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Stress concentration in porous materials is one of the most crucial culprits of mechanical
failure. This paper focuses on planar porous materials with porosity less than 5%. We
present a stress-prediction model of an arbitrarily rotated elliptical hole in a rhombus
shaped representative volume element (RVE) that can represent a class of generic planar
tessellations, including rectangular, triangular, hexagonal, Kagome, and other patterns.
The theoretical model allows the determination of peak stress and distribution of stress
generated near the edge of elliptical holes for any arbitrary tiling under displacement
loading and periodic boundary conditions. The results show that the alignment of the
void with the principal directions minimizes stress concentration. Numerical simulations
support the theoretical findings and suggest the observations remain valid for porosity as
large as 5%. This work provides a fundamental understanding of stress concentration in
low-porosity planar materials with insight that not only complements classical theories
on the subject but also provides a practical reference for material design in mechanical,
aerospace, and other industry. [DOI: 10.1115/1.4040539]
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1 Introduction

Architected materials can be designed to feature properties that
exceed those of conventional solids, thus appealing a wide range
of applications across disciplines [1]. Typical engineering applica-
tions where they have been applied so far for structural purposes
include those requiring maximum stiffness for structural integrity
[2-4], enhanced fatigue life [5], or maximum energy absorption
under impact loading [6]. Other applications where their func-
tional potential has been exploited focus on the design of tunable
properties, such as negative Poisson’s ratio [7-15], band gaps
[16-20], heat transfer [21], negative or zero coefficient of thermal
expansion [22-27], mechanical biocompatibility [28-31], and
many others [1]. Architected materials are generally assembled
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from building blocks tessellated in a two-dimensional or three-
dimensional space, and such process can be employed in hierarch-
ical arrangements [13,20,26,32,33]. The design method may be
developed from intuition and rationalized [34], and the implemen-
tation of shape [23] and topology optimization [35] can explore
the design space even further.

Despite the wealth of contributions in the area of porous archi-
tected materials, the majority examine high-porosity domains,
typically larger than 70%, a choice that generally allows greater
tunability. The performance of low porosity, e.g., 5-10%, archi-
tected materials has been less explored thus far. Recent works
which examined ultralow porosity (<2%) domains with elliptical
holes staggered in orthogonal tessellation, focused mainly on tai-
loring Poisson’s ratio and band gaps [36,37]. In more recent work,
emphasis has been placed on the shape of the hole, and an orthog-
onally tessellated “S” shaped slot was proposed, which showed
enhanced fatigue life that outperforms traditional circular holes
[38]. Besides ordered patterns of voids, randomly oriented slits
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Fig. 1
hole, (b) Rotation of two holes in the RVE, and (c) Void patterns with triangular, hexagonal, and Kagome tessellations

have been also studied in planar tessellations, and auxeticity has
been shown to be possible in disordered arrangements [39]. Other
related works on low-porosity metamaterials include those featur-
ing orthogonal cuts of sinusoidal half-wave in their initial geome-
try, which under tension show bistable behavior followed by a
pattern switch that creates a drastic increase of porosity [40]. Fur-
thermore, orthogonally arranged cuts in thin sheets under tension
have been proposed to generate spatial morphology induced by
the out-of-plane plastic buckling of their ligaments [41]. Despite
recent advances in low porosity planar tessellations, most of the
literature has focused on normally arranged cuts or voids typically
with one circular shape and constant orientation; the mechanics of
tessellations that departs from the conditions of (i) orthogonality
imposed to the periodic vectors, (ii) uniform orientation of the
void, as well as (iii) unicity of the void in the representative vol-
ume element (RVE), remain unexplored so far.

The objective of this paper is to investigate stress concentration
in arbitrary planar tessellations of elliptical holes with varying
orientations and generically arranged vectors of periodicity in
low-porosity domains. Stress concentration is a crucial and well-
studied cause for mechanical failure. Stress concentration on the
edge of holes started from the circular hole in an infinite domain
under uniform tension [42,43] to a wide range of further develop-
ment including other void geometries [43—48], semi-infinite or
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Description of geometric variables and examples of tessellation: (a) RVE and geometric variables of one elliptical

finite domain [43,49,50], reinforcements [43,50,51], multiple
holes [43,52,53], nonisotropic materials [43,54-57], and other
load cases [43,56,58,59]. However, what has not been so far
explored is the effect of tessellation type and periodic boundary
conditions on stress distribution and peak stress. Section 2 of the
paper examines the stress distribution and stress concentration
near the edge of elliptical holes of generic tessellations and
presents a theoretical model of stress prediction, which is used in
Sec. 3 to search for the direction of the periodic vectors that can
best mitigate the stress regime in any arbitrary tessellation. Predic-
tion curves are also presented to capture the role of the aspect
ratio of elliptical holes in various load cases. Numerical results
in Sec. 4 verify theoretical observations and further discussion
examines the threshold value of porosity below which the model
presented here holds.

2 Theoretical Model for Representative Volume
Element With Low Porosity

2.1 Assumptions and Theoretical Model of the Strain
Field. We consider a periodic planar domain with low porosity in
the range of 0% to 10-15%. The geometry of the void shape under
investigation is illustrated in Fig. 1(a). The void shape is an
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arbitrarily rotated ellipse with semiaxes @ and b aligned to the
local coordinate system xy. The ellipse can assume a rotation y
from the global Cartesian coordinate system XY. The elliptical
void is centered in a generic thombus RVE with edge length L
and internal angle ¢ defining the orientation of the periodic vector
of a given tessellation. We also examine an RVE with two holes
of identical shape, which have a relative rotation of angle J (see
Figs. 1(a) and 1(D)) to each other. Since ¢ defines the orientation
of the periodic vectors (arrows in Fig. 1(c)), a large family of tes-
sellations can be described by the RVEs containing multiple
holes. The second row in Fig. 1(c) shows some tessellation pat-
terns (triangular, hexagonal, and Kagome) that can be generated
with the adoption of a generic thombus RVE of multiple holes.
With this framework, the variables of interest are the aspect ratio
a/b of the ellipse, the ellipse rotation angle 7, the relative rotation
between holes, J, and the angle ¢ between the periodic vectors.
The porosity in this study is defined as

_ AHole

M

ARvE

For which the following assumptions hold:

1) The domain is periodic, unbounded, and subjected to uniform
displacements along directions X and Y in the global Carte-
sian system. The mechanical behavior can be deduced by the
study of the RVE under periodic boundary conditions.

2) Porosity is assumed below 5%, a value that enables the use of
bulk properties for the solid making up the RVE. The validity
of this assumption is examined in Sec. 4, where the deviation
from the theoretical model is compared with that from the
numerical analysis for increasing values of porosity.

3) Deformation of the RVE is small and the material behavior
is linear elastic thus small strain theory can be applied in
the theoretical model.

Figure 2 shows a rhombus RVE with marked edges and corners
subjected to biaxial displacement. The horizontal edge is aligned
with the global X direction. In two-dimensions, the periodic
boundary conditions on the displacements are

Ug — Uy = up — Uy, vg —vp = vy, — v for left and right

Ur —up = us — uy, vr—vg =vs— v, for top and bottom

(@3]

where the horizontal and vertical displacements u(x, y) and v(x, y)
are functions defined at every material point (x, y) in the global
coordinate system XY. Subscripts T, B, L, R denote the top, bottom,
left. and right edges of the RVE and node numbers at its corners.

To eliminate rigid body motion and to account for the general
case of the existence of shear strain in the RVE, the following set
of four displacement conditions is applied at node 1, 2, and 4.
This choice is necessary to capture nonzero shear strains emerging
in an RVE tessellated at an angle other than 90 deg

YA v=v=cu
4’ tOp 5’ 3’
1/4 s 13
i |', Deformed
left v f Jright
i i Original
’ /o
1 bottom 2 2’ X
e

Uy=u

Fig. 2 Displacement loading and deformation pattern of the
RVE
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uy =vy = 0
v =0 3)
Uy = 0
Uniform displacements u and v = cu are applied to the right and
top edges of the RVE. With enforced boundary conditions, the

rhombus RVE deforms into a parallelogram; hence, the displace-
ments of the four corners of the RVE are given by

M|:V1:0

U = u, VZZO

4
Uz =u, Vvy=V=cu
uy =0, vg=v=cu

Since point 5 has the y coordinate of point 3 and 4, and u, =0
and u3 = u, by linear scaling using distances from point 4 to point
5 and point 4 to point 3, we find the displacements of point 5

us =u(l —cos¢), vs=v=cu 5)

With ¢ #0, the resulting strain components of the RVE from

the displacement field are

ou u
=L
ov c u

by = 8_y - sin ¢ b = CL sin ¢ ©)
Ou Ov_ Ou us—uy _

u
P — — — _cot
Vay dy * Ox 0Oy Lsing L ¢

With &y = 7,, /2, the solution of the eigenvalue problem yields
the principal strains for 0 deg < ¢ < 90deg

u(c—i—sind)— \/c2 —2csing + 1)

2L sin ¢

u(c—f—sinqb—k\/cz —2csing + 1)

2L sin ¢ '

& =

& e < & (7)

And, the corresponding principal directions are obtained by tak-
ing the inverse tangent function of the eigenvectors

{c—sinqﬁ—i— Ve —2csing + 1
vy = 71

cos ¢

(®)

{c—sin([)— V2 —2csing + 1
V) = ,1

Cos

By evaluating the displacement ratio ¢ =— v sin ¢ with the bulk
material’s Poisson’s ratio v, uniaxial displacement loading (in the
X direction) can be handled as a special case with the principal
strains and principal directions given by

u(l —v— \/cot2<]5+uz+21/+1>

& =

2L
u(l—u+\/cot2¢+y2+2y+l>
& = 57 o a<e )
14+v—/co?p+ 12 +2v+1 |
v = |—
! cot ¢ ’
(10
o vt eop+ 12+ 2w+ 1 )
i cot ¢ ’
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Fig. 3 Elliptical coordinate system and biaxial loading of the elliptical hole: (a) lllus-
tration of the elliptical coordinate system, with constant coordinate curves of « and
and (b) Rotated elliptical hole under biaxial loading. s, is linearly proportional to ¢, by

the factor r.

2.2 Theoretical Model of the Stress Field and Stress
Distribution Around the Hole. Multiplication of the plane stress
constitutive matrix of the linear elastic material with Young’s
modulus £ and the principal strain vector yields the two principal
stresses

Eu[(l +v)(c+sing) — (1 —v)\/c — 2csing + 1}
2Lsin (12 — 1)

Eu[(l +v)(c+sing) + (1 —v)\/c2 —2csing + 1}

2Lsin p(v? — 1)

g = —

0y = —
1D

For the special case of uniaxial loading, the principal stresses
are

101010-4 / Vol. 85, OCTOBER 2018

Eu<1 +v—1P+2w+ 1/sin2¢>
2L(1 +v)

Eu(14 v+ /7 ¥ 201 1/5in%)
2L(1 +v) ’

o] =

gy = o1 < 02 (12)

With principal stresses, we can apply classical theory to deter-
mine the stress distribution near the edge of a tilted elliptical hole
in an infinite domain [43,60]. We do so by using the elliptical
coordinate system parameterized by o and f§ shown in Fig. 3(a).
Here, the rotation 0 is defined with respect to the principal direc-
tion of o, (see Fig. 3(h)) and should not be confused with y in
Fig. 1, which is the global rotation of the hole with respect to the
global X-direction. The closed form expression of the stress distri-
bution is
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(98)yy =

(O-O‘)ug =

(1+r)aysinh2ag + (1 —r)o [cos20 — > cos2(f — 0)]

cos h20y — cos2f3 ’

0

(13)

where r=0,/o5 and oy =tanh™(b/a) [43,60]. It is assumed that
0, is larger in magnitude, and the principal stress ratio r ranges
between —1 and 1; hence, covering the range of loading conditions
that are of interest. Note that the stress component normal to the
edge of the elliptical hole, g, is always zero.

If the maximum stress is determined from Eq. (13), then dividing
it by the reference stress yields the stress concentration factor as

45
)
% 40

Stress concentration factor K(

Stress concentration factor Kt

o o
o o o u o

Stress concentration factor ¥
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where o, is the reference stress in the definition of the stress con-
centration factor. In our case, it is the larger principal stress o5.

3 Parametric Study of Stress Concentration

Equation (13) is now used to examine the effect of the
rotation and aspect ratio of the elliptical hole for given stress ratio
r =a,/0, before extending the analysis to arbitrary tessellations.

3.1 Void Rotation. Symbolic forms of the aspect ratio a/b
(represented by o), principal stress ratio r, and arbitrary rotation

Sl ab =20
540 ) + -
&
i 35
X 30t
2
] 25
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S 20F T, e
5 . -
= 151 L o
c - ” e ab=4
[ . o
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Fig. 4 Curves of stress concentration factor (K;) versus 0 for given a/b, parameterized by ¢/65: (a) 61/62=—1.0, (b) 64/
o= —0.8, (c) 6ilox=—0.4, (d) o1loo=—-0.2, (e) 61l =-0.1, (0 o1lo2=0, (g) o1lo2=0.1, (h) o1lo2=0.2, (i) o1lo2=0.4, (j) o4/
o2 = 08, and (k) 0'1/0'2 =1.0
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Fig.4 (Continued)

angle 0 that maximize stress with respect to the principal direc-
tions of an elliptical hole are difficult to formulate. Even for a spe-
cific value of a/b and r, with nonzero 0, the solution is still a
convolute expression with inverse trigonometric functions. Here,
we adopt a numeric strategy to handle Eq. (13) and visualize the
impact of 0 on the peak stress with the purpose of mitigating stress
concentration.

Figure 4 shows that the stress concentration for ¢,/g, > 0 is
minimized by aligning the longitudinal axis of the elliptical hole
to the principal direction, which corresponds to o5, the larger
principal stress. For ¢,/0, <0, there are exceptions since the
stress concentration factor is determined as an absolute value,
but the signs of the minimal stress and maximal stress may differ
(some curves may have the lower portion mirrored upward).

101010-6 / Vol. 85, OCTOBER 2018

3
trttttt

However, if the effect of the aspect ratio is taken into account, it
is still valid to state that the elliptical hole with the optimal
aspect ratio should be aligned with the principal direction, which
corresponds to g,. The figure also shows that when the aspect
ratio increases, the hole is more sensitive to rotation; a slight
deviation from 0 =0 results in a larger change of the stress con-
centration factor. Clearly, if a/b is 1, the circular hole is insensi-
tive to rotation.

As a further note, the expression of stress distribution is signifi-
cantly simplified for 0 =0

+r)orsinh2og + (1 —r)or |1 — e cos
(1 ) in h2 (1 Joa |1 20 2

15
cos h2oy — cos2f (15

(9)y, =
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Hence, possible locations for extreme values of (a/;)ao can be
found by setting the first-order derivative to zero
d("ﬁ)a[, o —2(re* — 2 4 4+ 1)g, sin h20 sin 23 —0 (16)
dp (cos h20g — cos 23)*

which shows that (gp), takes maximum or minimum at the tips
of the hole (f=0 or 0.57).

3.2 Aspect Ratio of the Hole. To identify the optimal aspect
ratio of the hole for a given stress ratio, we plot curves in Fig. 5,
which illustrate the role of the aspect ratio as a function of the
stress ratio. These results are in agreement with those found previ-
ously and indicate that hole alignment with the principal direction
is the most favorable condition to reduce stress concentration.

Figure 5 shows the optimal aspect ratio of elliptical holes deter-
mined for each g,/d,. The curve approaches an unbounded value
when ¢,/a, approaches zero from both sides. When |o/0,| =1,
the circular hole is the best option. The y-axis of the plot is trun-
cated at a/b =20, for which K, under uniaxial tension is 1.1. This
value matches that obtained from existing expressions and design
charts available in the classical literature [43,60]. Generally, the
optimal aspect ratio decreases as |0/g,| increases from O to 1.
However, the curve is not symmetric with the left half being
steeper than the right one: for a given magnitude of |o,/05|, the
optimal a/b is smaller if ¢,/0, is negative.

3.3 Application in Representative Volume Element and
Role of Tessellation. The general observations in Secs. 3.1 and
3.2 are now applied to the RVE and the generic tessellations illus-
trated in Fig. 1 with the goal of elucidating how stress concentra-
tion develops in generic tessellations.

For any tessellation in Fig. 1 with tessellation angle ¢ and the
ratio between displacement loadings ¢ =v/u (see Fig. 2), the prin-
cipal stress ratio can be expressed as

(1+v)(c+sing) — (1 —v)y/c2 —2csing + 1
(1+v)(c+sing)+ (1 —v)\/c2—2csing + 1

an

r=oi/oy =

If the displacement loading is uniaxial, the principal stress ratio
is

1+v—\/V2+2v+1/sin2¢
1+ v+ /12 +2v+1/sin2¢

(18)

r:O’l/Jz =

With the principal stress ratio in Eq. (17) or Eq. (18), Fig. 4 or
Fig. 5 can be used to determine the optimal aspect ratio and the
minimum stress concentration factor corresponding to the dis-
placement loading. Principal directions are determined using
Eq. (8) or Eq. (10). As an illustrative example, the case of uniaxial
tension in the horizontal direction is discussed in the following.

Using Eqgs. (10) and (18), the principal direction and the princi-
pal stress ratio are determined and listed in Table 1. If the tessella-
tion angle ¢ is 90deg, the case is de facto uniaxial since g is 0.
As ¢ decreases, the uniaxial displacement loading leads to non-
zero shear strain (see Eq. (6)), nonzero ¢, and the principal direc-
tion of o5 is tilted away from the horizontal axis.

The impact of ¢ on stress concentration factors is illustrated in
Fig. 6. The contour plots show values of the stress concentration
factor in the RVE for uniaxial displacement loading in the hori-
zontal direction where ¢ ranges from 10deg to 90deg. Table 1
lists the principal stress ratio at optimal y (the absolute rotation
angle measured from the positive X-direction) and a/b; optimal
layouts are also marked in the contour plots in Fig. 6. Clearly,
when ¢ # 90 deg, the uniaxial displacement creates shear strain in
the RVE, and the principal stress field is not uniaxial. The effect is
more pronounced as ¢ approaches zero. As a result, the principal
direction is further away from horizontal and the optimal a/b gets
smaller as the magnitude of g,/g, increases. The stress concentra-
tion factor of the optimal shape also increases with increasing
|o1/a,] when ¢ approaches zero. The contour lines are symmetric

Table 1 Optimal absolute rotation angle and aspect ratio for elliptical holes in tessellated RVE under uniaxial tension

¢ (deg) 10 20 30 40 50 60 70 80 90
a/o; —0.624 —0.388 —0.239 —0.143 —0.081 —0.042 —0.018 —0.004 0
Optimal y (deg) —38.31 —31.92 —26.03 —20.72 —15.93 —11.58 —7.54 -3.72 0
Optimal a/b 1.266 1.606 2.047 2.644 3.503 4.881 7.550 15.375 20.000
Min K, 3.204 2.634 2.216 1.900 1.652 1.452 1.282 1.134 1.100

Journal of Applied Mechanics
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about the vertical line of optimal 7, but their shapes change from
convex to concave when /g, approaches —1 as ¢ reduces from
90 deg to 10deg, in the same way as the evolution of the curves in
Figs. 4(a)-4(f). As shown by the plots of optimal hole layouts in
the RVE, the variation of ¢ can represent alternative tessellations,
and even more complicated ones, e.g., Hexagonal and Kagome,
can be realized by allowing multiple holes in the RVE.

Subplots in Fig. 7 depict the stress distributions of holes in multi-
ple selected cases. The basic case of a circular hole with ¢ =90 deg
in Fig. 7(a) shows that the maximum stress is 3.00, at the vertical
tip perpendicular to the horizontal loading and the stress at the
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horizontal tip is —1.00, (the absolute value is plotted). If a/b
increases, the stress at the horizontal tip is always —1.0a,, but the
maximum stress reduces from 3.0a; to 2.00, in Fig. 7(b) and 1.40,
in Fig. 7(c), always at the same location. The K, of these three cases
are precisely the results from Inglis’s formula for elliptical holes
under uniaxial tension [43,60]. In Figs. 7(d)-7(f), the tessellation
angle and the aspect ratio are fixed at ¢ =60deg and a/b=S5,
respectively, but the hole is rotated within the RVE. The stress dis-
tribution pattern in Fig. 7(d) is almost identical to that in Fig. 7(c)
despite the change in ¢, since the hole is also aligned with the prin-
cipal direction (with K,=1.46). If the hole is 10deg from the
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Fig. 6 Contour plots of stress concentration factor (K;) as a function of aspect ratio and rotation angle of elliptical hole in
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(a) ¢ =10 deg, (b) ¢ =20 deg, (c) ¢ =30 deg, (d) ¢ =40 deg, (€) ¢ =50 deg, (f) ¢ =60 deg, (9) ¢ =70 deg, (h) ¢ =80 deg,

and (i) ¢ =90 deg
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principal direction, the peak stress no longer appears at the tip of
the elliptical hole (K, increases to 1.91), as shown in Fig. 7(e). If
the hole is normal to the principal direction, K, increases drastically
to 11.04, at the location of the spikes in Fig. 7(f).

To study the effects of multiple holes, we consider the relative
rotation between two identical holes. If two holes are far away
from each other, their interaction can be ignored and the stress con-
centration factor is controlled by the worst case of the two. With
this assumption, the contour plots of K, as a function of y and ¢ are
generated and shown in Fig. 8. Three tessellation angles,
¢=30deg, 60deg, and 90deg, are investigated with the aspect
ratio selected as per Table 1. The contour plots again show the sen-
sitivity of the stress concentration factor with respect to the rotation
of holes and can be referenced to estimate K, for architected planar
materials with holes. The RVE plots illustrate that both holes in the
RVE should be aligned with the principal direction for mitigating
stress concentration. Such observation can be extended to tessella-
tions with even more holes in the RVE, like Kagome.

4 Numerical Validation and Discussion

To check the validity of the theoretical model, we compare the
theoretical prediction with finite element numerical studies using
ABAQUS (Simulia, Providence, RI). A linear three-dimensional
brick element with reduced integration (C3D8R) is adopted to
model the RVE. After a convergence test, the number of elements
is ~15,000 with local mesh refinement applied at the tips of each
hole. For porosity y =0.25%, parametric studies with ¢ ranging
from —90deg to 90deg and hole aspect ratio a/b taking a value

Journal of Applied Mechanics

from the set (1, 2, 4, 10, 20) are performed for tessellation angle ¢
between 30deg and 90deg with 10deg increment. If the RVE is
solid, the displacement loading on the RVE (L =25 mm) results
ine, =7.0x10"* and &yy = 0.5¢y,. The material is linear elastic
with Young’s modulus E = 7.0 x 10* MPa and Poisson’s ratio
v=0.35. Optimal values of y and a/b can be determined by
numerical optimization on the best shapes from parametric studies
as implemented in maTLAB (MathWorks, Natick, MA).

The data in Table 2 demonstrate that the theoretical results
match very well with those obtained numerically. The theoretical
model successfully predicts the optimal value of rotation angle y
and aspect ratio a/b with less than 2% error for all ¢. The pre-
dicted peak von Mises stress from the model is about 1% larger
than numerical value. The difference in value is attributed to the
use of bulk material properties for a fully solid RVE without
reduction of porosity.

To check the porosity limits for the validity of our observation,
we performed a number of finite element simulations of the
rhombus RVE with hole aspect ratio a/b =2 under uniaxial dis-
placement loading in the X-direction with the goal of numerically
determining the optimal 0 to the nearest 1 deg.

The results tabulated in Table 3 show that for up to 5% poros-
ity, the theoretical model predicts the orientation of the hole with
less than 10% error. The theoretical prediction starts to deviate for
porosity values larger than 10% and it fails for porosity equal or
greater than 20%. If  is large, the hole is closer to the edge of
RVE, defying the assumption of unbounded domain; hence, the
problem cannot be treated by disregarding the hole size in the
RVE and assuming bulk properties.
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Table 2 Theoretical and numerical solutions of minimal peak von Mises stress under selected loading cases

¢ (deg) 30 40 50 60 70 80 90

7 (deg), theory —36.95 —33.62 —29.61 —24.55 —18.03 -9.71 0

7 (deg), numerical optimum —36.90 —34.01 —29.78 —24.96 —17.99 —9.68 0

a/b, theory 3.64 2.44 1.92 1.63 1.49 1.40 1.38
a/b, numerical optimum 3.67 2.40 1.92 1.65 1.48 1.41 1.38
Omax (MPa), theory 114.09 114.47 113.95 114.04 114.07 113.46 113.27
Omax (MPa), numerical optimum 113.72 113.44 112.34 112.38 112.71 111.81 112.05

A set of finite element analyses of full-size samples with multi-
ple holes was also performed. Figure 9(a) shows a model with
7 x 7 elliptical holes resembling the conditions of a periodic
unbounded domain. After a convergence study, the model is
meshed with ~150,000 C3D8R brick elements with local mesh

101010-10 / Vol. 85, OCTOBER 2018

refinement at the tips of each hole. To approximate the boundary
conditions in Egs. (2) and (3) as applied in the RVE model (see
Fig. 9(b)), translational displacements on the left edge and vertical
displacement on the right edge are enforced. A uniaxial displace-
ment load is applied on the right edge. The stress pattern on the
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Table 3 Theoretical and numerical solutions of optimal hole rotation angle under uniaxial tension with multiple porosities

¢ (deg) 30 40 50 60 70 80 90
7 (deg), theory ~26.03 —20.72 ~15.93 —11.58 —7.54 -3.72 0
7 (deg), ¥ = 5% —24 -20 —15 ~10 -7 -3 0
7 (deg), y =7.5% -22 —18 —14 ~10 -6 -2 0
7 (deg), ¥ = 10% -20 ~16 ~13 -6 -5 -2 0
7 (deg), ¥ = 15% ~13 —12 -7 —4 —1 0 0
7 (deg), ¥ =20% NA —4 ~1 1 3 1 0

(b)

S, von Mises S, von Mises
(MPa) (MPa)
Z,-Zggﬁg} 7.739e+01
-209e+H 7.097e+01
6.736e+01 5_2242,,81
6.208e+01 5.804e+01
5.680e+01 oy 5.169e+01
5.152e+01 4 ' 25260101
4.623e+01 38836401
4.095e+01 : s
3.567e+01 3.241e+01
g 2.598e+01
3.039e+01
2.510e+01 1.955e+01
1.982e+01 - o 1.313e+01
1.454e+01 — 6.699e+00
2.728e-01

(c)

(d)

Fig. 9 Simulation results of full size versus RVE model with a/lb=4, 0 = —12deg, ¢ =60deg and y = 2%: (a) Boundary
conditions and loading of the full size model, (b) boundary conditions and loading of the RVE model, (¢) von Mises stress
distribution near the center hole of the full size model, and (d) von Mises stress distribution of the RVE model

edge of the center hole shown in Fig. 9(c) matches that of the sin-
gle hole in the RVE model in Fig. 9(d) with only 1% difference in
the von Mises stress. The orientation of the hole in Fig. 9(d) is the
optimal value calculated from the theoretical model (Table 3), and
the stress pattern is consistent with that in Fig. 7(d).

To complement the results in Fig. 8, which assume that the K,
is controlled by the worst of multiple holes, we numerically com-
puted the minimum peak von Mises stress of elliptical holes with
a/b=35 in triangular, hexagonal, and Kagome tessellation under
uniaxial displacement with porosity up to 5%. The selected tessel-
lations correspond to ¢ =60deg with 1, 2, and 3 holes in the
RVE, as shown in Figs. 1(c) and 8(b). Results in a given row of

Table 4 Numerical solutions of minimal peak von Mises stress
of elliptical holes in triangular, hexagonal, and Kagome tessel-
lations under uniaxial tension

Tessellation Triangular Hexagonal Kagome
Omax (MPa), Y = 1% 73.75 74.27 75.80
Omax (MPa), Y =2% 74.12 77.74 78.33
Omax MPa), y =5% 75.01 91.21 86.67

Journal of Applied Mechanics

Table 4 show the peak stress increases by less than 20% as more
holes are introduced, suggesting the minimum peak stress is less
sensitive to the number of holes if the porosity is low and the
holes are far apart. This shows that the observations on the opti-
mal orientation and aspect ratio of elliptical holes for mitigation
of stress concentration are valid for a wide range of generic planar
tessellations.

The insights gained in this paper can assist engineers to retrieve
the optimal parameters of elliptical holes for a given loading and
tessellation angle, as well as to predict the peak stress of one sin-
gle hole with relatively good accuracy. The results also enable the
stress prediction for generic tessellation of planar patterns of a
finite number of separated holes. While the minimum distance
between holes to be considered as uninfluential to the neighboring
holes behavior cannot be prescribed precisely for a general prob-
lem, relevant guidelines can be found in the literature [43]. The
theoretical model and the outcome of minimizing stress by align-
ing the hole to the principle stress direction of rhombus shaped
RVEs can be extended to parallelograms by changing the edge
lengths. Extension of the model and inclusions to other polygonal
RVE shapes is also expected to be valid but further work is
required. This work focuses on stress prediction of tessellated
elliptical holes in a linear elastic material with porosity below 5%.
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Further work is required to develop theoretical predictions that
accounts for damage, plastic failure, and other physical
phenomena.

5 Conclusions

In this paper, generic planar tessellations of elliptical holes with
varying orientations in a low-porosity domain under biaxial
displacement loading have been investigated with the goal of miti-
gating stress concentration. The proposed theoretical model pre-
dicts stress distribution on the edge of the hole and shows that the
alignment of the hole with the principal direction corresponding
to the largest principal stress is the key to minimizing stress con-
centration. The optimal aspect ratio of the elliptical hole has been
identified for various load cases: circular holes are optimal for
equiaxial stress and increasingly large aspect ratio holes for stress
state approaching uniaxial. Numerical simulations of generic
rhombus shaped RVE have demonstrated the validity of the
theoretical model for porosity up to 5% and for representation of
arbitrary planar tessellations with a finite number of separated
holes. The theoretical model and findings presented address the
crucial issue of stress concentration and can be applied to the
design of planar architected materials for mechanical, aerospace,
biomedical, and other engineering applications.
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