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Multiple-wavelength surface patterns in models
of biological chiral liquid crystal membranes

P. Rofouie,a D. Pasinib and A. D. Rey*a

We present a model to investigate the formation of surface patterns

in biological materials through the interaction of anisotropic inter-

facial tension, bending elasticity, and capillarity at their free surfaces.

Focusing on the cholesteric liquid crystal (CLC) material model, the

generalized shape equation for anisotropic interfaces using the

Rapini–Papoular anchoring and Helfrich free energies is applied to

understand the formation of multi-length scale patterns, such as

those found in floral petals. The chiral liquid crystal-membrane

model is shown to be analogous to a driven pendulum, a connection

that enables generic pattern classification as a function of bending

elasticity, liquid crystal chirality and anchoring strength. The unique

pattern-formation mechanism emerging from the model here pre-

sented is based on the nonlinear interaction between bending-driven

folding and anchoring-driven creasing. The predictions are shown to

capture accurately the two-scale wrinkling of certain tulips. These

new findings enable not only to establish a new paradigm for

characterizing surface wrinkling in biological liquid crystals, but also

to inspire the design of functional surface structures.

Chiral liquid crystals (CLCs) have been widely found in Nature
and living soft materials. Biological CLCs are functional materials
that display unique properties1 and specific geometric features,
such as surface wrinkles, mostly with nanoscale amplitudes and
microscale single wavelength.2 Chiral capillary pressure, known as
director pressure3 that reflects the anisotropic nature of CLC
through the orientation contribution to the surface energy, has
been identified as the fundamental driving force generating
single-wave length surface wrinkling.3–5 In biological membranes,
these surface patterns are mostly the result of compressive strain
(caused by differential swelling or constrained growth) in a stiff
film resting on a compliant elastic substrate.6–9 Moreover,
surfactant-like biomolecules found in all living cells influence
the elastic properties of the cell membrane, such as pulmonary

surfactant which is essential to lower the surface tension in the
lung and to facilitate inhalation.10 The objective of this paper is
present a theoretical model that combines membrane elasticity
and liquid crystal anchoring to explain the multiple-length-scale
surface wrinkles, which are widely observed in flower petals,11

plant leaves,12 blood cells,13 cerebral cortex,14 and animal living
tissues.15

Although significant progress has been made in formulating
and validating theoretical models that attempt to explain the multi-
length scale surface wrinkling in biological soft materials, previous
studies have been restricted to bi-layer elastic models.8,9,13,15

There are few studies considering other chemical and biological
mechanisms coupled with the compression-induced elastic defor-
mation contributing to the wrinkling behavior16–19 in biological
surfaces and membranes. Here, to describe more complex real
surfaces, we propose a physical model that includes liquid
crystal anisotropy of biological materials, bending elasticity of
surfactant-like biomolecules, and substrate cholesteric order;
and for brevity we call it cholesteric liquid crystal membrane
model (CLC-M). When the anchoring and bending effects are
comparable, the surface profile may show a rich variety of
multi-scale complex patterns, such as spatial period-doubling,
period-tripling, and quasi-periodicity that no longer can be
described by a single harmonic. In the absence of liquid
crystal anchoring, the CLC-M model converges to the classical
elastic membrane (M), and in the absence of an interfacial
surfactant layer, it converges to the liquid crystal interface
model (CLC). For a cholesteric of pitch p0, under compression
stress T0, with surface anchoring W, and bending elasticity kc,
we find two length scales, cchiral and cmem, and two key
dimensionless numbers, o and %W, that control the surface
morphogenesis:

‘chiral ¼
2p
q0
¼ p0; ‘mem ¼

2p
qb
¼

ffiffiffiffiffiffiffiffi
kc

T0j j

s
(1)

o ¼ ‘chiral
‘mem

¼ p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kc= T0j j

p ; �W ¼W

T0
(2)
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where o is the winding number and
�
W is the ratio of anchoring to

compression, whose magnitudes control the pattern formation
mechanisms in the CLC-M model. For the limiting CLC and M
models we have: CLC: o- N,

�
W = W/g0, M: o = 0,

�
W = 0 and for

the CLC-M complete model both o and
�
W are non-zero and finite;

g0 is the isotropic surface tension, which acts as the Lagrange
multiplier corresponding to the constraint of inextensibility of the
membrane.8 Schematics for the expected surface wrinkling of
the CLC model and the CLC-M model are shown respectively in
Fig. 1(a) and (b).

In Fig. 1(a) the cholesteric order of the substrate unwinds
into a geodesic splay-bend field that interacts with the anchoring,
which creates a periodic director capillary pressure that is
balanced by isotropic capillarity, as reported in ref. 3 and 5. This
results in a single-wave length wrinkle (top left). Here, we focus
on the phenomenon shown in Fig. 1(b), where the anchoring/
chirality/bending interaction creates multiple periodic scales
(top right). Unwinding a helix due to surface anchoring was first
considered in ref. 4.

Next we describe the essential elements of the CLC-M
model. Liquid crystal orientation at the interface is defined
by the director field n. We restrict the discussion to homeo-
tropic anchoring (W o 0) and a bend and splay director field:
n(x) = (cos y(x), siny(x), 0), where the director angle, y = 2px/p0

has a domain of [0,2p]. It should be noted that the presence
of a layer of surfactant-like biomolecules can change the pre-
ferred surface anchoring, and the director field.20 The arc-length
measure of the undulating surface is ‘‘s’’. Here we consider a
single wave-vector and the amplitude of the vertical undulation
is h(x).

The interfacial surface tension g for the cholesteric-elastic
membrane (CLC-M) includes the anchoring energy given by

Rapini and Papoular and the Helfrich free energy that describes
the elasticity of membranes and surfactant–laden interfaces21

such that:

g ¼ g0 þ
kc

2
k2 þW

2
n � kð Þ2 (3)

where k is the surface curvature. The bulk Frank elastic
contribution to the shape equation due to director gradients
close to the surface is assumed to be negligible. The relative
importance of the bulk elastic contributions compared to anchoring
energy can be evaluated by comparing the extrapolation length,
ce = K/W, (K being the Frank elastic constant) and the helix pitch
p0. For CLC-M with quite strong anchoring and large enough
pitch (order of micrometers), the Frank elastic contribution is
not significant as the extrapolation length is much less than the
helix pitch: ce o p0.22

The generalized Cahn–Hoffman capillary vector21,23 is the
fundamental quantity that includes the curvature effects and
liquid crystal orientation in one single vectorial quantity.
For curved anisotropic interfaces, the bending moment tensor
(rs�M) and the changes in surface tilting (qg(n,k)/qk)must be
included into a generalized capillary vector. As the result, the
capillary pressure includes the effects of bending (rs

2�M) and
liquid crystal orientation (rs(qg(n,k)/qk)).21 The generalized
capillary vector N for the elastic anisotropic interface (CLC-M)
has two components21 and in the 1D model considered here
it reads:

N ¼ N? þ Nk;

N? ¼ X?k ¼ g�M:kttð Þk;Nk ¼ Xkt ¼ t � @M
@s

� �
� ttþ tt � dg

dk

(4)

The normal component N> describes the increase in the surface
energy through dilation and the tangential component N8 is the
change in the surface energy through rotation of the unit
normal. Replacing the 1D Rapini–Papoular–Helfrich surface
tension (3) in (4) yields:

N? ¼ g0 þ
W

2
n � kð Þ2�kc

2
k2

� �
k;

Nk ¼ kc
@k
@s
þW ðn � kÞðn � tÞð Þ

� �
t

(5)

The shape equation is DP = (rs�N) � t�qN/qs21 where DP
represents the pressure difference between the inner and outer
sides of the cell membrane and rs is the surface gradient. The
capillary pressure has two contributions:

t � @N
@s
¼
@Nk
@s
þN?k (6)

For the current case of DP = 0, the condition for which the
capillary pressure is zero yields N = C, where C is a constant
vector. Considering the general case k = k0, qk/qs = 0, y = 0,
j = p/2 at s = 0, the constant vector is C = (g0 � (kc/2)k0

2)dx.

Fig. 1 Schematic of a cut of the chiral nematic membrane in the absence
(a) and presence (b) of surfactants at a LC free surface. The rods in the
substrate layer denote average fiber (director) orientation, the top surfaces
depict the surface morphologies, the surfactant molecules are denoted by
the polar head and two tails, the cholesteric axis H is along the ‘‘x’’ axis, the
surface normal is k, the surface tangent is t, the normal angle is j, the
l’s on the top schematics denote wave-lengths, and the compression
direction is ‘‘x’’.
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Introducing the compression T0 = (g0 � (kc/2)k0
2) and replacing

the curvature k = dj/ds, (6) yields:

kc
@2j
@s2
þ T0 cosjþWðn � kÞðn � tÞ ¼ 0 (7)

which is the equation of equilibrium for an elastica under a
uniaxial compressive force T0, and external anchoring force
W(n�k)(n�t). The thickness of biological membranes is typically
7–10 nm, which is much less than the size of the membraane.24

Here we consider local wrinkling in a membrane with infinite
length. Consequently, thin-shell approximation theory can be
accounted for modeling the pattern formation in a uniform
elastic liquid crystal membrane. We assume that the surface
deformation does not lead to local thinning or thickening of
the membrane. We are dealing with a quite strong anchoring,4,5

W C �5 � 10�5 J m�2, and a relatively small value of the
bending elasticity, kc C 5 � 10�18 J, which gives a micron-range

bending/anchoring length, ‘b=a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kc=jW j

p
¼ 0:32 m. To include

the limiting models (CLC, M), we present in Fig. 2(a) the general
morphological phase diagram of the surface patterns for a
helicoidal plywood with a constant pitch, p0 = 1.2 mm in the
ternary parametric space (kc,W,g0). The fundamental surface
shapes at the corners of the triangle are: crease (top) with zero
bending (CLC model), flat (lower right) with zero bending and
zero anchoring, and fold (lower left) with zero anchoring
(M model). In the triangle’s interior (CLC-M model), the LC
anisotropy competes with the bending elasticity, creating a range
of complex surface patterns. In the interior, we can identify
two main surface patterns: single wavelength and multiple
wavelengths. The first is located at the limiting cases of zero
anchoring/zero bending elasticity. In the absence of anchoring
(the base of the triangle), the pattern corresponds to the classical
compression-induced buckling of an elastic membrane.8 With
the decrease of bending elasticity, the surface patterns change
into profiles with high wavenumbers, while the amplitude and
the wavelength of the surface wrinkles gradually decrease
and finally for the minimum value of the bending elasticity,
kc = 10�19 J, the wrinkles almost disappear and result in the flat
surface shown in the lower right corner of the ternary phase
diagram. In the absence of bending elasticity (the right side of
the triangle), the chirality-driven surface wrinkling is a single-
wavelength periodic profile whose amplitude increases linearly
with W/g0.3 The multiple wavelengths pattern is observed in the
regions where both bending elasticity and liquid crystal anisotropy
are present. With the increase of anchoring, the surface profiles
gradually change into profiles with high wavenumbers, resembling
the experimentally observed multi-scale surface modulation found
in the petals of the ‘‘Queen of the Night’’ tulip.11 These surface
patterns also reflect the two-wavelength periodic wrinkling experi-
mentally observed at the free surface of cellulosic cholesteric liquid
crystal films.25 The wrinkling of short wavelength, l2 C 0.8 mm, are
superimposed on longer waves of length l1 C 3.5 mm. The helix
pitch and the anisotropic elastic constants of the cellulosic CLC
film were suggested as the main parameters responsible for the
short wavelength patterns, observed experimentally.25

An increase of the bending elasticity kc, increases the
periodicity of the smoother wrinkles and leads to the lower
wavenumber. The greater the value of kc, the greater are the
amplitudes of the wrinkles. The amplitude, h, can vary from few
nanometers to few microns depending on the combination of
the system parameters; kc, p0 and W. At higher bending
elasticity (kc C 10�18 J), folding may appear. In partial summary,
if the effect of the bending elasticity is predominant, the
profile is a fold. If the effect of anchoring is predominant,
the profile is a crease, which mostly occurs at the surface of
soft materials without hard skins.26 When both effects are
comparable, the surface exhibits multiple periodic wrinkles,
as illustrated in Fig. 2(b).

Next we show that the anchoring/bending/chiral model can
be gainfully compared with a periodic forced pendulum, where
the angular velocity of the pendulum is identical to the curvature
k of the elastic membrane. The natural frequency of the

Fig. 2 (a) The ternary phase diagram of wrinkling morphologies. (b) Pattern
selection depending on anchoring strength W and bending elasticity kc. The
folding appears at weak anchoring and high bending elasticity and the
creasing occurs at strong anchoring and low bending elasticity. The multiple
wavelengths pattern is observed where both bending elasticity and anchoring
strength are comparable. MWW denotes multiple wavelength wrinkling.
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pendulum corresponds to the membrane wavenumber, 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T0j j=kc

p
and the frequency of the external force corresponds to director
wave-vector q0. We first discuss linearized surface patterns in terms

of length scales (p0, cmem)and anchoring (
�
W) and then describe the

general case in terms of (o,
�
W). In the pure membrane and

anchoring models, the normal angle can be expressed by a single

sinusoid: jaðsÞ ¼ a1 �Wp0 sin
2ps
p0

� �
; jbðsÞ ¼ a2‘mem sin

2ps
‘mem

� �
,

respectively. In each of those two cases the system acts as a simple
pendulum, with one degree of freedom (single frequency).
In the presence of both anchoring and elasticity, for small
amplitudes of the surface undulations, the normal angle can
now be described by a linear combination of two sinusoids:

j(s) = p0(a1
�
W sin(2ps/p0) + (a2/o)sin(os/p0)). This linear approach

valid for quite weak anchoring (|
�
W| o 0.1) yields the normal

angle, j, of periodic wrinkles as linear combination of two
sinusoids with wave-lengths scales (p0, p0/o) and amplitudes

(a1
�
Wp0, a2p0/o), where a1 = 0.42, and a2 = 0.99.
The system can be completely described in the 3D toroidal

phase (j,k,y) space, where j corresponds to the state of the
pendulum, k to the angular velocity, and y to time. Also, the
trajectories in 2D phase space (j,k) are identical with the
pendulum limit cycles. For two different values of the helix pitch,
Fig. 3(a) and (c) illustrate the surface profiles corresponding to the
pure elastic membrane (M) model (no anchoring, no chirality),
the anchoring/chiral (CLC) model, the anchoring/bending/chiral
(CLC-M) model, and the estimated profile that is obtained by
using the linear combination of the two sinusoids; the latter
shows a very good agreement with the complete CLC-M model.

For the elastic membrane model and the CLC model, the phase
space is a closed curve, resembling an ellipse. In the presence
of both elasticity and LC chirality, the phase space ellipse gets
distorted. As illustrated in Fig. 3(b) and (d), for values of the
helix pitch (p0 = 1.98 & 0.79 mm), the ellipse splits into five and
two cycles respectively. The dynamic analogy clearly shows that
the surface pattern selection depends on the system winding
number o, or ratio between the number of times the trajectory
rotates around the small cross section, and the large circum-
ference of a torus.

Fig. 4(a) is a phase diagram in terms of pitch p0 and bending
constant kc, and illustrates the boundary lines in which a CLC-M
has an integer winding number o; the actual multiscale
periodic surface profile is shown on the bottom right. If the
winding number is not an integer, the LC elastic membrane has
a periodic profile but the wrinkles are not perfectly periodic
(quasiperiodic). The inset clearly shows the geometric impact
of increasing o and confirms the relation between number
of peaks and p0/2; for o = 3 we have 3 peaks per p0/2 and when
o = 6 we find 6 peaks per p0/2. Hence the model clearly captures
the mechanism of multiple wrinkling scales as a function of the

Fig. 3 Periodic surface profiles (a and c) and corresponding limit cycles
(b and d) for the pure membrane (M), the pure CLC, and the elastic LC (CLC-M)
models with W = �10�4 J m�2, kc = 5 � 10�18 J, T0 = �5 � 10�3 J m�2

(a and b) P0 = 1.98 mm, o = 10 (c and d) p0 = 0.79 mm, o = 4. h is the
amplitude of the surface wrinkles. The knots above the limits cycles show
the 3D (j,k,y) phase portraits of the system.

Fig. 4 Limit cycle phase diagram (a) showing the system boundaries in
which the integer winding number assumes values: o = 3, 4, 5, 6. (b) Surface
morphologies depending on the winding number o and the anchoring
constant

�
W. The periodic patterns on the top of the limit cycles represent

the surface membrane profile.
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magnitude of o ¼ p0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kc= T0j j
p

: As described above, the surface
patterns can be characterized by o and

�
W and the wrinkling

mode can be well characterized by limit cycles. The morphological
transitions of the surface patterns are depicted in Fig. 4(b) with
respect to the anchoring constant (

�
W). When the cholesteric pitch

becomes short (compared to the elasticity length scale), or the
anchoring strength is insignificant, the system changes to an
essentially unperturbed system, thus resulting in single-wavelength
periodic patterns (limit cycle is an ellipse). As the anchoring strength
tends to increase, the limit cycles expand, the number of rotations
decreases, and the surface structures transform into single
wavelength patterns. For small winding numbers, an increase
in the anchoring may result in spatial quasi-periodicity and
onset of chaotic patterns (o = 4). Not surprisingly, for weak
anchoring the effect of nonlinearity is negligible and the limit
cycles represent the system winding number. However, as we
increase the anchoring

�
W, the nonlinearity gradually increases,

thereby triggering period doubling, period tripling and other
unique solutions that no longer represent the system winding
number. If we increase the anchoring further (|

�
W| 4 0.1),

nonlinear buckling (chaotic spatial patterns) can appear.
In closing, this work presents a novel model based on the

integration of liquid crystal and membrane physics, used to effi-
ciently analyze surface pattern formation in elastic LC membranes.
Through the combination of membrane elasticity and orientation
gradients, we elucidate a natural setting for the creation and control
of complex surface patterns. Furthermore, the morphology phase
diagrams allow us to determine what characteristic pattern will
appear on the surface based on the interaction of the three primitive
shapes (folding, creasing, and flat). The observation of similar
patterns in biological membranes can now be understood in terms
of liquid crystal anisotropy and we can conclude that the numerous
surface patterns observed in living tissues might be formed through
LC anisotropy, similarly to the better understood case of 3D biological
liquid crystal architectures. Design and fabrication of surface textures
in ordered media is fundamental to the development of advanced
multi-functional materials such as biosensors and actuators.

Financial support for this research was provided by Le Fonds
Quebecois de la Recherche sur la Nature et les Technologies
(FQRNT).
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