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Liquid crystalline phases found in many biological materials, such as actin, DNA, cellulose, and collagen
can be responsible for the deformation of cell membranes. In this paper, cell membrane deformation is
investigated through the coupling between liquid crystal anisotropy and membrane bending elasticity.
The generalized shape equation for anisotropic interfaces, which resort to the Cahn—Hoffman capillarity
vector, the Rapini—Papoular anchoring energy, and the Helfrich elastic energy, is applied to gain insight
into the deformation of closed liquid crystal membranes. This study presents a general morphological
phase diagram of membrane surface patterns, in which two characteristic regimes of membrane shapes
can be classified with respect to the most dominant factor between liquid crystal anisotropy and bending
elasticity. To that end, we consider a 2D nematic liquid crystal droplet immersed in a isotropic phase in
the presence of an interfacial layer of surfactants, which leads to an additional elastic contribution to the
free energy of the system. The presented results indicate that, depending on the bending elasticity of
the cell membrane, the liquid crystal might be able to deform the cell, thereby resulting in anisotropic
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asymmetric shapes. As liquid crystal anisotropy dominates the bending elasticity, spindle-like or tactoid
shapes, which are extensively observed in experiments, can be formed. The findings provide a
DOI: 10.1039/c7sm00977a foundational framework to better understand membrane topologies in living soft matters. Furthermore,

the coupling between order and curvature of membranes shed new light into the design of novel
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1. Introduction

Biological membranes show a wide variety of complex topo-
graphies and morphological instabilities. To elucidate the
morphological variety of biological membranes, several theo-
retical studies were undertaken with the goal of minimizing
membrane-bending energy subjected to area and volume con-
straints (Helfrich model, also known as the spontaneous curvature
model)." Although Helfrich models can well capture numerous cell
membrane morphological deformations, they fail to reproduce
membrane shapes that are asymmetric, such as the echinocyte.”
While the area difference elastic models (ADE), which minimize
the energy associated with the area difference between the inner
and outer leaflet of the membrane, can represent the top-bottom
asymmetric.® In these models, the membrane is considered as a
2D surface embedded in the 3D Euclidean space and assumed to
exhibit purely elastic behaviour described by its mean curvature.
Further, numerical simulations such coarse-grained molecular
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dynamics (CGMD),* spherical harmonics parameterization
(SHP),” and dissipative particle dynamics® were proposed to
provide a detailed description of pattern formation occurring in
both symmetric and asymmetric deformation. Although signi-
ficant progress has been made in formulating theoretical and
numerical models that attempt to explore the complex surface
morphologies in biological closed membranes, previous studies
have been restricted to bilayer elastic models. There are few studies
that consider other chemical and biological mechanisms (such
as the presence of multiple components or in-plane orders)
contributing to the formation of top-bottom asymmetric mem-
brane shapes.”

As the lipid bilayers exhibit long range ordering,® they might
be regarded as liquid crystals. Furthermore, liquid crystalline
phase and topological defects are found in numerous biological
materials, such as DNA,’ cellulose, chitin,'" collagen,'> amyloid
fibrils.”® Liquid crystallinity not only is governed most physical
aspects of biological morphogenesis, but it also contributes in
the detailed organization of cells and living tissues."* A cell
membrane can exhibit anisotropic behavior due to lipid tilt, lipid
rotation, and chirality'® or due to external macromolecules like
proteins.'® Liquid crystallinity of actin or tubulin polymer net-
works can also contribute in controlling shape deformation in
biological cells."” Besides, the morphological patterns of some

This journal is © The Royal Society of Chemistry 2017
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Fig. 1 Schematic of possible elastic anisotropic drops. (a) Liposome, (b) surfactant-coated nematic liquid crystal droplet, and (c) polymersome.

lyotropic liquid crystal droplets closely resemble the geometries
and symmetries of living tissues and cell membranes.'® It is
shown that spontaneous assembly of phospholipids at the inter-
face between liquid crystals and aqueous phases results in
dynamic spatial patterns typical of phospholipids.">*° Another
example of coupling between membrane elasticity and liquid
crystal anisotropy responsible for the generation of complex
surface morphologies, occurs in giant unilamellar vesicles
(GUVs) suspended in a liquid crystal.>® Moreover, the three-
dimensional architectures of some liquid crystal colloids closely
resemble the geometries and symmetries of living tissues and
cell membranes,”” such as starfish morphology, an instance that
confirms the analogy that can be drawn between liquid crystal
anisotropy and amphiphilic surfactants.>”> Polymersomes can
also exhibit a large variety of morphologies that can be con-
trolled by copolymer composition and subsequently respond to
chemical or physical stimuli such as pH, osmotic pressure, and
temperature.”> This paper presents a systematic modeling
approach to derive the equations coupling topology, elastic free
energy, and anchoring conditions that can be used in analyzing
the surface morphologies observed in elastic anisotropic drops
such as liposomes or phospholipid bilayer, surfactant-coated
nematic liquid crystal droplet or liquid-crystalline lipid mono-
layers, and polymersomes (see Fig. 1).

Several theoretical and experimental studies have been pre-
sented to model the coupling mechanism between the orienta-
tional order, topological defects, and the curvature in spherical
824 The presented theoretical studies illustrate the
deformation of an isotropic droplet immersed in a liquid
crystal phase**” and the inverse problem, the deformation of
a nematic liquid crystal droplet within an isotropic phase.>*
Recent studies have also explored the deformation of lyotropic
chromonic liquid crystal (LCLC) drops® and active nematics.>®
For spherical nematic droplets, curvature generally drives forma-
tion of topological defects and disclinations, and correspondingly,
defects and disclinations change curvature.*'” But, the nematic

vesicles.

This journal is © The Royal Society of Chemistry 2017

droplets do not necessarily have a distorted director field. If the
droplet size is sufficiently small, the director field would be
homogenous and the droplet would be defect free, while large
nematic droplets favor the formation of topological defects. The
type of surface anchoring may result in the formation of either a
hedgehog point defect in the center,”” or a pair of surface point
defects at the poles of the droplet known as boojums.”® Other
topological defects can be expected in 3D.* The results show that
the equilibrium shape of nematic liquid crystal droplet is typically
an ellipsoid in which the major axis of the shape lies along the
director orientation.*® The spindle-shaped droplet or tactoid have
also been observed in suspensions where both isotropic and
nematic phases exist.*'%**

Significant progress has been made in developing theoretical
models that couple the orientational order and curvature for
anisotropic elastic interfaces.>’ We recently showed that when the
liquid crystal anisotropy and bending effects are comparable, the
planar anisotropic interface may show a rich variety of multi-scale
complex patterns, such as spatial period-doubling, period-tripling,
and quasi-periodicity.*" In this paper, we seek to characterize the
shape deformation of closed liquid crystal membranes through
the interaction of anisotropic interfacial tension, bending elasti-
city, and capillarity at free surfaces. We theoretically consider a
nematic liquid crystal droplet immersed in a passive isotropic
phase in the presence of an interfacial layer of surfactants, which
leads to an additional elastic contribution to the free energy of
the system. The aim of this work is to develop an exclusive
physical model based on the integration of the Cahn-Hoffman
capillarity vector developed for liquid crystals,**
Rapini-Papoular anchoring energy®* for liquid crystals, and the
Helfrich membrane energy.** We only consider 2D drops, with
a constant director field in its interior and with a surface that
displays bending elasticity and anisotropic surface tension; the
outer phase is inert.

As mentioned above we restrict the study to 2D cases, as in
many previous works.'®¢ With this restriction the importance

the classical
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of 3D effects, namely non-zero local Gaussian curvature are not
captured. Local shapes in soft matter and hard matter are
usually described in shape maps of Gaussian curvature in terms
of average curvature,®* where parabolic trajectories represent
spheres and the zero Gaussian line represents a cylinder. With
the 2D restrictions only shapes on the latter line are possible. In
this study, since the Gaussian curvature is zero, the 3D exten-
sion of our 2D drop will be a cylindrical surface.*® The radially
symmetric cylinders, rods, are ubiquitous in walled cells such
as bacteria, fungi, and plants.>® Considering a 3D drop will be a
challenging mathematical problem in which the proofs of
existence, regularity of solutions, and measures of the non-
uniqueness of solutions need to be established? in future work
and is outside the scope of this paper.

Of particular interest here is to study the role of liquid
crystal anisotropy in complex surface pattern formation. Under-
standing the mechanisms through which biological mem-
branes exhibit specific morphologies can be used as an
illustration of “bio-inspiration” for the design of novel devices
such as sensors.

The specific objectives of this work are: (a) to derive and
solve a nemato-capillary shape equation that describes the
surface deformation of an elastic liquid crystal membrane;
(b) to characterize the possible deformation modes and inves-
tigate the effect of the system physical parameters on the
surface morphologies; (c) to characterize the role of membrane
elasticity and anisotropic surface tension on the surface defor-
mation mode; and (d) to elucidate the mechanisms that drive
surface deformations.

The organization of this pamper is as follows. Section 2
introduces the material model system, the different contributions
to the free energy, and the governing nemato-capillary shape
equation expressing the coupling mechanism between the sur-
face geometry and director field in rectangular (x,y,z) coordinates.
In this section, we assume a nematic liquid crystal membrane
with quite weak homeotropic anchoring where the radius of the
membrane is always significantly less than the extrapolation
length scale, resulting in homogenous director field. Section 3
presents a phase diagram of liquid crystal membrane configura-
tions as a function of the scaled pressure jump and the scaled LC
anchoring, the effect of model parameters on the membrane
shape. At the end of this section, a general morphological phase
diagram of the surface patterns for the closed LC elastic
membrane in the ternary parametric space (bending elasticity,
anchoring, surface tension) is illustrated, which allows us to
select the membrane shape that results from the interaction of
the three primitive shapes (folded-shape, spindle-like, and
ellipse). In Section 4, we present the capillary pressures asso-
ciated with the bending-anchoring morphological instabilities.
Section 5 presents the conclusions.

2. Theory and governing equations

In this section, we first present the material model system and the
basic concepts of the membrane geometry. Then, we introduce
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the governing nemato-capillary equations based on the widely
used Cahn-Hoffman formalism®” of capillarity for anisotropic
closed membranes expressing the coupling mechanism between
the surface geometry, membrane bending elasticity, and liquid
crystal director field.

2.1. Geometry and structure

We note that in this paper we consider 2D drops and in 3D,
these drops correspond to fibers whose axes are straight lines.
The perimeter of the former correspond to the surface of the
latter. For convenience we may refer to the membrane perimeter
as the membrane surface, without any ambiguity.

The geometry of 2D nematic liquid crystal droplet immersed
in a isotropic phase in the presence of an interfacial layer of
surfactants or membrane can be characterized by a closed curve
profile with respect to reference coordinates “x-y” (see Fig. 2).
For circular membranes of radius of R, the curvature is con-
stant through the perimeter. As the membrane deviates from
that of a circle, the curvature varies around the circumference
and is a function of the polar angle. In this work, the turning
angle of the normal vector k is used as a single scalar function
¢(s) to characterize the membrane profile in the x-y coordi-
nates. s is the surface arc-length and L is the total system
length. Knowing ¢(s), the membrane profile can be obtained by
the integrals: y = fécos ods and x = fOLsin ods.

The curvature is defined as the derivative of the normal angle:
_do
=4
A= J‘gx cos @ds. The unit tangent t and the unit normal k to

K The area of the plane curve, 4, can be computed as:

the surface can be parametrized with the normal angle, t(x) =
(sing(x), — cos¢(x)), k(x) = (cos ¢(x),sin ¢(x)). The nematic
liquid crystal orientation is defined by the director field

outer fluid
pressure: Py 4

perimeter: L @0 T, -
inner LC
pressure: P,

anchoring energy: W (n - k)2 /2
bending energy: K, (K)2 /2

Fig. 2 Schematic of a 2D nematic liquid crystal drop covered by an elastic
membrane immersed in an isotropic fluid. The rods denote the nematic
director field. The director field is along the vertical “y" axis, the surface
normal is k, the surface tangent is t, the normal angle is ¢, and the total
membrane length is L. W denotes the liquid crystal anchoring strength,
k. denotes the surface bending elasticity, and Ap = pout — Pin represents
the pressure jump across the membrane. Note that the director field is
constant everywhere and for this condition to exists the radius of the
membrane is much less than the extrapolation length, K/W.

This journal is © The Royal Society of Chemistry 2017
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n:n = (cos 0,sin 0). The preferred orientation or easy axis at the
interface can be parallel to the unit normal k (homeotropic)
or perpendicular to the unit normal k (planar). It should be
noted that the presence of surfactant-like biomolecules or
phospholipids can change the preferred surface anchoring,
and the director field.*® For nematic liquid crystals immersed
in aqueous surfactant solutions, it is shown that the anchoring
type can depend on the surfactant’s concentration, and increas-
ing the surfactant concentration can lead to adsorption-driven
orientational transition.*® In this study, and without loss of
physical phenomena, we restrict the discussion only to home-
otropic anchoring (W < 0). To determine a closed surface
profile for the membrane, a number of constraints must be
imposed. Firstly, the membrane length L must satisfy the
periodicity condition: x(0) = x(L) and y(0) = y(L). The smooth-
ness of surface profile implies that x(0) = k(L) = k. As the
arc-length varies from 0 to L, the normal angle rotates from
0 to 27 indicating that there exists an integer m such that:
§ kds = 2mm.

2.2. Governing equations

The shape deformation of a liquid crystal (LC) membrane is a
complex multiple-coupling problem that includes anisotropic
surface tension, membrane bending elasticity, and Frank bulk
elasticity.”® To explore the shape selection of a liquid crystal
membrane, the total system energy including the surface
energy and the bulk Frank elastic energy should be minimized.
However, the analytical solution of the problem with the usual
formalism is very complicated. In this study, the bulk Frank
elastic contribution to the shape equation is assumed to be
negligible. The relative importance of the bulk elastic contri-
butions compared to the anchoring energy can be evaluated by
comparing the extrapolation length, l. = K/W, (K being the
Frank elastic constant) and the liquid crystal membrane radius,
R. For a liquid crystal membrane with quite weak anchoring
and small enough radius (R « [.) the Frank elastic contribution
is not significant as it scales as R, whereas the surface energy
scale as R*. Consequently, the elastic energy dominates over the
anchoring energy for small membranes, and we can assume
that the director field is undistorted and homogenous.**” The
typical size of biological membranes is about 1 pm.'* Taking
typical values of Frank elastic constant for nematic liquid
crystals (K ~ 10~ ?-10""" N),** the extrapolation length scale
l. is in the range of few micrometers (l. ~ 10 pm). Thus, to
neglect the contribution of the elastic distortion, we should set
the size constraint on the membrane (R < 10 pm). In this
study, we are dealing with a quite weak anchoring, W =~
107° J m %* and a relatively small value of the bending
elasticity, k. ~ 107>'-107"® J,** typical values for biological
membranes, which gives a micron-range bending/anchoring
length. We assume that the interfacial surface tension is
70 = 1077-10"> N m~ ' and the pressure jump across the
membrane is Ap ~ 0.1-10 kPa.**

Several theoretical models incorporating Helfrich membrane
energy were formulated to investigate the shape deformation of

This journal is © The Royal Society of Chemistry 2017
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biological membranes and constrained soft materials.'>%43*3
In this section, we develop a physical model of a nematic liquid
crystal membrane where the coupling mechanism between
surface geometry and liquid crystal order is presented through
the shape equation that resorts to the vector formalism of
Cahn-Hoffman capillarity.’” The presented liquid crystal
Laplace-Helfrich shape equation can be employed to predict
shape of isotropic droplet embedded in a nematic liquid crystal
phase or shape of nematic liquid crystal embedded in an
isotropic phase.

2.2.1. Cahn-Hoffman capillarity vector. The generalized
Cahn-Hoffman capillary vector £*” is the fundamental quantity
that includes the curvature effects and liquid crystal orientation
in one single vectorial quantity. The orientation-dependent
surface energy can be specified by the unit vector or director
n = n(r) field, the surface position vector r = 7k, and the surface
unit normal k. Cahn and Hoffman defined the nematic
capillarity by the gradient of the scalar field ry:

&(n,k) = V[ry(n,k)] 1)

For isotropic interfaces, the capillary vector, & reduces to a
normal vector § = yk. The decomposition of the surface director
field into normal and tangential components yields n; = kk-n
and n| =I;-n, where I is the 2 x 2 unit surface dyadic I, = I — Kk,
and I is the 3 x 3 unit tensor. Calculating the gradient of the
field ry appearing in eqn (1), using &k = y(n,k), &-dk = dy(n,k),
and d(ry) = V(ry)-dr gives:

or Oy ay
k) =y— — — vk I — 2
E(n, k) y0r+'8r vk + 15 Ik (2)
5 g

where the normal component &, describes the increase in the
surface energy through dilation and the tangential component
g, is the change in the surface energy through rotation of the
unit normal. The surface energy that includes anchoring energy
given by Rapini and Papoular®® and the Helfrich free energy®?
can be used to derive the Cahn-Hoffman capillary vector § for a
composite nematic liquid crystal membrane:

_ 1
V=170 +keKa +2ke(H — Ho) + W -k (3)

where y, is the isotropic surface tension, k. is the membrane
bending elastic moduli, H is the membrane surface curvature,
H, is the spontaneous curvature of the membrane, k. is the
torsion elastic moduli of the membrane, and K is Gaussian
curvature; based on the Gauss-Bonnet theorem®® for closed
membranes without edges the integral over the Gaussian curva-
ture Kg is a topological invariant and it can be ignored.'® The
term W(n-k)*/2 represents the anisotropic anchoring energy
contribution due to the director field deviations from the
preferred “easy axis”, and W is the surface anchoring strength.
If W > 0, the easy axis or preferred orientation is tangential to
the interface (planar), and if W < 0 the easy axis is normal
to the interface (homeotropic anchoring). When the director
field deviates from the preferred orientation, the deviation
causes gradients in surface tension, and may generate the

Soft Matter, 2017, 13, 5366-5380 | 5369
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orientational-driven tangential Marangoni elastic forces and as
well as normal forces.?” In this study, this Marangoni effect is
neglected.

Substituting eqn (3) into eqn (2) yields the normal and
tangential components of the capillarity vector:

R R L Y
Gk = WK 0) +hDC  (4b)

These equations shows that when n-k = 1, the surface behaves
like an isotropic membrane and that the degree of anisotropy is
controlled by n-k.

2.2.2. Nemato-capillary shape equation. To derive the
capillary shape equation required to determine the liquid
crystal membrane shape, we use the capillary pressure

definition Ap=—-Vi-&=-V,- (& +¢)) = —t- %, where
0§ &H ¢,
g 8 t+§H k+a—k %LKt ylelds
0 %
A]’*—t'a*QK—g (5)

By substituting the normal &, and tangential &, components of
the capillarity vector (eqn (4)) we obtain:

M):{(%+%&mkf)—%ﬁ}k—(h%%+ﬂ%rﬂ%)
— W{(k~n)(t~%> +kn: (t%>} (6)

In the absence of the liquid crystal order, the contribution from
the normal component of the capillary vector & , is the classical
Laplace pressure, and the contribution from the tangential
component of the capillary vector §|, is known as Herring’s
pressure. For liquid crystal membranes, since the capillary
vector is a function of both the director field, n and the unit
normal k, an additional contribution to the capillary pressure
arises from director curvature due to orientation gradients.
This equation shows that the membrane shape is the result
of the balance between the membrane bending elasticity, sur-
face tension, surface anchoring effects, and the pressure jump.
Both anchoring term and bending elasticity can drive shape
deformation of a nematic liquid crystal membrane. Rearranging
eqn (6), we obtain:

dx -l 9 —Ap W 5 w 5
@ —TK +k— <+ kc +2—kc(nk)i€——(nt)x

—k—w:{(km)(t-%) St kn: (t%)}

For nematic liquid crystal with the fixed director field,
the director pressure term, Wi(k-n) (t-dn/ds) + kn: (tdn/ds)}

5370 | Soft Matter, 2017, 13, 53665380
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vanishes.*®
K, gives:

Integrating eqn (7) with respect to curvature

In the absence of liquid crystal order, the integration can be
reduced to:

1/di\* 1 4 Yo o Ap
- - = 9
2<ds) +8K ZkCK + ch )

interpreting the quantity s as a time and « as a position, eqn (9)
corresponds to the equation of motion of a particle with unit
mass and kinetic energy 7, moving in a potential U and whose
total energy E is conserved:

4 Voo Ap

*1 d—K 2—5—1!( K+ —kK,
2\ ds 8 2k, ke
1 fdx 2 1 ) 2 Ap

The anchoring term in eqn (8) acts as the correction term when
the mass of the particle changes with time.

Considering the nematic director field n = (cos0, sin0),
surface unit normal k(s) = (cos¢(s), sin¢(s)), unit tangent

(10)

d> .
t(s) = (sin ¢(s), —cos ¢(s)) and using the definitions: d—;c = sin ¢,

dn _ dndx dn .

—=— sing, k=
ds  dxds dx o7
equation:

d()/c) sing gives the governing shape

- 3(5) e (§)
—k—”?“f(‘é—‘f)

The shape equation is a nonlinear third order ODE for the
normal angle ¢ (s, Ap, k., W, ,). In the absence of liquid crystal
anisotropy, the eqn (11) becomes the classical Euler-Lagrange
equation. It represents the interfacial force balance between the
surface forces and the bulk force, Apk due to the pressure jump
across the membrane. The interfacial stress tensor Ty can be
expressed in terms of the capillary vector &:*° T, = &-D where
D = kI; — Lk is the geometric tensor that maps the capillary
vector into the tangential stress & | I, and bending stress & k. Then,
the capillary pressure can be simply presented by: Ap = (V.-Tg)-k =
V-£.The dot product of the interface stress tensor, Tg with the unit
tangent gives:

[\ \

This journal is © The Royal Society of Chemistry 2017
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Besides, the normal vector, k can be expressed as an arc-length
derivative of a vector field: k = a((r -t)k — (r - k)t). Therefore,
we can obtain: '

a(t-Ty)

0s - %(aﬁ - Feuk) = Apk

; (13)
= Ap (- Ok — (£ )0

Thus, the capillary shape equation can be readily found to be:

(it — & k) — APr(tk — kt)

0 (14)

Multiplying the eqn (14) by (kt — tk) and considering that
(tk — kt)-(kt — tk) = ¢¢ + kk results in:

Gk +&t) = (-AP)r (15)

Substituting the normal and tangential components of the
capillary vector, eqn (4), we obtain:

S k+ gt
- (AP
w ke ok
o (yo + 7(11 k)2 — ?Kz)k . (kca + W(n-k)(n- t))t
(—4p) (—4p)

(16)

Thus, we can further find a notable polar formulation for
computing the local radius of the nematic liquid crystal
membrane:

w ke 5\’ o ?
(yo + 7(n k)2 — ?KZ> (kca + W(mn-k)(n- t)))
(AP * (CAP)?
(17)
In the absence of liquid crystal anisotropy (W = 0), eqn (17)
yields:'?

keE +7y>  2kck
2= Kbt o +—

v A (18)

Using this equation, we can determine the local radius of the
membrane for a known total energy E.

View Article Online
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3. Results and discussion

To investigate the effects of the system physical parameters on
the membrane shape and to characterize the morphological
surface patterns, the nonlinear differential equation with periodic
coefficients is solved using the AUTO software.’ The reduced area
of the membrane, the local curvature of the membrane, and the
number of membrane folds are the important outputs of the
model. The two significant parameters influencing the membrane
morphology are: (i) the scaled anchoring coefficient, W/y, (ii) the
bending elasticity number, ApR,*/k.. The scaled anchoring
coefficient W/y, is taken to be in the range 0 < |W/y| < 2
(for nematic-air interface, the typical anchoring strength and
surface tension is W ~ 10°®Jm 2 and y ~ 10°7-10° ] m 2,
respectively).*”> The bending elasticity number, ApRy’/k. is
taken to be in the range 0.05 < ApR,*/k. < 50 (typical value
of bending elasticity and pressure jump across the mem-
brane for biological membranes is k. ~ 107>'-10"'® J** and
Ap ~ 0.1-10 kPa,** respectively).

Table 1 lists the system length scales, the dimensionless
numbers, and their definitions and physical descriptions, that
are captured in the results discussed below.

3.1. Shape selection

To find the shape of a nematic liquid crystal membrane, we first
make eqn (11) dimensionless by taking § = s/Ro, @ = ApRy’/k.
(pressure bending number), f = yoR,’/k. (tension bending
number), @ = WR,*/k. (anchoring bending number), where R,
is the spontaneous radius of the membrane. We then have:

d3 1/dp\? d d
“w ~a(e) o 0(§) gm0 (g)

+ o(sin*(p — 0)) (%) (19)

For each solution ¢ = ¢(3) of eqn (19), there is a certain value of
the variable § at which d®p/d$*> = 0. We choose d’¢/d§® = 0 at
§ = 0. We also select dg/d$|s-o = dg/d$|s=rx, that gives closed

solutions, and ¢|,_, = =, which is consistent with the home-

T
51
otropic anchoring. Solving eqn (19) with the specified boundary
conditions, we can investigate the shape selection of the
membrane based on the three dimensionless parameters: o,

f and w. The spontaneous radius is fixed to (R, = 0.5 pm) and

Table 1 System dimensionless numbers, their definitions and physical descriptions

Name Symbol Definition Physical description

Bending elasticity number o ApRy [k, Ratio of the pressure jump and surface bending elasticity

Pressure bending number p YoRo>Tke Ratio of the surface tension and surface bending elasticity

Anchoring bending number ) WRy’ Tk, Ratio of the anchoring and surface bending elasticity

Extrapolation length le Kiw Relative importance of the bulk elasticity to anchoring

Pressure bending length /pb 3 [ke Relative importance of the surface bending elasticity to pressure jump

Ap

Anchoring bending length lab 2 [ke Relative importance of the surface bending elasticity to anchoring
Vw

Anchoring bending length T LIt ap Relative strength of the anchoring to the bending elasticity
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Fig. 3 The scaled bending energy as a function of the reduced area for
four different values of the pressure bending dimensionless number
o =0.3,05, 1 and 7. Increasing W/yq results in deformation modes with
increase the number of folds. The scaled bending energy increases with
increasing number of folds. All the drops have a vertical mirror symmetry
due to director axis orientation.

the remaining system parameters are varied to investigate their
effect on the membrane shape selection.

To study the effect of the pressure bending number, « and
the dimensionless anchoring number W/y, = w/f (ratio of the
two-other system dimensionless numbers w/ff) on the mem-
brane shapes, the values for y,, and R, are held fixed. The
membrane shape can be characterized by the reduced area
A, = 4mA/L?*, where A is the membrane area and L is the
membrane length and the dimensionless bending energy that
is scaled by bending energy of the circular configuration, E,,
with the reduced area (4, = 1). Fig. 3 illustrates the dimension-
less bending energy as a function of the reduced area for the
n-fold membrane morphologies. For the morphologies shown
in the beginning of each line (the left side of the lines), the
corresponding scaled anchoring, W/y, is zero. Thus, we can
note that in the absence of liquid crystal anisotropy as the
pressure bending number, « increases from 0.3 to 7, the
membrane shape is transformed from 5-fold (starfish) defor-
mation mode to 2-fold deformation mode (discocyte), which is
energetically less expensive than the starfish shape. These
membrane shapes can be also obtained by minimizing the

k
Helfrich free energy,'™ [, (}’0 + §K2>ds + [sApdA. All the

shapes start as a circle for A, = 1 and transform to the folded
modes as A, decreases from 1.

In the presence of liquid crystal order with homeotropic
anchoring, rising the dimensionless anchoring number, W/y,,
results in deformation modes with increased number of folds
and higher bending energies. The results show that the anchor-
ing energy can control the surface tension. This demonstrates an
analogy between the liquid crystal anisotropy and the surface
bending elasticity that can change the interfacial tension and
drive the formation of several polymorphic topologies such as
starfish membranes. In fact, the anchoring energy can govern
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Fig. 4 Scaled bending energy as a function of total dimensionless length
shows a linear scaling for the 2-fold, 3-fold, 4-fold, and 5-fold deformation
modes.

the interfacial energy and lessen the energetic cost of creating
multi-fold shapes. It should be noted that the shape deformation
will only be significant for values of the scaled anchoring
coefficient, W/y, ~ 1 where the anchoring strength is of the
same order, or larger, than the surface tension. For the morphol-
ogies shown in the beginning of the each line where the liquid
crystal anisotropy is absent, increasing the surface tension,
Yo above a threshold results in the self-intersecting membrane
shapes.’® For instance, the discocyte shape intersects itself
when the reduced area A, becomes less than 0.3.*> As the self-
intersecting shapes are physically irrelevant,'? they are not
discussed in the present work.

Fig. 4 shows the dimensionless bending energy of the
membrane shapes corresponding to the 2-fold, 3-fold, 4-fold,
and 5-fold modes, shown in Fig. 3 as a function of the total
dimensionless length: L//4, + L//p,. The numerical results
indicate that the bending energy of the folded membrane with
constant surface tension is essentially a linear function of the
scaled anchoring bending number, wL/R, and the scaled pres-
sure bending number, aL/R,.

3.2. Effect of anchoring

In the presence of the nematic liquid crystal orientation, the
surface area might be increased or decreased for the case of
homeotropic or planar anchoring, respectively. Then, the excess
or lack of the length might buckle the membrane shape. As an
example, Fig. 5 shows the membrane shapes corresponding to
the 2-fold, 3-fold, 4-fold, and 5-fold modes in the presence and
absence of LC anisotropy. To investigate the effect of the liquid
crystal anchoring W on the membrane shapes, for all the
deformation modes the value of the surface tension, 7, is fixed.
The break in top-to-bottom symmetry of the shapes occurred in
the membranes with the presence of liquid crystal orientation
is due to the competition between the bending elasticity of the
membrane and the anchoring of the nematic liquid crystals.
It should be noted that adding the anchoring effect results
in high curvature on the top of the membrane. The figure also
illustrates that the 2-fold and 4-fold modes show the effect of
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Fig. 5 Membrane shapes in the presence and absence of liquid crystal
anisotropy. (a) 2-fold symmetry, (b) 3-fold symmetry, (c) 4-fold symmetry,
and (d) 5-fold symmetry. The scaled anchoring coefficient is W/y, = 1.5.
The pressure bending number, « = ApRy*/k. and the tension bending
number, f = yoRo/ke equal to (@ = 2.5, f = 1.25), (x = 0.15, f = 0.075),
(0 = 0.08, p = 0.04), and (@ = 0.05, f = 0.025) for Fig. 5(a) to (d),
respectively. Adding the liquid crystal anchoring breaks the membrane
top-to-bottom symmetry and results in high curvature on the top of the
membrane shape.

greater top-to-bottom asymmetry with adding LC anisotropy.
As the number of folds increases, the effect of anchoring in
breaking the symmetry becomes insignificant. The reason is
that the more folded modes corresponds to the higher bending
energies where the anchoring energy has a slight effect on the
membrane deformation shape. The 2-fold mode in the presence
of the LC order shown in Fig. 5a is the known stomatocyte shape
observed in red blood cell vesicles®® that could not be obtained
using the two-dimensional Helfrich model. So, by combining the
two deformation mechanisms, bending and anchoring, in theory
it would be possible to obtain the novel top-bottom asymmetric
membrane shapes (Fig. 5(a-d), dashed lines), which are not
possible configurations that can be produced using classical
single-layer membrane models.

3.3. Effect of bending elasticity

To explore the effect of bending elasticity on the membrane
shape, we varied the bending number, « = ApR,*/k. in a broad
range from 0.05 to 50. It should be noted that the values for
pressure jump Ap, and spontaneous radius R, are held fixed
while k. is varied. This range maps out a wide variety of mem-
brane configurations. As shown in Fig. 6, a large part of the
membrane shapes can be captured by varying a single para-
meter, the membrane bending elasticity, k.. As the bending
elasticity decreases, the number of membrane folds reduces
and the morphology changes from 5-fold to discocyte, ellipsoid,
stomatocyte, umbonate, umbilicate, and undulate. In the limit
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Fig. 6 Bending energy as a function of the ratio of radius of the membrane
curvature to the spontaneous radius for a wide range of bending number
o = 0.05-50. The values for pressure jump Ap, and spontaneous radius Ro
are held fixed while k. is varied.

Table 2 Nomenclature of membrane morphologies

Shape Name

Discocyte

o
(-

Stomatocyte

Umbonate

Umbilicate

Undulate

Spindle-like shape

00¢4¢

k. — 0 the shape of the membrane adapts to a spindle-like
morphology. Table 2 lists the standard nomenclature of the
membrane morphologies.

By decreasing k. the ratio of radius of the membrane
curvature to the spontaneous radius, R/R, which is also repre-
sentative of the membrane reduced area, and the scaled bending
energy decrease until the membrane shape adapts to the ellip-
soid. Then, decreasing the bending elasticity further results in
fixed reduced area (R/R,) and increased scaled bending energy.
Fig. 6 shows that two starkly different classes of membrane
deformation modes can be characterized: n-fold topographies
and 1-fold topographies, respectively, corresponding to the right
nearly horizontal branch when the bending energy is dominant
and the vertical left branch when both anchoring and bending
contribute in buckling the membrane. The curvature of the
liquid crystal membranes shown in the left branch can be very
well approximated by Airy functions (see Appendix A). Earlier,

Soft Matter, 2017, 13, 5366-5380 | 5373


http://dx.doi.org/10.1039/c7sm00977a

Published on 14 June 2017. Downloaded by McGill University on 16/08/2017 18:22:05.

Soft Matter

——————— t=14.27 == 1=25.83 T=38.46
—.—. 1=50.14 ™=110.85 —_ . —=T1=4190
1.6 4
14 4
1.2 4
] o
€ 038 -
F\_< ~ <

04 | B C D E
0 T T T T )
0 0.2 0.4 0.6 0.8 1
s/L

Fig. 7 The dimensionless local curvature, r/Rg as a function of the scaled
membrane arclength, s/L for six membrane morphologies with the different
values of the dimensionless number t. Through increasing 7, the dimension-
less local curvature, r/Ro shows period-doubling, period-tripling, period-
quadrupling, and the high wavenumber periodic wrinkling of respectively
corresponding to the discocyte, umbonate, umbilicate, and undulate
morphologies (see Table 2).

boundary layer behavior of nematic liquid crystals in shear
flows is analytically approximated in terms of Airy functions.>>
The results show that when both liquid crystal anisotropy and
membrane elasticity contribute in the membrane deformation,
the anchoring strength promotes shape anisotropy and top-to-
bottom asymmetry while the membrane elasticity promotes
symmetric shapes. Thus, the complex morphologies (shown
in the left vertical branch of Fig. 6) that emerge in numerous
biological membranes can also be explored by another mechanism
that couples liquid crystal orientational order and membrane
elasticity and be well described by a fundamental function (Airy)
of physics.

To explore the morphological patterns shown in the left
vertical branch of Fig. 6, we present in Fig. 7 the dimensionless
local curvature, 7/R, (see eqn (17)) as a function of the scaled
membrane arclength, s/L for six membrane morphologies
with the different values of the dimensionless number 7. The
dimensionless parameter, 7 is a measure of the relative strength
of the liquid crystal anchoring to the bending elasticity. As
the liquid crystal anisotropy can compete with the bending
elasticity, a range of multiple wavelengths pattern can form.
Through increasing the effect of liquid crystal anisotropy, first,
the period-doubling pattern corresponding to the discocyte
shape appears. Then, period-tripling, period-quadrupling, and
the high wavenumber periodic wrinkling respectively corres-
ponding to the umbonate, umbilicate, undulate appear. As the
bending elasticity becomes insignificant, the surface undula-
tions disappear and the membrane shape adopts the spindle-
like morphology.

An increase of the effect of liquid crystal anisotropy decreases
the periodicity of the wrinkles and leads to the higher wave-
number periodic patterns. The greater the value of 7, the smaller
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are the amplitudes and the wavelength of the smooth wrinkles,
as shown in Fig. 8.

3.4. Membrane elongation

The membrane elongation can be characterized by its aspect
ratio ¢ = b/a. The effect of the dimensionless number 7 on the
membrane elongation is shown in Fig. 9. In the absence of LC
anisotropy, for quite small bending elasticity the membrane
will tend to be close to an ellipsoid so as to minimize their
interfacial energy. In the presence of liquid crystal anisotropy,
when the anchoring coefficient is of the same order, or larger
than the surface tension, the nematic liquid crystal membrane
has spindle-like shape. The aspect ratio of the membrane we

obtained obeys g =96.067 if T « 0.05 and g = 1.27tif t » 0.05,

0.5

0 0.05 0.1 0.15 0.2 0.25

Fig. 9 Aspect ratio, b/a of a homogeneous nematic membrane as a
function of the of the dimensionless number, t. The aspect ratio of the

b
membrane shows a linear relationship, — = 96.067 if 1 « 0.05and — = 1.27¢

a a
if = » 0.05. The dashed black line illustrates the points where the
membrane shape has a constant aspect ratio, b/a = 2.
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which is quite close to the approximate results presented
by ref. 24c.

In the absence of bending elasticity, the aspect ratio of the
nematic liquid crystal droplet predicted using the Wulff con-

. . . . b .
struction shows a linear relationship, — = 1 + W /y, if Wiy, « 1
a

b 1/2
and a power function, — = ( ) if W/yo > 1. As we expect
a

)
that by increasing the dimensionless number, 7, the aspect
ratio of the membrane becomes a weak function of the dimen-
sionless anchoring. In Fig. 9, the dashed black line illustrates
the points where the membrane shape has a constant aspect
ratio, in this case equals to b/a = 2. Regardless of whether the
anchoring type is homeotropic or planar, the liquid crystal
membrane favors elongated shapes.

The elongation follows the liquid crystal director field. Here,
as homeotropic anchoring is preferred, any deviation from a
spherical shape will result in an ellipsoid whose axis is perpendi-
cular to the director field. However, in the case of planar
anchoring (not treated here), the main axis of the membrane
is parallel to the director field. Also, it should be noted that for
small values of the scale anchoring coefficient, W/y, where the
isotropic surface tension y,, dominates the anisotropic surface
tension, the membrane tip becomes rounded. The increase in
anisotropic surface energy compensates with the shorter total
boundary length associated with rounded tips.>* While for suffi-
ciently large values of the scaled anchoring coefficient, W/y,, the
opposite condition occurs and the tip becomes sharp. As
reported in ref. 245, the aspect ratio of the nematic liquid crystal
droplet decreases with decreasing the dimensionless parameter,
B = y0Ro’/k. which is a measure of the relative strength of the
surface tension to bending elasticity. For membrane with spindle-
like shapes, the effect of the membrane elasticity would be to
remove the sharp discontinuity in curvature, which minimize the
curvature energy. In agreement with the earlier works,>*>*
the membrane would be spherical if W/y, ~ 0, elongated if
0 < W/yo < 1, and elongated with sharper ends if W/y, > 1.

3.5. Morphological phase diagram

To obtain a comprehensive atlas of morphological surface
patterns, and to predict the membrane shapes depending on
the system physical parameters, we present in Fig. 10 the general
morphological phase diagram of the surface patterns for a liquid
crystal membrane with a constant pressure jump across the
membrane, Ap = 1 kPa, in a ternary parametric shape space
(ke, W, 70). The fundamental membrane shapes at the corners of
the triangle are: spindle-like shape (top) with nearly zero bend-
ing elasticity (liquid crystal droplet), ellipse (lower right) with
zero bending and zero anchoring, and n-fold pattern (lower left)
with zero anchoring. In the triangle’s interior, the liquid crystal
anisotropy competes with the bending elasticity, and promotes
formation of surface patterns with increased number of folds
and higher bending energies. But, for the cases bending elasti-
city is higher than k. > 5 x 107>" ], the effect of liquid crystal
anchoring is insignificant, and the membrane practically adopts
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View Article Online

Soft Matter

o
o»
. QD @»s 4
4 N %
Q
v & &9 e ?o\c,
A - <
€ UQ N ¥ \-) ««»w ”
& ) 0 ’ 5
4 ! «» o
] [ (
7 Ol A W -9
0 2 4 6 8 10

x 1076 J/m?
Yol

Fig. 10 The ternary phase diagram (k., W, yo) of the membrane surface
morphologies. Surface pattern selection mostly depends on anchoring
strength W and bending elasticity k.. The n-fold pattern appears at high
bending elasticity and weak anchoring, the spindle-like shape occurs at
strong anchoring and low bending elasticity. The top-bottom asymmetric
pattern is observed where both bending elasticity and anchoring strength
are comparable.

the conventional bending elastic shapes. For the minimum value
of the bending elasticity, k. = 5 x 10~ >" J (the right side of the
triangle), the both liquid crystal anisotropy and membrane
elasticity can equally contribute in the membrane deformation.
The anchoring strength promotes the shape anisotropy and the
top-to-bottom asymmetry, and creates the complex morpholo-
gies such as discocyte, ellipsoid, stomatocyte, umbonate, umbi-
licate, and undulate. With the increase of anchoring, the smooth
surface undulations on the top of the membrane disappear
and the membrane shape adopt the spindle-like morphology.
Increasing the surface tension, y, particularly when the anchor-
ing strength is insignificant results in the self-intersecting
membrane shapes. In general, we can identify two main surface
patterns: symmetric and asymmetric. The first is located at the
limiting cases of zero anchoring/high bending elasticity.

In the absence of anchoring (the base of the triangle),
the surface patterns correspond to the classical folded elastic
membrane shapes. With the decrease of bending elasticity, the
surface patterns change into modes with lower number of
folds, while for the minimum value of the bending elasticity
k. =5 x 107%' J, the membrane in the absence of anchoring
forms the ellipse (shown in the lower right corner of the ternary
phase diagram). As the value of bending elasticity is nearly zero
(with k. = 0, the shape equation approaches infinity), the
membrane shape is not a circle but ellipse. In partial summary,
if the effect of the bending elasticity is predominant, the
membrane shape is a n-fold pattern. If the effect of anchoring
is predominant, the membrane shape is a spindle-like. When
both effects are comparable, the membrane exhibits top-bottom
asymmetric patterns, as illustrated in the right side of the triangle.
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We can conclude that the morphology phase diagram can allow
us to determine what characteristic pattern will appear on the
surface membrane based on the interaction of the three primi-
tive shapes (n-fold, spindle-like shape, and ellipse). We can also
gainfully compare the fundamental topographies of closed
membrane with the three primitive surface wrinkling of planar
liquid crystal membranes, where the n-fold, spindle-like, and
ellipse shapes of the closed membrane are identical to folding,
creasing, and flat patterns observed in the planar liquid crystal
elastic membrane, respectively.*"’

4. Pattern formation mechanism,
pressure—curvature relations

To assign real forces behind shape selection we examine all the
acting pressures across the surface. Rearranging eqn (19) gives

the four scaled surface pressures as function of the scaled
membrane arc-length, § = s/Ry:

ApRy  (dP 1 +s d(P +V0R02 de
ke ds3 ds ke \d§
—— ———

Pjump
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Pbending dilation

oo 0) (52) - o - 0) ()

C

Protation
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The bending elastic pressure, Ppending captures the membrane’s
resistance to bend (increasing energy with increasing area),
while the Herring’s capillary pressure, Pyotation 1S the driving force
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that undulates the membrane interface. The surface wrinkling
emerge in response to competition between the bending resis-
tance, which favors the large wavelengths, and the rotation
pressure that favors the smooth wrinkles. To identify the
mechanisms behind LC-elastic wrinkling, the four system
scaled pressures: Pyendings Pailation) Protations aNd Pjump are illus-
trated as function of the scaled membrane arc-length, s/L for
four membrane morphologies with different dimensionless

L2
) (see Fig. 11). The figure demonstrates that

(3

2

numbers, ( Y

for the stomatocyte, umbilicate, and undulate morphologies,
the scaled bending pressure and the scaled dilation pressure
are quite out-of-phase while the rotation pressure changes its
phase along the membrane arc-length, such that in some parts
Protation and Pbending are in'Phase while Protation and Pailation are
out-of-phase, and in some parts, Pyotation ad Pyijlation are in-phase
while Protation and Ppending are out-of-phase. The stress jump
pressure is always negative, and as the dimensionless number
7 increases, its contribution to the surface wrinkling becomes
insignificant. The key observation from these pressure profiles is
that in the middle of the membrane arc-length (s/L = 0.5) dilation
and rotation pressures are always in-phase, and bending pressure
are always out-of-phase with the dilation and rotation pressures.
For the spindle-like shape morphology (Fig. 11d), where the
bending pressure is close to zero, the dilation pressure and
rotation pressure is always out-of-phase. Fig. 11 also illustrates
that all surface capillary pressures grow as the dimensionless
number 7 increases, while the stress jump remains constant.
Increasing the dimensionless number 7 changes the degree of
asymmetry between the top and bottom of the membrane
(where the strong surface anchoring, top-bottom asymmetric
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Fig. 11 The scaled pressures: Ppending: Paditation: Protations @ahd Pjump are illustrated as function of the scaled membrane arclength, s/L for four membrane
morphologies with the different dimensionless numbers, (a) = = 14.27, (b) = = 38.46, (c) = = 110.85, and (d) = = 500.
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membrane shapes emerge, and the surface energy increases by
increasing the surface area) while for the spindle-like morphology,
the wrinkles disappear and the membrane becomes symmetric.

5. Conclusions

In this paper, we have presented a physical model based on the
elasto-capillary shape equations to study the surface pattern for-
mation in closed liquid crystal elastic membranes. Using the
presented model, we can obtain well-defined families of membrane
morphologies. Besides, we showed that the complex morphologies
that emerge in numerous biological membranes can be system-
atically explored by the mechanism that couples liquid crystal
orientational order and membrane elasticity. The results show that
when both liquid crystal anisotropy and membrane elasticity
contribute in the membrane deformation, the anchoring strength
promotes shape anisotropy and top-to-bottom asymmetry while
membrane elasticity promotes symmetric shapes. We presented a
general morphological phase diagram of the membrane surface
patterns, in which we classify two characteristic regimes of mem-
brane shapes based on whether the liquid crystal anisotropy or
bending elasticity is dominant. The phase diagrams allow us to
determine what membrane shape will form based on the inter-
action of the three primitive shapes (ellipse, spindle-like shape,
and n-fold). A one-to-one mapping of this primitive drop shapes
with wrinkling-creasing-flat shape of open surfaces was estab-
lished. The complex pressure balances behind shape selection
was demonstrated. The observation of complex top-bottom
asymmetric topographies in biological membranes can now
be understood in terms of liquid crystal anisotropy and we can
conclude that numerous surface morphologies observed in
living cells might be formed through coupling between liquid
crystal anisotropy and bending elasticity. All these findings
provide a foundation to understand the pattern formation in
biological cell membranes and open up new opportunities to
design novel anisotropic soft materials with unique optical and
wetting functionalities such as biosensors and superhydrophobic
grating surfaces.

Appendix A: Airy function

The Airy functions of the first and second kind, Ai and Bi which
commonly appear in physics, especially in optics, quantum
mechanics are the independent solutions to the homogenous
second order differential equation, y” — xy = 0:>°

Ai(x) = %J:Ocos (? + xz) dz (A1)
Bi(x) = %J:O {e**/ ¥ in @ + xz)} dz (A2)

The Airy function Gi is the independent solution to the inhomo-
geneous second order differential equation, y’ — xy = £n~":>°

Gi(x) = lro sin (g + xt) dr (A3)

TJo
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The function can be defined based on the homogenous Airy
functions:

Gi(x) = Bi(x)r‘CAi(t)dz + Ai(x)rBi(z)dt (A4)

X 0
The general solution can be written as:
¥(x) = aAi(x) + bBi(x) + Gi(x) (A5)

The shape equation (eqn (19)) in terms of curvature can be
compared with the second Painleve equation, y" = zy + by* + a:

v W w., .
K = k—c—z—kc(cosz((p—é)))—k—c(s1n2((p—9)) K
f(s)x
(s) (46)
15, —Ap
—EK + kc
——

a

The second Painleve equation can be considered as a non-linear
generalization of the Airy equation. For the case a = 1/2, the
solution to the equation can expressed with the Airy function.
The function K(x,y) is introduced as the solution to homogenous

Painleve equation, y” = zy + 2ay°:>°

Ko =rai(*17) + 0’4—2ro JOOK(x, A5 Ai () deds

(A7)

where y > x, ¢ = £1, and r is a parameter. Under the condition
that z — oo, W behaves like the Airy function:

Y(z;r) ~ rAi(2) (A8)

Under the condition that k. — 0, the shape equation (eqn (A6))
behaves like an inhomogeneous Airy function, y” = zy + a.

Fig. 12 and 13 clearly show the comparison between the
dimensionless curvature of the liquid crystal membranes and
the Airy transformations that can be defined as a family of
functions:

(&)

Wy (s) = %Ai (i v §>’ neR (A9)

6

0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 09 1
s/L

Fig. 12 Comparison between scaled curvature of a liquid crystal membrane
(stomatocyte morphology) and the Airy function.
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k/k0

Fig. 13 The comparison between scaled curvature of a liquid crystal
membrane (undulate morphology) and Airy function.

¢, and ¢, are coefficient to be determined. We can readily realize
that Airy functions are a good approximation for the membrane
curvature.
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