beam, and it represents the difference between 

the deformed and undeformed axis of the beam-column. 𝐸 and 𝐼 are the Young’s modulus and the second 

moment of area of the beam cross-section. The following notation applies: 

𝑘2 =
𝐹𝐴(𝑇)

𝐸𝐼
,      𝑚𝑘2 =

𝑀𝑅(𝑇)

𝐸𝐼
, 𝑙1 = 

𝑙

2
− 𝑎                                                     (3) 
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which is substituted into Eqns. (2) and yields: 

{
 
 

 
 𝑑

2𝑣

𝑑𝑥2
= −𝑘2𝑣 + 𝑚𝑘2,                                            0 ≤ 𝑥 ≤ 𝑙1      

𝑑2𝑣

𝑑𝑥2
= −𝑘2 [𝑣 +

𝑏

𝑎
(𝑥 − 𝑙1)] + 𝑚𝑘

2,              𝑙1 < 𝑥 ≤
𝑙

2
        

                     (4) 

The general solutions of Eqns. (4) have the form: 

{
𝑣(𝑥) = 𝐶1 sin(𝑘𝑥) + 𝐶2 cos(𝑘𝑥) + 𝑚,                                0 ≤ 𝑥 ≤ 𝑙1      

𝑣(𝑥) = 𝐶3 sin(𝑘𝑥) + 𝐶4 cos(𝑘𝑥) +
𝑏

𝑎
(𝑙1 − 𝑥) + 𝑚,        𝑙1 < 𝑥 ≤

𝑙

2
        

                 (5) 

The constants of integration 𝐶1 and 𝐶2 can be determined from the boundary conditions. Since the beam 

is clamped at the left end, we impose: 

𝑣|𝑥=0 = 0,   
𝑑𝑣

𝑑𝑥
|
𝑥=0

= 0                                                                      (6) 

To determine the constants of integration 𝐶3 and  𝐶4 , continuity on deflection and slope is enforced at the 

junction between the two portions of the beam, thus yielding: 

𝑣|𝑥=𝑙1+ = 𝑣|𝑥=𝑙1
− ,    

𝑑𝑣

𝑑𝑥
|
𝑥=𝑙1

+
=
𝑑𝑣

𝑑𝑥
|
𝑥=𝑙1

−
                                                 (7) 

Substituting into Eqns. (5) the values of the integration constants from Eqns. (6) and (7) allows the 

calculation of the deflection curve 𝑣(𝑥). By adding the initial ordinates of the undeformed axis to the 

transverse deflection of the beam, we obtain the final ordinates of the deflection curve for both portions of 

the beam: 

{

𝑦(𝑥) = −𝑚 cos(𝑘𝑥) + 𝑚,                                                                                   0 ≤ 𝑥 ≤ 𝑙1      

𝑦(𝑥) = − [𝑚 +
𝑏

𝑎𝑘
sin(𝑘𝑙1)] cos(𝑘𝑥) +

𝑏

𝑎𝑘
cos(𝑘𝑙1) sin(𝑘𝑥) + 𝑚,         𝑙1 < 𝑥 ≤

𝑙

2
    

   (8) 

With the above equations of the deflection curve, we can determine the force 𝐹𝐴  and moment 𝑀𝑅  by 

imposing pertinent compatibility conditions. The first specifies that at the right end support of the beam: 

𝑑𝑦

𝑑𝑥
|
𝑥=

𝑙
2

=
𝑏

𝑎
                                                                            (9) 

Substitution of Eqns. (8) into Eqn. (9) yields the first compatibility equation: 

[𝑚𝑘 +
𝑏

𝑎
sin (𝑘𝑙1)] sin (

𝑘𝑙

2
) +

𝑏

𝑎
cos (𝑘𝑙1)cos (

𝑘𝑙

2
) =

𝑏

𝑎
                                     (10) 

The second comes from the observation that upon heating any change in the beam length is caused by the 

sum of two portions: (1) the elongation produced by the thermal expansion of the beam, and (2) the 

contraction caused by the axial force acting on the beam. This relation can be expressed as: 

𝑠(𝑇) − 𝑠(𝑇0) = 𝛥𝑠expansion + 𝛥𝑠compression                                                      (11) 
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where 𝑠(𝑇0) and 𝑠(𝑇) are the length of the beam axis at room temperature 𝑇0 and at a higher temperature 

𝑇, respectively. 𝛥𝑠thermal and 𝛥𝑠compression represent the length change of the beam caused by thermal 

expansion and axial compression, respectively. The expressions are given by: 

𝑠(𝑇) − 𝑠(𝑇0) = ∫ (𝑑𝑠 − 𝑑𝑥) +
𝑙1

0

∫ (𝑑𝑠 − 𝑑𝑥√1 + (𝑏/𝑎)2)

𝑙
2

𝑙1

𝛥𝑠thermal = 𝛼effective(𝑇 − 𝑇0) (𝑙1 + 𝑎√1 + (𝑏/𝑎)
2)

𝛥𝑠compression = −
𝐹𝐴𝑙

2𝐸𝐴

                                        (12) 

Substitution of Eqns. (12) into Eqn. (11) results in the second compatibility equation: 

1

8
[𝑘2𝑚2𝑙 +

2𝑏2

𝑎
+
2𝑚𝑏

𝑎
cos(𝑘𝑙1) + 4𝑚𝑘𝑏 sin(𝑘𝑙1) − 𝑘𝑚

2 sin(𝑘𝑙) −
2𝑚𝑏

𝑎
 cos(𝑘𝑙 − 𝑘𝑙1)

+
𝑏2

𝑎2𝑘
sin (2𝑘𝑎)] + 𝑎 (1 − √1 + (𝑏/𝑎)2) +

𝐹𝐴𝑙

2𝐸𝐴
− 𝛼effective(𝑇 − 𝑇0) (𝑙1 + 𝑎√1 + (𝑏/𝑎)

2) = 0

       (13) 

  Since a compact closed-form for 𝐹𝐴(𝑇)  and 𝑀𝑅(𝑇) cannot be directly retrieved from the above equations, 

we numerically solve Eqns. (13) and (10) and use the Newton–Raphson method to find their roots. The 

deflection curve 𝑦𝑇(𝑥) of the beam at a given temperature 𝑇 can then be obtained by substituting the roots 

of 𝐹𝐴(𝑇)  and 𝑀𝑅(𝑇)  into Eqns. (8). The expansion of the building block ∆ℎ at a given temperature 𝑇 is 

thus determined by calculating the transverse displacement of the beam at point A, expressed by:  

∆ℎ(𝑇) = 2 [𝑦𝑇 (
𝑙

2
) − 𝑏]                                                                   (14) 

ii. Deformation mode of U-BB 

  The above theory can now be used to investigate the deformation mechanism of U-BB for an increasing 

level of temperature. To do so, we examine a representative beam-column with given parameters 𝑙/ℎ =9, 

2𝑎/𝑙 =0.1, and 2𝑏/ℎ =0.2 and plot the reaction and bending moment at the beam end. Supplementary Fig. 

S5a shows the results with the axial force 𝐹𝐴 and bending moment 𝑀𝑅  plotted as a function of the 

temperature range here investigated. To rule out size dependency in the plot, 𝐹𝐴 and 𝑀𝑅 are normalized 

with the cross-sectional dimensions ℎ/2 and 𝑡𝑡, the latter representing the out-of-plane thickness of BB. 

Two sequential regimes of deformation can be observed, each controlled by temperature. For low values of 

temperature, the axial force dominates the bending moment and increases linearly with temperature; here 

axial compression governs the U-BB response. With a further increase of temperature, the deformation 

mode switches. Bending increases steeply and non-linearly, and the axial force flattens at a plateau with a 

resulting bending domination at high temperature. This is also apparent in Supplementary Fig. S5b, where 

a transition from a stretching to a bending mode appears in an intermediate zone (grey) around T=60 °C.  

Below this zone, i.e. in the low temperature regime, the change in slope of ∆ℎ/ℎ  shows a moderate 
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expansion induced by extension. In contrast above the transition zone, U-BB expansion is controlled by 

internal bending of the core with a rate of ∆ℎ/ℎ that increase swiftly and non-linearly with temperature.  

 

Supplementary Fig. S5: (a) Evolution of normalized 𝐹𝐴  and 𝑀𝑅  as a function of temperature in the 

temperature range 20 to 120 °C. (b) Normalized expansion ∆ℎ/ℎ as a function of temperature with slope 

showing BB sensitivity to temperature variation in the low and high temperature regime, respectively below 

and above the transition zone. 

iii.Rotational Building Block (R-BB) 

  R-BB differs from U-BB for a mere symmetry breaking as well as end closure of the core. They both seal 

R-BB with a rotational character. Supplementary Fig. S6a shows a shift in the position of the connection 𝑑 

of the core at an offset 𝑒 from the left end of R-BB. The underlying mechanism of thermal deformation 

does not differ from that of U-BB, i.e. the trigger is the CTE mismatch of the constituents, but the 

topological difference between the two (U versus R) is responsible for each floppy mode (Supplementary 

Fig. S6b).  

  To study the theory governing R-BB mechanics, we amend the beam-column model previously examined 

for U-BB in Supplementary Fig. S4. Deformation symmetry in R-BB occurring along the dash-dot axis 

(Supplementary Fig. S6b) enables us to focus on the lower half of the high CTE core only, this time with 

both ends clamped. The reaction from the upper part is equivalent to a bending moment (𝑀𝑆(𝑇)) applied at 

A, i.e. the core connection (Supplementary Fig. S6c). By releasing redundant constraints on the clamped 

end (Supplementary Fig. S6d), we obtain three reaction forces 𝐹𝐴(𝑇), 𝐹𝑉(𝑇), and 𝑀𝑅(𝑇) with values 

dependent on temperature. As opposed to the U-BB analysis, this time a transverse force 𝐹𝑉 appears to 

balance 𝑀𝑆.  
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Supplementary Fig. S6: (a) Geometry of rotational building block, R-BB. (b) Deformed R-BB with opening 

angle 𝜃 shown at a given 𝑇. (c) Reduced model for BB analysis, where the R-BB is simplified to the high 

CTE core subject to 𝑇 and pertinent boundary conditions. (d) The high CTE core model is here condensed 

to a statically determinate Timoshenko beam-column with reaction and internal forces 𝐹𝐴, 𝐹𝑉, 𝑀𝑅 and 𝑀𝑆, 

all dependent on temperature.  

  Supplementary Fig. S6d shows the four portions of the Timoshenko beam-column representing R-BB. 

Similar to the U-BB analysis of the preceding section, also here we obtain the ordinates of the deflection 

curve for the five segments of the polygonal beam: 

{
 
 

 
 
𝑦(𝑥) = 𝐶1 sin(𝑘𝑥) + 𝐶2 cos(𝑘𝑥) + 𝑚 + 𝑛𝑥,                           0 ≤ 𝑥 < 𝑒

𝑦(𝑥) = 𝐶3 sin(𝑘𝑥) + 𝐶4 cos(𝑘𝑥) + 𝑚 + 𝑝 + 𝑛𝑥,                   𝑒 ≤ 𝑥 < 𝑙1
𝑦(𝑥) = 𝐶5 sin(𝑘𝑥) + 𝐶6 cos(𝑘𝑥) + 𝑚 + 𝑝 + 𝑛𝑥,                   𝑙1 ≤ 𝑥 < 𝑙/2

𝑦(𝑥) = 𝐶7 sin(𝑘𝑥) + 𝐶8 cos(𝑘𝑥) + 𝑚 + 𝑝 + 𝑛𝑥,                  𝑙/2 ≤ 𝑥 < 𝑙2
𝑦(𝑥) = 𝐶9 sin(𝑘𝑥) + 𝐶10 cos(𝑘𝑥) + 𝑚 + 𝑝 + 𝑛𝑥  ,               𝑙2 ≤ 𝑥 ≤ 𝑙

             (15) 

where 

 𝑘2 =
𝐹𝐴
𝐸𝐼
, 𝑚𝑘2 =

𝑀𝑅
𝐸𝐼
, 𝑛𝑘2 =

𝐹𝑉
𝐸𝐼
, 𝑝𝑘2 =

𝑀𝑆
𝐸𝐼
, 𝑙1 = 

𝑙

2
− 𝑎, 𝑙2 = 

𝑙

2
+ 𝑎                     (16) 
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The constants of integration 𝐶1, 𝐶2, … , 𝐶10 are determined from the boundary conditions and continuity at 

the junction between neighbouring portions of the beam:  

𝐶1 = −
𝑛

𝑘
, 𝐶2 = −𝑚,

𝐶3 = 𝐶1 − 𝑝sin(𝑘𝑒), 𝐶4 = 𝐶2 − 𝑝cos(𝑘𝑒),

𝐶5 = 𝐶3 +
𝑏

𝑎𝑘
cos(𝑘𝑙1),

𝐶7 = 𝐶5 −
2𝑏

𝑎𝑘
cos (

𝑘𝑙

2
)

𝐶9 = 𝐶7 +
𝑏

𝑎𝑘
cos(𝑘𝑙2),

,

𝐶6 = 𝐶4 −
𝑏

𝑎𝑘
sin(𝑘𝑙1),

𝐶8 = 𝐶6 +
2𝑏

𝑎𝑘
sin (

𝑘𝑙

2
) ,

𝐶10 = 𝐶8 −
𝑏

𝑎𝑘
sin(𝑘𝑙2),

                                     (17) 

The reactions forces (𝐹𝐴, 𝐹𝑉 , 𝑀𝑅 , 𝑀𝑆) are now obtained by imposing four pertinent compatibility conditions. 

First, Eqn. (11), which for U-BB retains beam length compatibility upon heating, still holds for R-BB. 

Hence, substituting the expression of 𝑠(𝑇) − 𝑠(𝑇0), 𝛥𝑠thermal, and 𝛥𝑠compression into Eqn. (11) results in: 

∫ (𝑑𝑠 − 𝑑𝑥)
𝑙1

0

+∫ (𝑑𝑠 − 𝑑𝑥√1 + 𝑟2) +
𝑙2

𝑙1

∫ (𝑑𝑠 − 𝑑𝑥) +
𝐹𝐴𝑙

𝐸𝐴

𝑙

𝑙2

−𝛼effective(𝑇 − 𝑇0) (𝑙 − 2𝑎 + 2𝑎√1 + (𝑏/𝑎)
2) = 0

                                (18) 

In addition, the following two apply to the right end support of the beam: 

𝑦(𝑙) = 0                                                                            (19) 

𝑑𝑦

𝑑𝑥
|
𝑥=𝑙

= 0                                                                            (20) 

The fourth condition stems from the deformation symmetry along the OA line that exists in the deformed 

R-BB (Supplementary Fig. S6b). This translates into an equivalent condition of slope between point A 

(offset of e from O), and the symmetry axis (OA), here expressed as: 

𝑑𝑦

𝑑𝑥
|
𝑥=𝑒

=
𝑦(𝑒)

𝑒
                                                                        (21) 

Also in this case, we resort to the Newton–Raphson method to numerically solve the reaction force 

𝐹𝐴, 𝐹𝑉 , 𝑀𝑅 , 𝑀𝑆 from the system of Eqns. (18)-(21). After the deflection curve 𝑦𝑇 of the beam at a given 

temperature 𝑇 is obtained by substituting their roots into Eqns. (15), we can express the opening angle, 𝜃, 

of R-BB at a given temperature 𝑇 through the slope of point A on the deflection curve as: 

𝜃(𝑇) = 2arctan (
𝑑𝑦𝑇
𝑑𝑥

|
𝑥=𝑒

)                                                                 (22) 

iv.Deformation mode of R-BB 

  Similar to the U-BB investigation on the mechanism of deformation, here we study the deformation 

behaviour of R-BB. As a representative model, a beam-column is examined with  𝑙/ℎ =9, 2𝑎/𝑙 =0.1, 2𝑏/ℎ 

=0.2, 2e/𝑙 =0.8. Supplementary Fig. S7a and b plot its reaction and internal forces 𝐹𝐴, 𝐹𝑉, 𝑀𝑅, and  𝑀𝑆 as 

a function of increasing temperature. The trends (Supplementary Fig. S7a) are similar to those of U-BB: 
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two temperature dependent modes with deformation switch from stretching to bending occurring above the 

transition zone (grey). In Supplementary Fig. S7b the magnitude of 𝐹𝑉 and  𝑀𝑆 are respectively two and 

one order lower than 𝐹𝐴 and 𝑀𝑅 in Supplementary Fig. S7a. This result indicates that the transverse force 

and bending moment at the connection (point A in Supplementary Fig. S6d) contribute only slightly to the 

R-BB deformation. Furthermore, Supplementary Fig. S7c shows the temperature driven response of R-BB, 

where the slope of the opening angle (𝜃) indicates a mild deformation dominated by extension in the low 

temperature regime, as opposed to above, where BB responds with internal bending with a deformation that 

is rapid and sensitive to the temperature change at higher values. 

 

Supplementary Fig. S7: (a) and (b) Evolution of the normalized 𝐹𝐴 , 𝑀𝑅 , and 𝐹𝑉 , 𝑀𝑆  as a function of 

temperature in the range 20 to 120 °C. (c) Opening angle 𝜃 as a function of temperature with slope showing 

R-BB sensitivity to a temperature change throughout the whole spectrum of temperature. 

S3-B. Experimental validation of BB theoretical models  

  To verify the validity of the solutions obtained from the previous theoretical analyses, we fabricated a 

number of building blocks with a specific set of geometric parameters and tested them in a heating chamber 
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(see S1 for details). A representative array of results from these experiments is shown in Supplementary 

Fig. S8 for both U-BB and R-BB. The experimentally measured values of Δℎ/ℎ  and 𝜃  of actual BB 

geometry confirms the mechanism of deformations predicted through the mechanics theory on simplified 

column-beam analogs. In Supplementary Fig. S8, the experimental results show a good agreement with the 

theoretical prediction, especially in high temperature region (max error 15%). The discrepancy can be 

attributed to frictional dissipation and the simplified geometry assumed for the BB. In the low temperature 

regime, the former plays a major role, since the testing plate upon which the BB rests during the experiment 

is not perfectly smooth and hence the frictional force can significantly dominate the low magnitude of the 

internal forces generated in BB (Supplementary Fig. S7a and b). In the high temperature regime, on the 

other hand, the simplification of the semielliptical groove of BB core to a straight inclined beam is the main 

source of the deviation.  

 

Supplementary Fig. S8: Experimental validation of theoretical predictions for both BBs: (a) normalized 

expansion ∆ℎ/ℎ versus temperature for U-BB tested with two representative sets of parameters (blue and 

red); (b) opening angle 𝜃 as a function of temperature for R-BB tested with two representative sets of 

parameters. Horizontal and vertical bars indicate the standard deviation around the mean from a pool of 

measures taken for both temperature and deformation, the former measured at three distinct sites in the 

heating camber, the latter obtained from three repeated measurements. 
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S3-C. Computational analysis of BB response 

  The theory presented in S3-A and experimentally validated in S3-B applies to a BB with core of small 

size ligament (d<<l) and groove geometry abridged with a straight axis. Here we relax these assumptions 

and examine a BB with actual (un-simplified) core geometry made of two distinct passive materials: 

silicone rubber and wood (see S2 for material properties). Section S3-C-i explains the method used to 

generate the deformation property capturing the role of the ligament size (d/l) besides the core size (h/l). 

Section S3-C-ii investigates the minor role of other geometric parameters defining U-BB and R-BB, in 

particular, the groove size, the core connection offset and the size of the end closure. 

  All the computational analyses here performed account for both material and geometric non-linearity of 

the constituents and are conducted by combining Python scripts and Abaqus (Dassault Systemes Simulia 

Corp, France). Eight-node, quadratic plane-stress elements (element type CPS8) are used to discretize the 

BB models and a mesh size equal to 𝑏/4 is adopted after performing a convergence analysis on the mesh 

size. The mechanical behavior of silicone rubber core is captured by a first order Ogden model. The 

effective properties of the wooden frame are assumed as transversely isotropic, and the values are obtained 

from experimental measures on dog-bone specimen of the solid material (see S2 for material properties). 

The cut motifs introduced into the computational models are represented with seam cracks along which 

duplicate element nodes overlap. A contact law with hard contact for the normal behavior, and frictionless 

for the tangential behavior, was assigned to the model. 

i. Deformation-property profile  

  The deformation property profile in Fig.1a is generated through a response surface that fits a set of 

numerical predictions with model details given above. In general, the relationship between the response of 

a system (y) and a set of predictor variables (𝑥1, 𝑥2, … , 𝑥𝑘) can be mathematically expressed as a multiple 

linear regression model which can be written as 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑘𝑥𝑘 + 𝜀                                              (23) 

where y is the true response variable and the parameters 𝛽𝑗  (𝑗 = 0,1, … , 𝑘), are the regression coefficients. 

This model spans a k-dimensional space defined by the regressor {𝑥𝑗}. The parameter 𝜀 is the error of the 

regression model. 

  To provide a continuous approximation of the true response, the material and geometry spaces of the 

deformation-property profile of BB are generated from two sets of simulations. These are conducted in the 

admissible domain of two sets of variables: (𝐸𝑓/𝐸𝑐, ∆𝛼) and (𝑙/ℎ, 𝑑/𝑙), and for each of them a response 

surface is obtained. In general, the response of an N-order model as a function of two variables, 𝑥1 and 𝑥2, 

is given by: 
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𝑦 =∑∑𝛽𝐼,𝐽𝑥1
𝐽
𝑥2
𝐼−𝐽

𝐼

𝐽=0

+

𝑁

𝐼

𝜀                                                        (24) 

where y is the true value of the response, in this case, ∆ℎ/ℎ for U-BB and 𝜃 for R-BB;  𝑥1 and 𝑥2 are 𝐸𝑓/𝐸𝑐, 

∆𝛼   for the material space, and 𝑙/ℎ , 𝑑/𝑙  for the geometric space. If we let 𝛽𝐼,𝐽 = 𝛽(𝐼2+3𝐼−2𝐽) 2⁄ , and 

𝑥1
𝐽
𝑥2
𝐼−𝐽

= 𝑥(𝐼2+3𝐼−2𝐽) 2⁄ , where indices I and J are integers satisfying 0 ≤ 𝐼 + 𝐽 ≤ 𝑁 and 𝐽 ≤ 𝐼,  we can 

write Eqn. (24) in the general form of a multiple linear regression model as in Eqn. (23). 

  To estimate the regression coefficients 𝛽𝑗, we use the method of the least squares. Writing Eqn. (23) in 

matrix notation gives: 

𝒚 = 𝑿𝜷 + 𝜺                                                                     (25) 

where: 

𝒚 = [

𝑦1
𝑦2
⋮
𝑦𝑛

] , 𝑿 = [

1 𝑥11 𝑥12 ⋯ 𝑥1𝑘
1 𝑥21 𝑥22 ⋯ 𝑥2𝑘
⋮ ⋮ ⋮
1 𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑘

] , 𝜷 = [

𝛽1
𝛽2
⋮
𝛽𝑘

] , 𝑎𝑛𝑑 𝜺 = [

𝜀1
𝜀2
⋮
𝜀𝑛

]                      (26) 

where the index n represents the number of sampling points in the design of experiments.  

  Since the goal is to find the regression coefficient vector 𝜷 that minimizes the error vector  𝜺, we can write 

the set of least squares function as: 

𝐿 =  ∑𝜀𝑖
2

𝑛

𝑖=1

= 𝜺𝐓𝜺 = (𝒚 − 𝑿𝜷)T(𝒚 − 𝑿𝜷)                                      (27) 

Eqn. (27) can be further developed into: 

𝐿 = 𝒚T𝒚 − 𝟐𝜷T𝑿T𝒚 + 𝜷T𝑿T𝑿𝜷                                              (28) 

with the least-squares estimators 𝑏0, 𝑏1, … , 𝑏𝑘 satisfying the condition: 

𝜕𝐿

𝜕𝜷
|
𝒃

= −2𝑿T𝒚 + 𝟐𝑿T𝑿𝒃 = 𝟎                                               (29) 

Eqn. (29) simplifies to the normal equations in matrix form: 

𝑿T𝑿𝒃 = 𝑿T𝒚                                                               (30) 

Solving the normal equations gives the least-squares estimator b of the regression coefficients 𝜷: 

𝒃 = (𝑿T𝑿)
−1
𝑿T𝒚                                                           (31) 

Hence, the fitted regression model is: 

𝒚̂ = 𝑿𝒃                                                                    (32) 

The residuals are: 

𝒆 = 𝒚 − 𝒚̂                                                                   (33) 

The coefficient of determination is: 
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𝑅2 =
𝑆𝑆𝑅
𝑆𝑆𝑇

= 1 −
𝑆𝑆𝐸
𝑆𝑆𝑇

                                                      (34) 

  From the above we can respectively write the sum of squares of the regression 𝑆𝑆𝑅, the sum of squares of 

the residual 𝑆𝑆𝐸, and the total sum of squares as: 

𝑆𝑆𝑅 = 𝒃
T𝑿T𝒚 −

(∑ 𝑦𝑖
𝑛
𝑖=1 )

𝑛
                                                   (35) 

𝑆𝑆𝐸 = 𝒆
T𝒆 = 𝒚T𝒚 − 𝒃T𝑿T𝒚                                                  (36) 

𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸                                                             (37) 

  To reduce the error of the approximation, we aim at ensuring the coefficient of determination, 𝑅2, above 

0.99, a value that indicates here an acceptable level of accuracy. As per choice of the order of the response 

surface function (Eqn. (24)), we adopt 𝑁 = 4 after performing a systematic analysis on the role of N.  

  While Fig.1a shows the response surface of ∆ℎ/ℎ for U-BB, i.e. the property-deformation profile, here 

we report, as example, the expression of the surface response of 𝜃 for R-BB in its geometric space:  

𝜃 =∑∑𝑐𝐼,𝐽 (
𝑙

ℎ
)
𝐽

(
𝑑

𝑙
)
𝐼−𝐽𝐼

𝐽=0

4

𝐼

                                                   (38) 

where the regression coefficients 𝑐𝐼,𝐽  is estimated through Eqn. (31). A similar approximation can be 

expressed in the complementary material space for R-BB as a function of the pair of material properties 

(𝐸𝑓/𝐸𝑐, ∆𝛼). Below are two plots constituting the property-deformation profile of R-BB response at 𝑇 =

120 °C (Supplementary Fig. S9a and b). Obtained through Eqn. (38), the spectra provide the range of 

rotational deformation that a BB can achieve through tuning the most influential geometric and material 

attributes that control R-BB response to temperature. The maps provide guidelines for attributes selection 

of BB, in particular, the geometric space on the right-hand side is the foundation of our morphing scheme.  

 

Supplementary Fig. S9: Property-deformation profile of R-BB 



18 

 

ii. Sensitivity to least influential geometric parameters  

a. Role of groove size (𝒂/𝒍 and 𝒃 /𝒉) in U-BB 

  While the surface response in Fig.1 shows the role of the most influential geometric parameters, 𝑙/ℎ and 

𝑑 𝑙⁄ , on ∆ℎ/ℎ , Supplementary Fig. S10 reports complementary results capturing the influence of the 

semielliptical groove of the core: (2𝑎/𝑙) and (2𝑏/ℎ). For a BB with 𝑙/ℎ equal to 9, the curves show a 

minor role of 2𝑎/𝑙 and 2𝑏/ℎ in the high temperature regime. On the other hand, in the transition zone, i.e. 

mid-range temperature, more notable differences appear in the shape of the response curve. In particular, 

for low values of 2𝑎/𝑙 and 2𝑏/ℎ, e.g. 0.02, the curves resemble those obtained through theory with the 

appearance of two regimes of deformation. On the other hand, for larger size of the groove, e.g. 2a/𝑙=0.4 

or 2𝑏/ℎ=0.4, no transition zone can be observed; here U-BB steadily expands with temperature through a 

combination of bending and stretching generated in its members. 

 

Supplementary Fig. S10: Normalized expansion of U-BB for a set of varying parameters of the 

semielliptical groove: (a) major axis: 2𝑎/𝑙=0.02, 0.06, 0.1, 0.14, 0.4; (b) minor axis 2𝑏/ℎ =0.02, 0.1, 0.2, 

0.3, 0.4.  

b.Role of core connection offset, and end closure size in R-BB 

  Similarly, Supplementary Fig. S11a and b show 𝜃 for varying values of (2𝑎/𝑙) and (2𝑏/ℎ), for a BB with 

𝑙/ℎ equal to 9. In addition, for R-BB, we investigate the role of the connection offset, 𝑒, and the size of the 

end closure 𝑛.  

  Supplementary Fig. S11c and d show that the opening angle increases with the 2𝑒/𝑙 and 𝑛/ℎ. Compared 

to 𝑙/ℎ or 𝑑/𝑙 , however, their effect is minor, and thus the tunability they would offer to tailor R-BB 
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response is narrow. To maximize BB response tunability, the values of the BB parameters chosen in this 

work are: 2𝑎 𝑙⁄ = 10/63,  2𝑏 𝑙⁄ = 2/7,  2𝑒/𝑙 = 4/5, 𝑛 ℎ⁄ = 2/7. 

 

Supplementary Fig. S11: Opening angle 𝜃  of R-BB for a set of varying parameters: (a) major axis: 

2𝑎/𝑙=0.02, 0.06, 0.1, 0.14, 0.4; (b) minor axis 2𝑏/ℎ =0.02, 0.1, 0.2, 0.3, 0.4; (c) 2𝑒/𝑙=0.1, 0.2, 0.4, 0.6, 

0.8; (d) 𝑛/ℎ=0.1, 0.16, 0.3, 0.5, 0.7. 

S4. Investigation on stress state and bond strength of silicone-wood interface 

  Supplementary Fig. S12a shows that the constituent materials after the curing process bond at four sites, 

thus creating four silicone/wood interfaces. It is at these locations that the BB can potentially become weak 

during deformation. Here we analyze the stress state of their interfaces resulting from an increase of 

temperature and then measure the bonding strength through a set of pull-out tests.  
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  Section S3-A provides a full analysis of both the temperature-driven deformation and the internal forces 

generated in a given BB. The results show the existence of an axial compressive force 𝐹𝑅 and a bending 

moment 𝑀𝑅  that act on the bonding interface (Supplementary Fig. S12a). At each of these edges, the 

distribution of the normal stresses can be simply described as: 

𝜎(𝑦, 𝑇) = −
𝑀𝑅(𝑇)

𝐼
𝑦 −

𝐹𝑅(𝑇)

𝐴
                                                          (39) 

where 𝜎 is the normal stress exerted by the core to the surrounding low CTE frame, 𝑦 ∈ [−ℎ/4, ℎ/4], and 

𝑇 is a given temperature. A positive value of 𝜎 represents a tensile stress, whereas the negative counterpart 

indicates compression. 𝐴 and 𝐼 are the area and second moment of area of the cross-section. From Eqn. 

(39), we gather that the lower half of the cross-section (𝑦 ∈ [−ℎ/4, 0]) is subject to either compressive or 

tensile stress, depending on the magnitude of 𝑀𝑅  and 𝐹𝑅 , which is governed by temperature. Only the 

tensile portion can lead to interfacial debonding, which is controlled by the maximum tensile stress that 

occurs at the furthest edge (𝑦 = −ℎ/4) of the cross-section. This critical value varies with the BB core size.  

Supplementary Fig. S12b-II shows how the normal stress at 𝑦 = −ℎ 4⁄  evolves with temperature and the 

aspect ratio (𝑙/ℎ) of the BB core. The green area indicates a negative value of 𝜎(𝑦 = −ℎ 4⁄ ), meaning the 

transversal section of the interface is entirely compressed (Supplementary Fig. S12b-I). On the other hand, 

the orange points to a regime with positive values, which correspond to the distribution of 𝜎(𝑦 = −ℎ 4⁄ ) 

shown in Supplementary Fig. S12b-III. Only in this regime, debonding may occur, once the normal tensile 

stress at 𝑦 = −ℎ 4⁄  reaches a critical value above the strength of the bonded interface.  

  To determine the strength of the bonding interface, we conducted a set of uniaxial tensile tests on six 

specimens fabricated with the process described in Fig.2. Specimens were extracted from a representative 

sample with geometry emphasizing the wood/silicone interface, i.e. a critical portion of one unit with two 

beams of rubber bonded to a layer of wood (Supplementary Fig. S12c-I). The bonding strength was assessed 

through a set of pull-out tests (Supplementary Fig. S12c-II). The tensile force was applied until the 

appearance of interfacial debonding, a point identified in red in the force-displacement curve of 

Supplementary Fig. S12c-IV. From the value of the ultimate force at this point, the bonding strength was 

calculated as 0.65 ± 0.09 MPa, a value that is an order of magnitude higher than the critical values that 

tensile stress can assume in the tensile regime (orange in Supplementary Fig. S12b-II). From this 

investigation, we can assert that the stress state at the silicone-wood interface is either compression or 

tension depending on temperature. While the former cannot but contribute to amplify the bonding of 

silicone rubber to wood, the latter can reach only values that are much lower than the bonding strength, 

hence providing almost no likelihood of detachment under the conditions and temperature reported in this 

investigation.  
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Supplementary Fig. S12: (a) Internal forces triggered by an increase of temperature at the bonding interface 

sites of BB. (b) Normal stress 𝜎 at 𝑦 = −ℎ 4⁄  as a function of temperature 𝑇 and length-to-width ratio of 

the BB core 𝑙/ℎ. (c) Pull-out test and force-displacement response of a representative specimen. 
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S5. Time response upon heating  

  As described in S3-A, the deformation of the BB is caused by a mere mismatch of thermal expansion of 

the constituent materials. The materials do not undergo any atomic or molecular changes, as in the case of 

smart materials, such as shape memory polymers. On the other hand, the deformation of our BB is 

determined by the topological layout and the internal forces that are generated in the BB members, with 

magnitude dependent on temperature. Once the BB has reached the target temperature, the deformation is 

instantaneous, as opposed to the time response observed in smart materials. With our metamaterials, the 

only time span involved is that required to heat the sample to the target temperature, which depends only 

on the heating strategy and the experimental setup.  

  Our analysis here, therefore, pertains to our experimental system (see S1), which consisted of a heating 

chamber with multiple thermocouples monitoring the maintenance of 120 ℃, our target temperature.  We 

conducted a series of tests on a BB placed in the middle of the chamber already heated at 120 ℃ and we 

recorded with a digital camera (EOS Rebel T6i, Canon USA) the time span required for the BB to deform. 

Two medium types were examined: fan-propelled air and oil bath, the former requiring 300±17 seconds to 

complete the deformation, and the latter 115±18 seconds.  

  To corroborate our experimental observations, a numerical analysis of the transient heat was performed 

with the following values assigned to the thermal conductivity, 𝐾, and specific heat, 𝑐, of the constituents: 

𝐾𝑟𝑢𝑏𝑏𝑒𝑟 =  0.2𝑊 (𝑚 ∙ 𝐾)⁄ , 𝑐𝑟𝑢𝑏𝑏𝑒𝑟 =  1100 𝐽 (𝑘𝑔 ∙ 𝐾)⁄ , and  𝐾𝑤𝑜𝑜𝑑 =  0.1 𝑊/(𝑚 ∙ 𝐾) ,   𝑐𝑤𝑜𝑜𝑑 =

 1600  𝐽/(𝑘𝑔 ∙ 𝐾). Due to symmetry, half BB was modelled in three dimensions (Supplementary Fig. S13a) 

with size identical to the fabricated BB and discretized with 20-node quadratic heat transfer bricks 

(DC3D20 element) in Abaqus (Dassault Systemes Simulia Corp, France). The following convective 

conditions were applied to the external surfaces of the model: 

𝑞 = ℎ𝑐(𝑇𝑓 − 𝑇)                                                                           (40) 

where 𝑞 and ℎ𝑐 are respectively the heat flux per second and the heat convection coefficient. 𝑇 denotes the 

surface temperature, with initial value set to 20 ℃, and 𝑇𝑓 represents the temperature of the surrounding 

medium, assumed here as 120 ℃ . Because the heat convection coefficient ℎ𝑐  cannot be accurately 

extracted from our in-house heating chamber, we appraised the upper and lower bound of the time span that 

would result from values of the heat convection ℎ𝑐  falling within practical ranges. For natural convection 

in oil, the ℎ𝑐 range was 50 - 200 W/(𝑚2𝐾), and for the fan-propelled air heating (force convection with 

low speed air over surface), it was 10 - 40 W/(𝑚2𝐾).   

  Supplementary Fig. S13b and c show the time variation of the interior temperature within the silicone 

rubber core for a BB immersed respectively in air and oil at 120 ℃. A rapid increase can be observed until 

the thermal equilibrium is reached, a state indicated by the start of the plateau with corresponding time 
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representing the BB response. In air, the response is within the range 180 to 660 seconds, whereas in oil it 

is 56 to 160 seconds. These ranges are aligned with the values obtained from the experiments. 

 

 

Supplementary Fig. S13: (a) Numeric results from transient heat transfer. (b) Interior temperature of BB as 

a function of time for BB in fan-propelled air conditions. (c) Interior temperature of BB as a function of 

time for BB immersed in oil bath. 
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S6. Morphing from a pre-assigned sequence of building blocks 

  S3 has examined the response of an individual BB through theory and numerical analysis. Here we focus 

on a monolithic assembly of BBs, each with its own set of geometric attributes. The goal is to express the 

collective deformation of the metamaterial phenotype at a given 𝑇. As a paradigmatic example, we consider 

a series of 𝑚 rotational units sharing low CTE edges and all having equal width 𝑙𝑖. Supplementary Fig. S14 

shows its deformed configuration, the phenotype at a given 𝑇. The central curve (dash type) is specified as 

representative of the deflected axis, and assumed as an arc spline consisting of a number of 𝐺1 continuous 

arcs and straight segments, all passing through the interface mid-points, 𝑃𝑖, between adjacent units and 

normal to their contiguous edges.  

 

Supplementary Fig. S14: Schematic of a chain of 𝑚 building blocks in series, with an arc connecting a pair 

of consecutive mid-points 𝑃𝑖   at the BB interface. The local coordinate system (X′Y′) of a generic unit 𝑖 is 

referenced to the global system (XY) on the first outer frame of the first unit. 

 With reference to the generic building block 𝑖, we express the coordinates of its point 𝑃𝑖  in the local 

coordinate system, indicated as the X′Y′ plane, and in the global system residing at 𝑃0 and visualized as the 

XY plane in the first unit. The two systems are rotated by 𝜓𝑖 and translated by a vector pointing from point 

𝑃𝑜 to 𝑃𝑖−1. The coordinates of 𝑃𝑖 in the X′Y′ plane can be represented by the two-dimensional array: 

𝒑′𝑖 = [
𝑥′𝑝𝑖
𝑦′𝑝𝑖

] = [
cos(𝜃𝑖 2⁄ )𝐿𝑖
−sin(𝜃𝑖 2⁄ )𝐿𝑖

]                                                         (41) 
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where the integer 𝑖 ∈ [1,𝑚] and the expression of 𝐿𝑖, which is the distance between two consecutive mid-

points of the low CTE edges, is given by: 

𝐿𝑖 = (ℎ𝑖 − 𝑛 + 2𝑡𝑖)cos(𝜃𝑖 2⁄ ) + (𝑙𝑖 + 2𝑡0)sin(|𝜃𝑖| 2⁄ ) + 𝑛                              (42) 

where ℎ𝑖 , 𝑙𝑖 , 𝑡𝑖 , 𝑑𝑖 are the main geometric parameters controlling the R-BB response, and 𝑛, 𝑡0  are minor 

parameters here assumed unchanging for all the units due to their minor influence (Supplementary Fig. 

S11). 𝜃𝑖 represents the opening angle of building block 𝑖 , whose value is governed by 𝑙𝑖 ℎ𝑖⁄  and 𝑑𝑖 𝑙𝑖⁄ , as 

illustrated in (Supplementary Fig. S9b). A positive value of 𝜃𝑖 represents a clockwise rotation, and negative 

means counter-clockwise. 

  The following affine transformation can be used to express 𝑃𝑖 in the global coordinate system (XY):  

𝒑𝑖 = 𝑴𝑖𝒑′𝑖 + 𝒗𝑖                                                              (43) 

where the array 𝒑𝑖  represents the coordinates of 𝑃𝑖  in the global coordinates system. 𝒗𝑖   denotes the 

translation vector pointing from point 𝑃𝑜 to 𝑃𝑖−1 ; the matrix 𝑴𝑖  defines the relative rotation of the 

coordinate systems by the angle 𝜓𝑖, and are given by: 

𝑴𝑖 = [
cos𝜓𝑖 −sin𝜓𝑖
sin𝜓𝑖 cos𝜓𝑖

],        𝒗𝑖 = 𝒑𝑖−1 − 𝒑0                                     (44)   

If the origin of the global coordinate system is 𝑃0 with coordinates 𝑥𝑝0 = 𝑦𝑝0 = 0, the rotation of the unit 

𝑖 with respect to the global system (XY) is the mere aggregation of the opening angle 𝜃 of the preceding 

units (𝑖 − 1) (see Supplementary Fig. S14), thus expressed as  

𝜓𝑖 =∑𝜃𝑗                                                                               (45)

𝑖−1

𝑗=0

 

where 𝜃0 is null. As assumed above, the central axis of the deformed configuration of the BB assembly can 

be represented by a 𝐺1 continuous arc spline passing through all the mid-points 𝑃𝑖 . The expression of a 

generic arc 𝑖  in the arc spline can be expressed from point 𝑃𝑖−1 and to point 𝑃𝑖, as: 

𝐹𝑖(𝑥, 𝑦) = (𝑥 − 𝐴𝑖)
2 + (𝑦 − 𝐵𝑖) − 𝑅𝑖

2 = 0 ,       
𝑥𝑝𝑖−1 ≤ 𝑥 ≤ 𝑥𝑝𝑖
𝑦𝑝𝑖−1 ≤ 𝑦 ≤ 𝑦𝑝𝑖  

                        (46) 

with 𝑅𝑖 being the radius, and (𝐴𝑖 , 𝐵𝑖) the coordinates of the arc center, whose expressions are: 

𝑅𝑖 =
𝐿𝑖

2sin(|𝜃𝑖| 2⁄ )
, 𝐴𝑖 = −

𝐿𝑖sin𝜓𝑖
2sin(𝜃𝑖 2⁄ )

+ 𝑥𝑝𝑖−1 ,  𝐵𝑖 = −
𝐿𝑖cos𝜓𝑖
2sin(𝜃𝑖 2⁄ )

+ 𝑦𝑝𝑖−1                (47) 
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S7. Morphing on-target through encoded sequence of building blocks 

  Morphing on target poses the search of a BB sequence that allows the metamaterial phenotype to 

accurately conform to a target domain. We describe here the target as a domain with central axis 

representable with an arc spline and two symmetric boundaries that are continuous with varying distance 

along the central axis. Both are shown in blue on the upper part of  Supplementary Fig. S15, the former in 

dash-dot and the latter with solid line. In red, at the lower part of the figure, is a metamaterial phenotype 

with randomly assigned BB sequence expressed at a given temperature.  

 

 

Supplementary Fig. S15: Target domain (blue - top) with varying width and off-target metamaterial 

phenotype (red - below), both sharing the initial location where the global coordinate system is anchored.   

S7-A. Description of target shape  

  The central axis of the target shape is here assumed to trace an arc spline mathematically expressed piece-

wisely in an implicit form as: 

𝑓 = 𝑓(𝑥, 𝑦) =

{
 

 
𝑓1(𝑥, 𝑦) = 0, if  0 ≤ 𝑥 < 𝑥1 0 ≤ 𝑦 < 𝑦1
𝑓2(𝑥, 𝑦) = 0, if  𝑥1 ≤ 𝑥 < 𝑥2  𝑦1 ≤ 𝑦 < 𝑦2

…
𝑓𝑞(𝑥, 𝑦) = 0, if  𝑥𝑞−1 ≤ 𝑥 ≤ 𝑥𝑞 𝑦𝑞−1 ≤ 𝑦 ≤ 𝑦𝑞

                              (48) 
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where 𝑞 denotes the number of arcs and straight lines, and the intervals are the coordinates of the blending 

points. 

  For the symmetric boundaries of the target shape, the function describing the width change along the 

central axis is expressed as: 

𝑤 = 𝑤(𝑥, 𝑦)                                                                    (49) 

S7-B. Problem formulation 

  The phenotype will match the target shape if two conditions are guaranteed. The first pertains to the central 

axis of the metamaterial phenotype. For a given temperature, a generic phenotype with randomly assigned 

BB sequence will most likely be off-target, i.e. its central axis would appear far from that of the target. This 

gap from the target (Supplementary Fig. S15) can be mathematically expressed for each building block as  

 𝐺𝑖 = √[(𝑥𝑝𝑖 − 𝑥𝑟𝑖)
2 + (𝑦𝑝𝑖 − 𝑦𝑟𝑖)

2] = ‖𝒑𝒊 − 𝒓𝒊‖                              (50) 

where (𝑥𝑝𝑖 , 𝑦𝑝𝑖) are the coordinates of the interface mid-point 𝑃𝑖 of BB i in the off-target phenotype, and 

(𝑥𝑟𝑖 , 𝑦𝑟𝑖) are those of the respective point 𝑅𝑖 on the target axis; 𝒑𝒊 and 𝒓𝒊 = [𝑥𝑟𝑖 , 𝑦𝑟𝑖  ]
T

 denote the position 

vectors of 𝑃𝑖 and 𝑅𝑖 in the global coordinate system.  

  The second condition relates to the boundary of the target domain. Again here, an arbitrary string of BBs 

will likely lead to a phenotype with non-conforming boundaries, i.e. incompatible from those of the target 

(Supplementary Fig. S15). We thus express the gap between the width of each BB and the width of the 

boundary at a given position as: 

  𝑊𝑖 = |𝜔𝑖 − 𝑤(𝑥𝑟𝑖 , 𝑦𝑟𝑖)| = |𝜔𝑖 − 𝑤(𝒓𝒊)|                                             (51) 

where 𝜔𝑖 = 𝑙𝑖 + 2𝑡0 is the width for BB𝑖 in the off-target phenotype, and 𝑤(𝑥𝑟𝑖 , 𝑦𝑟𝑖) is the width of the 

target shape corresponding to point 𝑅𝑖.  

  In general, the characteristic distances of an off-target phenotype from the target domain, i.e. Eqns. (50) 

and (51), should be both minimized simultaneously. This can be expressed through a least-squares model 

that minimizes the sum of the squares of both residuals. In this case, the overall objective function can be 

formulated as:   

𝐹 = ∑ (𝐺𝑖
2 +𝑊𝑖

2)𝑚
𝑖=1 = ∑ [‖𝒑𝒊 − 𝒓𝒊‖

2 + |𝜔𝑖 − 𝑤(𝒓𝒊)|
2]𝑚

𝑖=1                     (52) 

S7-C. Design variables 

  Supplementary Fig. S14 shows the internal parameters describing the BB architecture: ℎ𝑖 , 𝑡𝑖 , 𝑙𝑖 , 𝑑𝑖 , 𝑛, 𝑡0 . 

The first four are treated as variables, whereas 𝑛  and 𝑡0  are assumed constant because (as S3-C 
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demonstrates) the BB response is less sensitive to changes in their value. We can thus collect the most 

influential descriptors of the BB geometry in the following vector of variables: 

𝑿 = {ℎ𝑖 , 𝑡𝑖 , 𝑙𝑖 , 𝑑𝑖}
T   (𝑖 = 1,2, . . 𝑚)                                                (53) 

S7-D. Design constraints 

  To achieve the kinematic compatibility between neighbouring units, the edge of each building block 𝑖 

should be normal to the tangent direction of the target axis, an arc spline, on point 𝑅𝑖 . These constraints can 

be mathematically expressed by the system of equalities: 

𝑔𝑖 = 𝒏𝑖
T ∙ 𝒖𝑖 = 0     (𝑖 = 1,2, … ,𝑚)                                                    (54) 

where  𝒏𝑖  denotes the normal vector of the target curve on point 𝑅𝑖, expressed as: 

𝒏𝑖 = [𝜕𝑓(𝑥𝑟𝑖  ,  𝑦𝑟𝑖)/𝜕𝑥, 𝜕𝑓(𝑥𝑟𝑖  ,  𝑦𝑟𝑖)/𝜕𝑦 ]
T

                                            (55) 

with  𝜕𝑓/𝜕𝑥  and 𝜕𝑓/𝜕𝑦 representing partial derivatives of the target arc spline; (𝑥𝑟𝑖  ,  𝑦𝑟𝑖)  denote the 

coordinates of point 𝑅𝑖 in the global coordinate system. 𝒖𝑖 is a vector in the 𝑋 axis direction of the localized 

coordinate system residing at point 𝑃𝑖−1, and it can be obtained from the following transformation:  

𝒖𝑖 = 𝑴𝑖𝒖𝑖
′                                                                 (56) 

The unit vector 𝒖𝒊
′  is expressed as [1,0]T in the local coordinate system and the matrix 𝑴𝑖  (Eqn. (44)) 

defines the relative rotation. 

  The opening angle 𝜃𝑖 for each R-BB is governed by both  𝑙𝑖 ℎ𝑖⁄  and 𝑑𝑖 𝑙𝑖⁄ , and Supplementary Fig. S9b 

presents the maximum range of  𝜃𝑖 that R-BB can generate in the geometric space. To produce admissible 

deformation, the following constraints should not be violated: 

𝑔𝑖
𝑙 ℎ⁄ = 𝑅𝑙/ℎ

𝐿 − 𝑙𝑖 ℎ𝑖⁄ ≤ 0                                                                (57)   

𝑔
𝑖

𝑙 ℎ⁄
= 𝑙𝑖 ℎ𝑖⁄ − 𝑅𝑙/ℎ

𝑈 ≤ 0                                                                (58)   

𝑔𝑖
𝑑 𝑙⁄ = 𝑅𝑑/𝑙

𝐿 − 𝑑𝑖 𝑙𝑖⁄ ≤ 0                                                                (59)   

𝑔
𝑖

𝑑 𝑙⁄
= 𝑑𝑖 𝑙𝑖⁄ − 𝑅𝑑/𝑙

𝑈 ≤ 0                                                                (60)   

where 𝑅𝑙/ℎ
𝐿  and 𝑅𝑙/ℎ

𝑈  are the lower and upper bounds on the ratio of 𝑙𝑖 ℎ𝑖⁄ , respectively, and 𝑅𝑑/𝑙
𝐿  and 𝑅𝑑/𝑙

𝑈  

are lower and upper bounds on 𝑑𝑖 𝑙𝑖⁄ .  

  For practical considerations, side constraints are also set for each design variable, i.e. ℎ𝑖
𝐿 ≤ ℎ𝑖 ≤ ℎ𝑖

𝑈, 𝑡𝑖
𝐿 ≤

𝑡𝑖 ≤ 𝑡𝑖
𝑈 , 𝑙𝑖

𝐿 ≤ 𝑙𝑖 ≤ 𝑙𝑖
𝑈, 𝑑𝑖

𝐿 ≤ 𝑑𝑖 ≤ 𝑑𝑖
𝑈, where the superscripts L and U represent the lower and upper bounds 

on the design variables, respectively.   



29 

 

S7-E. Optimization problem formulation 

  The problem of morphing on-target is thus expressed as the minimization of the sum of the squares of 

both gaps (Eqns. (50) and (51)) subject to the following set of equality and inequality constraints:  

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
min

ℎ𝑖,𝑡𝑖,𝑙𝑖,𝑑𝑖
𝐹 = ∑ [‖𝒑𝒊 − 𝒓𝒊‖

2 + |𝜔𝑖 −𝑤(𝒓𝒊)|
2]𝑚

𝑖=1

s. t. 𝑔𝑖 = 0,

𝑔𝑖
𝑙 ℎ⁄ ≤ 0,

𝑔
𝑖

𝑙 ℎ⁄
≤ 0,

𝑔𝑖
𝑑 𝑙⁄ ≤ 0,

𝑔
𝑖

𝑑 𝑙⁄
≤ 0,

ℎ𝑖
𝐿 ≤ ℎ𝑖 ≤ ℎ𝑖

𝑈,

𝑡𝑖
𝐿 ≤ 𝑡𝑖 ≤ 𝑡𝑖

𝑈,

 𝑙𝑖
𝐿 ≤ 𝑙𝑖 ≤ 𝑙𝑖

𝑈,

𝑑𝑖
𝐿 ≤ 𝑑𝑖 ≤ 𝑑𝑖

𝑈 , 𝑖 = 1,2, … ,𝑚.

            (61) 

S7-F. Sensitivity analysis 

  The derivatives of the objective function with respect to the design variables ℎ𝑗, 𝑡𝑗, 𝑙𝑗and 𝑑𝑗 (𝑗 = 1,2, … ,𝑚) 

can be obtained through  

𝜕𝐹

𝜕ℎ𝑗
= ∑ [(

𝜕𝒑𝒊

𝜕ℎ𝑗
)
T

(𝒑𝒊 − 𝒓𝒊) + (𝒑𝒊 − 𝒓𝒊)
T (

𝜕𝒑𝒊

𝜕ℎ𝑗
)]𝑚

𝑖=1                             (62.a) 

𝜕𝐹

𝜕𝑡𝑗
= ∑ [(

𝜕𝒑𝒊

𝜕𝑡𝑗
)
T

(𝒑𝒊 − 𝒓𝒊) + (𝒑𝒊 − 𝒓𝒊)
T (

𝜕𝒑𝒊

𝜕𝑡𝑗
)]𝑚

𝑖=1                             (62.b) 

  
𝜕𝐹

𝜕𝑙𝑗
= ∑ [(

𝜕𝒑𝒊

𝜕𝑙𝑗
)
T

(𝒑𝒊 − 𝒓𝒊) + (𝒑𝒊 − 𝒓𝒊)
T (

𝜕𝒑𝒊

𝜕𝑙𝑗
)]𝑚

𝑖=1 + 2(𝜔𝑗 − 𝑤(𝒓𝒋))             (62.c) 

𝜕𝐹

𝜕𝑑𝑗
= ∑ [(

𝜕𝒑𝒊

𝜕𝑑𝑗
)
T

(𝒑𝒊 − 𝒓𝒊) + (𝒑𝒊 − 𝒓𝒊)
T (

𝜕𝒑𝒊

𝜕𝑑𝑗
)]𝑚

𝑖=1                             (62.d) 

The partial derivatives of Eqn. (62) are 

𝜕𝒑𝒊

𝜕ℎ𝑗
=

{
 
 

 
 ∑

𝜕𝜃𝑗

𝜕ℎ𝑗

𝑖
𝑘=𝑗+1 [

−𝑠𝑖𝑛(𝜓𝑘 + 𝜃𝑘 2⁄ )𝐿𝑘
𝑐𝑜𝑠(𝜓𝑘 + 𝜃𝑘 2⁄ )𝐿𝑘

] +𝑴𝑗

𝜕𝒑𝑗
′

𝜕ℎ𝑗
, 𝑖 > 𝑗

𝑴𝑗

𝜕𝒑𝑗
′

𝜕ℎ𝑗
, 𝑖 = 𝑗

𝟎, 𝑖 < 𝑗

                      (63.a) 

𝜕𝒑𝒊

𝜕𝑡𝑗
= {

𝑴𝑗

𝜕𝒑𝑗
′

𝜕𝑡𝑗
, 𝑖 ≥ 𝑗

𝟎, 𝑖 < 𝑗
                                                                                   (63.b) 
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𝜕𝒑𝒊

𝜕𝑙𝑗
=

{
 
 

 
 ∑

𝜕𝜃𝑗

𝜕𝑙𝑗

𝑖
𝑘=𝑗+1 [

−𝑠𝑖𝑛(𝜓𝑘 + 𝜃𝑘 2⁄ )𝐿𝑘
𝑐𝑜𝑠(𝜓𝑘 + 𝜃𝑘 2⁄ )𝐿𝑘

] +𝑴𝑗

𝜕𝒑𝑗
′

𝜕𝑙𝑗
, 𝑖 > 𝑗

𝑴𝑗

𝜕𝒑𝑗
′

𝜕𝑙𝑗
, 𝑖 = 𝑗

𝟎, 𝑖 < 𝑗

                      (63.c) 

𝜕𝒑𝒊

𝜕𝑑𝑗
=

{
 
 

 
 ∑

𝜕𝜃𝑗

𝜕𝑑𝑗

𝑖
𝑘=𝑗+1 [

−𝑠𝑖𝑛(𝜓𝑘 + 𝜃𝑘 2⁄ )𝐿𝑘
𝑐𝑜𝑠(𝜓𝑘 + 𝜃𝑘 2⁄ )𝐿𝑘

] + 𝑴𝑗

𝜕𝒑𝑗
′

𝜕𝑑𝑗
, 𝑖 > 𝑗

𝑴𝑗

𝜕𝒑𝑗
′

𝜕𝑑𝑗
, 𝑖 = 𝑗

𝟎, 𝑖 < 𝑗

                     (63.d) 

where 

𝑴𝑗

𝜕𝒑𝑗
′

𝜕ℎ𝑗
=

1

2
[
𝑐𝑜𝑠𝜓𝑗+1 𝑐𝑜𝑠𝜓𝑗 −𝑠𝑖𝑛𝜓𝑗+1 −𝑠𝑖𝑛(𝜓𝑗 + 𝜃𝑗 2⁄ )

𝑠𝑖𝑛𝜓𝑗+1 𝑠𝑖𝑛𝜓𝑗 𝑐𝑜𝑠𝜓𝑗+1 𝑐𝑜𝑠(𝜓𝑗 + 𝜃𝑗 2⁄ )
]

[
 
 
 
 
 
 1 + 𝑠𝑔𝑛(𝜃𝑗)𝜔𝑗

𝜕𝜃𝑗

𝜕ℎ𝑗

1

(ℎ𝑗 − 𝑛 + 2𝑡𝑗)
𝜕𝜃𝑗

𝜕ℎ𝑗

𝑛
𝜕𝜃𝑗

𝜕ℎ𝑗 ]
 
 
 
 
 
 

                      (64.a) 

𝑴𝑗

𝜕𝒑𝑗
′

𝜕𝑡𝑗
= [

𝑐𝑜𝑠𝜓𝑗 + 𝑐𝑜𝑠𝜓𝑗+1
𝑠𝑖𝑛𝜓𝑗 + 𝑠𝑖𝑛𝜓𝑗+1

]                                                                                                              (64.b) 

𝑴𝑗

𝜕𝒑𝑗
′

𝜕𝑙𝑗
=

1

2
[
𝑐𝑜𝑠𝜓𝑗+1 −𝑠𝑖𝑛𝜓𝑗 −𝑠𝑖𝑛𝜓𝑗+1 −𝑠𝑖𝑛(𝜓𝑗 + 𝜃𝑗 2⁄ )

𝑠𝑖𝑛𝜓𝑗+1 𝑐𝑜𝑠𝜓𝑗 𝑐𝑜𝑠𝜓𝑗+1 𝑐𝑜𝑠(𝜓𝑗 + 𝜃𝑗 2⁄ )
]

[
 
 
 
 
 
 𝑠𝑔𝑛(𝜃𝑗)𝜔𝑗

𝜕𝜃𝑗

𝜕𝑙𝑗

𝑠𝑔𝑛(𝜃𝑗)

(ℎ𝑗 − 𝑛 + 2𝑡𝑗)
𝜕𝜃𝑗

𝜕𝑙𝑗
− 𝑠𝑔𝑛(𝜃𝑗)

𝑛
𝜕𝜃𝑗

𝜕𝑙𝑗 ]
 
 
 
 
 
 

  (64.c) 

𝑴𝑗

𝜕𝒑𝑗
′

𝜕𝑑𝑗
=

1

2

𝜕𝜃𝑗

𝜕𝑑𝑗
[
𝑐𝑜𝑠𝜓𝑗+1 −𝑠𝑖𝑛𝜓𝑗 −𝑠𝑖𝑛(𝜓𝑗 + 𝜃𝑗 2⁄ )

𝑠𝑖𝑛𝜓𝑗+1 𝑐𝑜𝑠𝜓𝑗 𝑐𝑜𝑠(𝜓𝑗 + 𝜃𝑗 2⁄ )
] [
𝑠𝑔𝑛(𝜃𝑗)𝜔𝑗
(ℎ𝑗 − 𝑛 + 2𝑡𝑗)
𝑛

]                                       (64.d) 

 
𝜕𝜃𝑗

𝜕ℎ𝑗
= ∑ ∑ −

𝐽𝑐𝐼,𝐽

ℎ𝑗
(
𝑙𝑗

ℎ𝑗
)
𝐽

(
𝑑𝑗

𝑙𝑗
)
𝐼−𝐽

𝐼
𝐽=0

𝑁
𝐼                                                                                                     (64.e) 

𝜕𝜃𝑗

𝜕𝑙𝑗
= ∑ ∑

(2𝐽−𝐼)𝑐𝐼,𝐽

𝑙𝑗
(
𝑙𝑗

ℎ𝑗
)
𝐽

(
𝑑𝑗

𝑙𝑗
)
𝐼−𝐽

𝐼
𝐽=0

𝑁
𝐼                                                                                                  (64.f) 

𝜕𝜃𝑗

𝜕𝑑𝑗
= ∑ ∑

(𝐼−𝐽)𝑐𝐼,𝐽

𝑙𝑗
(
𝑙𝑗

ℎ𝑗
)
𝐽

(
𝑑𝑗

𝑙𝑗
)
𝐼−𝐽−1

𝐼
𝐽=0

𝑁
𝐼                                                                                               (64.g) 

  The derivatives of the constraint in Eqn. (54) with respect to the design variables ℎ𝑗, 𝑡𝑗, 𝑙𝑗and 𝑑𝑗 (𝑗 =

1,2, … ,𝑚) are given by 
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𝜕𝑔𝑖

𝜕ℎ𝑗
= {

𝜕𝜃𝑗

𝜕ℎ𝑗
(−

𝜕𝑓(𝑥𝑟𝑖  , 𝑦𝑟𝑖)

𝜕𝑥
𝑠𝑖𝑛𝜓𝑖 +

𝜕𝑓(𝑥𝑟𝑖  , 𝑦𝑟𝑖)

𝜕𝑦
𝑐𝑜𝑠𝜓𝑖) , 𝑖 > 𝑗

0, 𝑖 ≤ 𝑗

                    (65.a) 

𝜕𝑔𝑖

𝜕𝑡𝑗
= 0                                                                                                           (65.b) 

𝜕𝑔𝑖

𝜕𝑙𝑗
= {

𝜕𝜃𝑗

𝜕𝑙𝑗
(−

𝜕𝑓(𝑥𝑟𝑖  , 𝑦𝑟𝑖)

𝜕𝑥
𝑠𝑖𝑛𝜓𝑖 +

𝜕𝑓(𝑥𝑟𝑖  , 𝑦𝑟𝑖)

𝜕𝑦
𝑐𝑜𝑠𝜓𝑖) , 𝑖 > 𝑗

0, 𝑖 ≤ 𝑗

                    (65.c)  

𝜕𝑔𝑖

𝜕𝑑𝑗
= {

𝜕𝜃𝑗

𝜕𝑑𝑗
(−

𝜕𝑓(𝑥𝑟𝑖  , 𝑦𝑟𝑖)

𝜕𝑥
𝑠𝑖𝑛𝜓𝑖 +

𝜕𝑓(𝑥𝑟𝑖  , 𝑦𝑟𝑖)

𝜕𝑦
𝑐𝑜𝑠𝜓𝑖) , 𝑖 > 𝑗

0, 𝑖 ≤ 𝑗

                   (65.d) 

where 𝜕𝜃𝑗/𝜕ℎ𝑗, 𝜕𝜃𝑗/𝜕𝑙𝑗 and 𝜕𝜃𝑗/𝜕𝑑𝑗 are expressed in Eqns. (64.e), (64.f) and (64.g), respectively.  

  The derivatives of the constraints in Eqns. (57)-(60) are  

𝜕𝑔𝑖
𝑙 ℎ⁄

𝜕ℎ𝑗
= {

𝑙𝑗 ℎ𝑗
2⁄  , 𝑖 = 𝑗

0, 𝑖 ≠ 𝑗
          

𝜕𝑔𝑖
𝑙 ℎ⁄

𝜕𝑙𝑗
= {

−1 ℎ𝑗⁄ , 𝑖 = 𝑗

0, 𝑖 ≠ 𝑗
          

𝜕𝑔𝑖
𝑙 ℎ⁄

𝜕𝑡𝑗
=
𝜕𝑔𝑖

𝑙 ℎ⁄

𝜕𝑑𝑗
= 0            (66) 

𝜕𝑔
𝑖

𝑙 ℎ⁄

𝜕ℎ𝑗
= {

−𝑙𝑗 ℎ𝑗
2⁄  , 𝑖 = 𝑗

0, 𝑖 ≠ 𝑗
      

𝜕𝑔
𝑖

𝑙 ℎ⁄

𝜕𝑙𝑗
= {

1 ℎ𝑗⁄ , 𝑖 = 𝑗

0, 𝑖 ≠ 𝑗
               

𝜕𝑔
𝑖

𝑙 ℎ⁄

𝜕𝑡𝑗
=
𝜕𝑔

𝑖

𝑙 ℎ⁄

𝜕𝑑𝑗
= 0            (67) 

𝜕𝑔𝑖
𝑑 𝑙⁄

𝜕ℎ𝑗
=
𝜕𝑔𝑖

𝑑 𝑙⁄

𝜕𝑡𝑗
= 0                   

𝜕𝑔𝑖
𝑑 𝑙⁄

𝜕𝑙𝑗
= {

𝑑𝑗 𝑙𝑗
2⁄ , 𝑖 = 𝑗

0, 𝑖 ≠ 𝑗
             

𝜕𝑔𝑖
𝑑 𝑙⁄

𝜕𝑑𝑗
= {

−1 𝑙𝑗⁄ , 𝑖 = 𝑗

0, 𝑖 ≠ 𝑗
  (68) 

𝜕𝑔
𝑖

𝑑 𝑙⁄

𝜕ℎ𝑗
=
𝜕𝑔

𝑖

𝑑 𝑙⁄

𝜕𝑡𝑗
= 0                   

𝜕𝑔
𝑖

𝑑 𝑙⁄

𝜕𝑙𝑗
= {

−𝑑𝑗 𝑙𝑗
2⁄ , 𝑖 = 𝑗

0, 𝑖 ≠ 𝑗
          

𝜕𝑔
𝑖

𝑑 𝑙⁄

𝜕𝑑𝑗
= {

1 𝑙𝑗⁄ , 𝑖 = 𝑗

0, 𝑖 ≠ 𝑗
     (69) 

  After calculating the gradients above, Eqns. (62), and (65)-(69) are used to guide the search direction of 

the gradient-based optimization scheme described in the following section. 

S7-G. Optimization method 

  Eqn. (61) describes a nonlinear optimization problem with multiple equality and inequality constraints. 

To solve it, we opt for the Powell-Hestenes-Rockafellar (PHR) method① , an Augmented Lagrangian 

algorithm well suited for minimization problems with equality and inequality constraints. The Lagrange 

function defined for the primal problem is reframed with the definition of a set of penalty functions, which 

                                                            
① Rockafellar, R. T. The multiplier method of Hestenes and Powell applied to convex programming. Journal of 

Optimization Theory and applications 12, 555-562 (1973). 
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allow transforming the primal problem into a series of unconstrained sub-problems. The Augmented 

Lagrangian function corresponding to the primal problem in Eqns. (61) is constructed as: 

𝜓(𝑿, 𝝁, 𝝀, 𝝈) = 𝐹 −∑𝜇𝑖𝑔𝑖

𝑚

𝑖=1

+
𝜎

2
∑𝑔𝑖

2

𝑚

𝑖=1

+
1

2𝜎
∑([min{0, −𝜎𝑔𝜄

𝐼 − 𝜆𝜄}]
2 − 𝜆 𝜄

2)

4𝑚

𝜄=1

         (70) 

where 𝑿 is a vector representing the design variables (Eqns. (53)), 𝝁 and 𝝀 are the Lagrange multipliers, 

and 𝝈 the penalty multiplier; 𝑔𝜄
𝐼  represents the 𝜄- 𝑡ℎ inequality constraint, including 𝑔𝑖

𝑙 ℎ⁄ , 𝑔
𝑖

𝑙 ℎ⁄
, 𝑔𝑖
𝑑 𝑙⁄ , and 

𝑔
𝑖

𝑑 𝑙⁄
. In the 𝑘- 𝑡ℎ step of the iterative process for solving the primal problem, starting from the design point, 

𝑿𝑘, the design point for the (𝑘 + 1)-𝑡ℎ step is obtained by minimizing the following unconstrained sub-

problem: 

min  𝜓(𝑿, 𝝁𝑘 , 𝝀𝑘 , 𝜎𝑘)                                                             (71) 

  To solve Eqn. (71), we resort to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method① that updates the 

design variables such that the updating scheme, in the 𝑘𝑗-𝑡ℎ step of the solution process of the sub-problem, 

is given by: 

𝑋𝑚𝑗

𝑘𝑗+1
= {

𝑋𝑚𝑗
𝐿 if  𝑋𝑚𝑗

𝑘 − 𝛽𝑘𝑗𝑑𝑚𝑗
𝑘 ≤ 𝑋𝑚𝑗

𝐿  

𝑋𝑚𝑗
𝑘 − 𝛽𝑘𝑗𝑑𝑚𝑗

𝑘 if  𝑋𝑚𝑗
𝐿 < 𝑋𝑚𝑗

𝑘 − 𝛽𝑘𝑗𝑑𝑚𝑗
𝑘 ≤ 𝑋𝑚𝑗

𝑈

𝑋𝑚𝑗
𝑈 if  𝑋𝑚𝑗

𝑈 < 𝑋𝑚𝑗
𝑘 − 𝛽𝑘𝑗𝑑𝑚𝑗

𝑘

                     (72) 

where 𝑋𝑚𝑗

𝑘𝑗
 is the 𝑚𝑗-𝑡ℎ component in the design variable vector 𝑿𝑘𝑗  (𝑚𝑗 = 1,2, … , 4𝑚), 𝛽𝑘𝑗  is the step 

size in the 𝑘𝑗-𝑡ℎ step, 𝑋𝑚𝑗
𝐿  and 𝑋𝑚𝑗

𝑈  are the lower and upper bounds on the design variable 𝑋𝑚𝑗

𝑘𝑗
, respectively,  

and 𝑑𝑚𝑗

𝑘𝑗
 is the 𝑚𝑗-𝑡ℎ component in the search direction 𝒅𝑘𝑗 , which is determined by  

𝒅𝑘𝑗 = 𝑽𝑘𝑗𝛁𝜓𝑘𝑗                                                                   (73) 

where 𝑽 is the “metric-correcting transformation”, which is an approximation of the inverse of the Hessian 

matrix, and 𝛁𝜓 is the gradient vector of the Augmented Lagrangian function in Eqn. (70). The components 

of 𝛁𝜓 are then expressed as  

                                                            
① Gill, P. E., Murray, W. & Wright, M. H. Practical optimization.  (Academic Press, 1981). 
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𝛁𝜓 =

[
 
 
 
 
 
 
 
 
 
 
 𝜕𝐹

𝜕ℎ𝑗
+∑(𝜎𝑔𝑖 − 𝜇𝑖)

𝜕𝑔𝑖
𝜕ℎ𝑗

𝑚

𝑖=1

+∑(min{0, −𝜎𝑔𝜄
𝐸 − 𝜆𝜄})

𝜕𝑔𝜄
𝐼

𝜕ℎ𝑗

4𝑚

𝜄=1

𝜕𝐹

𝜕𝑡𝑗
+∑(𝜎𝑔𝑖 − 𝜇𝑖)

𝜕𝑔𝑖
𝜕𝑡𝑗

𝑚

𝑖=1

+∑(min{0, −𝜎𝑔𝜄
𝐸 − 𝜆𝜄})

𝜕𝑔𝜄
𝐼

𝜕𝑡𝑗

4𝑚

𝜄=1

𝜕𝐹

𝜕𝑙𝑗
+∑(𝜎𝑔𝑖 − 𝜇𝑖)

𝜕𝑔𝑖
𝜕𝑙𝑗

𝑚

𝑖=1

+∑(min{0, −𝜎𝑔𝜄
𝐸 − 𝜆𝜄})

𝜕𝑔𝜄
𝐼

𝜕𝑙𝑗

4𝑚

𝜄=1

𝜕𝐹

𝜕𝑑𝑗
+∑(𝜎𝑔𝑖 − 𝜇𝑖)

𝜕𝑔𝑖
𝜕𝑑𝑗

𝑚

𝑖=1

+∑(min{0, −𝜎𝑔𝜄
𝐸 − 𝜆𝜄})

𝜕𝑔𝜄
𝐼

𝜕𝑑𝑗

4𝑚

𝜄=1 ]
 
 
 
 
 
 
 
 
 
 
 

          (𝑗 = 1,2, … ,𝑚)    (74) 

Using the BFGS method, the updating formula for the approximation of the Hessian matrix is of the form 

𝑽𝑘𝑗+1 = [𝐈 −
∆𝑿𝑘𝑗(Δ𝜹𝑘𝑗)

T

(∆𝑿𝑘𝑗)
T
Δ𝜹𝑘𝑗

] 𝑽𝑘𝑗 [𝐈 −
∆𝑿𝑘𝑗(Δ𝜹𝑘𝑗)

T

(∆𝑿𝑘𝑗)
T
Δ𝜹𝑘𝑗

] +
∆𝑿𝑘𝑗(∆𝑿𝑘𝑗)

T

(∆𝑿𝑘𝑗)
T
Δ𝜹𝑘𝑗

                       (75) 

where ∆𝑿𝑘𝑗 = 𝑿𝑘𝑗+1 − 𝑿𝑘𝑗  and Δ𝜹𝑘𝑗 =  𝛁𝜓𝑘𝑗+1 − 𝛁𝜓𝑘𝑗 . To determine the appropriate step size during 

the search for an improved point, whereby the design objective moves towards a feasible descent direction, 

we define and minimize the following descent function: 

ϕ𝑘𝑗 = 𝜓(𝑿𝑘𝑗 , 𝝁𝑘 , 𝝀𝑘 , 𝜎𝑘)                                                           (76) 

A sequence of trial step size, 𝑠𝐽, is defined as  

𝑠𝐽 = (0.5)
𝐽       𝐽 = 0,1,2,3,4, …                                                (77) 

At the 𝑘𝑗 − 𝑡ℎ iteration, we determine an acceptable size as 𝛽𝑘𝑗=𝑠𝐽, with 𝐽 as the smallest integer to satisfy 

the descent condition 

 𝜓(𝑿𝑘𝑗 − 𝑠𝐽𝑽
𝑘𝑗𝛁𝜓𝑘𝑗 , 𝝁𝑘 , 𝝀𝑘 , 𝜎𝑘) ≤ ϕ𝑘𝑗 − 𝑠𝐽𝛾

𝑘𝑗                                    (78) 

The constant 𝛾𝑘𝑗  is determined using the search direction  𝛾𝑘𝑗 = 𝜏‖𝑽𝑘𝑗𝛁𝜓𝑘𝑗‖
2
, where 𝜏 is a specified 

constant between 0 and 1.  

  After solving the subproblem Eqn. (71), the design point  𝑿𝑘+1 is obtained for the (𝑘 + 1)-𝑡ℎ step in the 

iterating process solving the primal problem, while the multipliers are updated through the following rule: 

(𝜇𝑘+1 )
𝑖
= (𝜇𝑘)

𝑖
− 𝜎𝑔𝑖(𝑿

𝑘),        𝑖 = 1,2, … ,𝑚                                    (79) 

(𝜆𝑘+1)
𝑖
= max {0, (𝜆𝑘)

𝜄
+ 𝑔𝜄

𝐼(𝑿𝑘) } ,        𝜄 = 1,2, … ,4𝑚                             (80) 

𝜎𝑘+1 = {
𝜂𝜎𝑘 , if 𝜌𝑘 ≥  𝜗𝜌𝑘−1

𝜎𝑘 , if 𝜌𝑘 <  𝜗𝜌𝑘−1
                                                        (81) 

where  
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𝜌𝑘 = (∑𝑔𝑖
2(𝑿𝑘)

𝑚

𝑖=1

+∑[min {−𝑔𝜄
𝐼(𝑿𝑘),

(𝜆𝑘)
𝑖

𝜎
}]

4𝑚

𝜄

2

 )

1/2

                            (82) 

𝜗 is a specified constant between 0 and 1, and 𝜂 is larger than 1.  

  The design problem in Eqns. (61) is solved iteratively until the following set of convergence criteria is 

satisfied: 

{
|𝐹𝑘+1 − 𝐹𝑘| ≤ 𝜀1 or  ‖𝑿

𝑘+1 − 𝑿𝑘‖ ≤ 𝜀2

𝑚𝑎𝑥{|𝑔1
𝑘+1|, … , |𝑔𝑚

𝑘+1|, |𝑔1
𝐼,𝑘+1|, … , |𝑔4𝑚

𝐼,𝑘+1| } ≤ 𝜀3
                                     (83) 

where 𝜀1 , 𝜀2 and 𝜀3 are convergence control parameters taking respectively the value of 0.001, 0.001, and 

0.01.  

S8. Implementation of morphing on target scheme 

  This section shows the implementation of the inverse problem scheme explained in S7 to the solution of 

the last two illustrative demonstrations of morphing on target. While they both share a primary objective, 

the central axis of the target domain (i.e. an “M”), their boundaries are distinct. The first assumes a uniform, 

yet unspecified value of the width, which is to find, and the second case features a varying width to match. 

In both cases, the constituent solids are silicone rubber and wood with CTE and elastic properties reported 

in section S2. 

S8-A. Demonstration 1: uniform width 

 As a morphing target, we chose the profile of an “M”, and use an arc spline composing smooth, 𝐺1 

continuous, arcs to prescribe its central axis (Supplementary Fig. S16). Because 𝑥 = 7.4 is a vertical axis 

of symmetry, only half “M” is here examined. The width of the “M” boundary is uniform along the “M”, 

meaning that 𝑙1 + 2𝑡0 = 𝑙2 + 2𝑡0 = ⋯ = 𝑙𝑚 + 2𝑡0 for all BBs. The central axis of the half domain is here 

mathematically expressed piece-wisely by the following set of primitives (Supplementary Fig. S16), each 

bounded by a pair of blending points: 

𝑓(𝑥, 𝑦) =

{
  
 

  
 
𝑓1(𝑥, 𝑦) = (𝑦 − 1.4)

2 + 𝑥2 − 1.42 = 0 if  0 ≤ 𝑥 < 1.4 0 ≤ 𝑦 < 1.6

𝑓2(𝑥, 𝑦) = (𝑦 − 2.8)
2 + (𝑥 − 14.2)2 − 12.82 = 0 if  1.4 ≤ 𝑥 < 3.2 1.6 ≤ 𝑦 < 9.4

𝑓3(𝑥, 𝑦) = (𝑦 − 8.9)
2 + (𝑥 − 4.1)2 − 1.02 = 0 if  3.2 ≤ 𝑥 < 4.8 9.4 ≤ 𝑦 < 9.6

𝑓4(𝑥, 𝑦) = (𝑦 − 7.7)
2 + (𝑥 − 2.9)2 − 2.72 = 0 if  4.8 ≤ 𝑥 < 5.6 8.1 < 𝑦 ≤ 9.6

𝑓5(𝑥, 𝑦) = (𝑦 − 8.6)
2 + (𝑥 − 8.6)2 − 3.12 = 0 if  5.6 ≤ 𝑥 < 6.5 6.3 < 𝑦 ≤ 8.1

𝑓6(𝑥, 𝑦) = (𝑦 − 7.3)
2 + (𝑥 − 7.4)2 − 1.32 = 0 if  6.5 ≤ 𝑥 ≤ 7.4 6.0 ≤ 𝑦 ≤ 6.3

   (84) 

  As per Eqn. (53), we look for the optimum values of the design variables ℎ𝑖 , 𝑡𝑖 , 𝑙𝑖 , 𝑑𝑖  (𝑖 = 1,2, … ,𝑚). 

Because the width of the building block, i.e. 𝜔𝑖 = 𝑙𝑖 + 2𝑡0, is prescribed as uniform along the central axis 

of the target domain and 𝑡0 is constant, 𝑙1 = 𝑙2 = ⋯ = 𝑙𝑖 = ⋯ = 𝑙𝑚 and the objective function reduces to 
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the sum of squares of Eqn. (50). For a given number of building blocks (here chosen as 50), the problem 

formulation (Eqns. (61)) is abridged to  

{
 
 
 
 
 

 
 
 
 
 
min

ℎ𝑖,𝑡𝑖,𝑙𝑖,𝑑𝑖
𝐹 =∑‖𝒑𝒊

′ − 𝒓𝒊
′‖2

50

𝑖=1

 

s. t. 𝑔𝑖 = 0,  

4 ≤ 𝑙𝑖 ℎ𝑖⁄ ≤ 10,

0.01 ≤ 𝑑𝑖 𝑙𝑖⁄ ≤ 0.6,
 0.05 ≤ ℎ𝑖 ≤ 5,  
 0.05 ≤ 𝑡𝑖 ≤ 5,  
 0.05 ≤ 𝑙𝑖 ≤ 5,  
 0.005 ≤ 𝑑𝑖 ≤ 5, 𝑖 = 1,2, … ,50

                                             (85) 

 

 

Supplementary Fig. S16: Central axis of the target domain with arc functions and blending points given by 

Eqn. (84). 

  Supplementary Fig. S17 shows the outcome of assigning the following initial values to the design 

variables: ℎ𝑖 = 0.1, 𝑡𝑖 = 0.1, 𝑙𝑖 = 0.7, 𝑑𝑖 = 0.35, 𝑖 = 1,2, … ,50 . The metamaterial phenotype at 𝑇 =

120 ℃ is shown in the lower part with grey and blue representing the low CTE frame and the high CTE 

core of the BB sequence. On the upper part appears the target curve (green solid line) and the reference 

points 𝑅𝑖 (red).  

  Due to the randomly assigned values of the design variables, the central axis of the metamaterial 

phenotype is off from the target. After application of the tailoring scheme, though, the phenotype is 

realigned to the target after 80 iterations. Supplementary Fig. S18 shows the iteration history for the 
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process to gradually converge to an optimal solution. At convergence, the objective value decreases from 

the initial 776 to the final 2.81 × 10−6, a tiny value indicating the attainment of the gap closure, where 

the phenotype axis conforms seamlessly to the central axis of the target.  

 

Supplementary Fig. S17: Metamaterial phenotype (𝑇 = 120 ℃) with initial guesses for the design variables 

and reference points on the target curve.  

 

Supplementary Fig. S18: Convergence plot for the objective function. 
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  Supplementary Fig. S19 shows, in a stem plot, the optimized values of the design variables along with 

their relevant ratios, which define the metamaterial genotype at the initial temperature (𝑇 = 20 ℃). The 

values shown in sequence for the 50 BBs are descriptive of each BB geometry as well as their sequence. 

As described in the caption of Fig.1, each building block is described with 𝐵𝑡
ℎ

+/−(ℎ,
𝑙

ℎ
,
𝑑

𝑙
)
, where 𝐵 = 𝑈 for U-

BB and 𝐵 = 𝑅 for R-BB, the sign +/−  specifies the direction of rotation for R-BB (clockwise: +; counter-

clockwise: −) and is omitted for U-BB. With this notation, we can describe the string of information for a 

sequence of 𝑚 BBs as 𝐵𝑡1
ℎ1

+/−(ℎ1,
𝑙1
ℎ1
,
𝑑1
𝑙1
)
𝐵𝑡2
ℎ2

+/−(ℎ2,
𝑙2
ℎ2
,
𝑑2
𝑙2
)
…𝐵𝑡𝑚

ℎ𝑚

+/−(ℎ𝑚,
𝑙𝑚
ℎ𝑚

,
𝑑𝑚
𝑙𝑚
)
, which can be further condense to 

(𝐵𝑡
ℎ

+/−(ℎ,
𝑙

ℎ
,
𝑑

𝑙
)
)
𝜂

for 𝜂 consecutive units with identical BB parameters. This sequence is shown on the bottom 

of Supplementary Fig. S19 for the “M” problem and constitutes the tailored code that enables the phenotype 

to morph on target.  

  Supplementary Fig. S20 shows the resulting configuration at 𝑇 = 120 ℃ along with the phenotype axis 

and the target axis. The similarity between the phenotype axis and the target axis is evaluated by calculating 

the coefficient of determination 𝑅2, which is mathematically defined as 

𝑅2 = 1 −
∑ [(𝑥𝑝𝑖 − 𝑥𝑟𝑖)

2
+ (𝑦𝑝𝑖 − 𝑦𝑟𝑖)

2
]𝑚

𝑖=1

∑ [(𝑥𝑝𝑖 − 𝑥̅𝑝)
2
+ (𝑦𝑝𝑖 − 𝑦̅𝑝)

2
]𝑚

𝑖=1

                                          (86) 

where (𝑥𝑝𝑖 , 𝑦𝑝𝑖) and (𝑥𝑟𝑖 , 𝑦𝑟𝑖) represent the coordinates of the BB interface point i of the phenotype on 

target and the corresponding reference point on the target axis respectively. 𝑥̅𝑝 and 𝑦̅𝑝 denote the mean 

value of the relevant coordinates for BB interface points. The coefficient of determination indicates the 

precision of the fit for both 𝑥- and 𝑦-values and ranges from 0 to 1. The better the match between phenotype 

and target, the closer the value of 𝑅2 to 1. In our example, the value of 𝑅2 is 0.994, meaning a remarkably 

good agreement between target and predicted phenotype axis. A minor discrepancy appears (Supplementary 

Fig. S20) with the reason attributed to the adoption of a surface response for approximating the opening 

angle of each R-BB (see S3-C-i).  
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Supplementary Fig. S19: BB geometry with 4 sets of values for the design variables optimized to match the 

target central axis. The values provide the full geometric description to each of the 50 units making up the 

metamaterial genotype, which is shown below in its initial undeformed state. Below the genotype is the 

reported BB sequence code given only for BB1, BB20 and BB50, chosen as representative BBs.  
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Supplementary Fig. S20: Predicted phenotype at  𝑇 = 120 ℃  along with BB interface point (black cross), 

the target axis (green), and reference point (red). The assessment of the match is given by the coefficient of 

determination, 𝑅2= 0.994 in this case, with unity indicating a perfect match between the two.  

S8-B. Demonstration 2: varying width  

  In this example, the central axis of the target domain has the “M” shape of that in Case study 1, hence 

expressed by Eqn. (84). But the width of the domain boundary is not uniform and specified to vary along 

the target axis (Fig.5b and Supplementary Fig. S21). Due to symmetry about 𝑥 = 7.4, half of the domain 

is examined with the target width piece-wisely expressed in the arc-length coordinate system by:  

𝑤(𝑠) =  

{
 

 
𝑤1(𝑠) = −2.86 × 𝑠 + 0.90 0.00 ≤ 𝑠 < 0.14

𝑤2(𝑠) = 1.13 × 𝑠 + 0.34 0.14 ≤ 𝑠 < 0.67

𝑤3(𝑠) = −2.78 × 𝑠 + 2.96

𝑤4(𝑠) = 1.33 × 𝑠 − 0.53
0.67 ≤ 𝑠 < 0.85
0.85 ≤ 𝑠 ≤ 1.00

                                          (87) 

where 𝑠 denotes the normalized arc length and is defined as: 
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𝑠(𝑥, 𝑦) = ∫ √1 + (
𝜕𝑓 𝜕𝑥⁄

𝜕𝑓 𝜕𝑦⁄
)

2

𝑑𝑥
𝑥

0

∫ √1 + (
𝜕𝑓 𝜕𝑥⁄

𝜕𝑓 𝜕𝑦⁄
)

2

𝑑𝑥
𝑥𝑒𝑛𝑑

0

⁄                             (88) 

where 𝑓(𝑥, 𝑦) is the mathematical expression of the central axis of the target, i.e. Eqn. (84), and 𝑥𝑒𝑛𝑑 

represents the 𝑥 −coordinate of the end point of half domain. Supplementary Fig. S21 shows both the 

central axis (green) and varying width (shaded areas of dissimilar colors) of the target domain. 

 

Supplementary Fig. S21: Central axis of the target domain along with its varying widths (4 arc primitives 

for half domain) defined by Eqn. (87). 

  As per Eqn. (53), we look for the optimum values of the design variables ℎ𝑖 , 𝑡𝑖 , 𝑙𝑖 , 𝑑𝑖  (𝑖 = 1,2, … ,𝑚). 

Since both the axis and width functions of the target are specified, the problem is formulated for a given 

number of building blocks (here chosen to be 46) as: 

{
 
 
 
 
 

 
 
 
 
 
min

ℎ𝑖,𝑡𝑖,𝑙𝑖,𝑑𝑖
𝐹 =∑[‖𝒑𝒊 − 𝒓𝒊‖

2 + |𝜔𝑖 − 𝑤(𝒓𝒊)|
2]

46

𝑖=1

 

s. t. 𝑔𝑖 = 0,  

4 ≤ 𝑙𝑖 ℎ𝑖⁄ ≤ 10,

0.01 ≤ 𝑑𝑖 𝑙𝑖⁄ ≤ 0.6,
 0.05 ≤ ℎ𝑖 ≤ 5,  
 0.01 ≤ 𝑡𝑖 ≤ 5,  
 0.05 ≤ 𝑙𝑖 ≤ 5,  
 0.005 ≤ 𝑑𝑖 ≤ 5, 𝑖 = 1,2, … ,46

                (89) 
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The optimization is implemented under the following initial values of the design variables: ℎ𝑖 = 0.1, 𝑡𝑖 =

0.1, 𝑙𝑖 = 0.7, 𝑑𝑖 = 0.35, 𝑖 = 1,2, … ,46. The tailoring process gradually converges to an optimal solution 

after 128 iterations, and Supplementary Fig. S22 shows the iteration history for the objective function. At 

convergence, the objective value decreases from the initial 2024 to the final 1.82 × 10−5, an extremely 

small value indicating the achievement of the gap closure, where the phenotype axis and its width conform 

seamlessly to the axis and boundary of the target. 

 

Supplementary Fig. S22: Convergence plot for the objective function. 

  Fig.5b shows in a stem plot the optimized values of the design variables along with the relevant ratios, 

which define the metamaterial genotype at the initial temperature (𝑇 = 20 ℃). The values shown in 

sequence for the 46 BBs are descriptive of each BB geometry. Their use in the construction of the genotype 

is shown below along with a representative set of the BB sequence code, used in turn to computationally 

predict the on-target phenotype shown in Supplementary Fig. S23. Here shown is the resulting 

configuration at 𝑇 = 120 ℃  along with the phenotype axis and the target axis. The coefficient of 

determination 𝑅2, as defined in Eqn. (86), is used to assess the deviation of the phenotype axis from the 

target axis with a value of 0.997, indicating a remarkably good match. The reason for the difference 

between central axis target and predictions can be attributed to the use of a surface response for the opening 

angle. As for the matching of the varying width of the target domain, i.e. (𝜔𝑖 = 𝑙𝑖 + 2𝑡0), which is explicit 

to the design variables, there exists no deviation. 
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Supplementary Fig. S23: Predicted phenotype at  𝑇 = 120 ℃  along with BB interface point (black cross), 

the target axis (green) and boundary (red). The precision of the match is 𝑅2=0.997, a value approaching 

unit, the perfect match.  
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