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The eigenstrain theory is widely used to study inelastic responses of several classes of materials subjected
to phase transformation, thermal expansion, and other multiphysics excitations. In this paper, we focus
on electrically conducting cellular solids and examine their magnetoelastic responses when used as a
core of a sandwich cylinder subjected to an eigenstrain and an external magnetic field. The cylinder com-
prises layers of either solid or cellular material and undergoes either plane strain or plane stress condi-
tions in both time-harmonic and transient states. We use direct homogenization techniques (standard
mechanics and micromechanical models) along with Bessel, Struve, and Lommel functions to study the
roles that cell topology, relative density, eigenstrain, and bonding interface play on the magnetoelastic
responses of the sandwich cylinder. The results show that relative density, cell topology, and magnetic
field are the factors that most contribute to control the sandwich response. We also show that a careful
tailoring of relative density and cell topology can lead to the simultaneous weight and overall stress
reduction with improved natural frequency.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In a homogenous body free from external forces and surface
constraints, inclusion refers to a finite subdomain subjected to a
prescribed eigenstrain [1]. Thermal expansion, swelling strain,
phase transformation, plastic deformation, and piezoelectric/
piezomagnetic strain are examples of nonelastic strains, namely
eigenstrains [2–4]. The eigenstrain theory enables in a single math-
ematical formulation to study each of these phenomena, including
the response of an electrically conducting material. It can also be
used to study the impact of microstructural imperfections in
homogeneous and heterogeneous media.

Several works in the literature resorted to the eigenstrain theory
to study problems dealing with the three-dimensional nanostrain
in Ni–Ti shape memory alloys [5], residual strain measurements
[6], stress changes caused by local deboning and damage evolution
[7], and strain in living or non-living tissues [8]. Early microme-
chanical investigations on the eigenstrain were pioneered by
Eshelby [9] as well as Mura and Kinoshita [10]. Since then, the stud-
ies that followedmainly focused on the application of eigenstrain in
particulate composites and residual stress measurements [11–22].
For example, Liang et al. [23] obtained the stress field induced by an
eigenstrain within an ellipsoidal inclusion in a thin film of a micro-
electromechanical system. The effect of the thin film’s thickness on
the induced eigenstress was found to decrease with an increase in
the film thickness. The problem of an arbitrary-shaped heterogene-
ity, undergoing an eigenfield in a uniform magnetoelectroelastic
load, was also examined. Shen and Hung [24], for instance,
observed that the selection of appropriate eigenfields could effec-
tively reduce the eigenstress developed in piezoelectric and piezo-
magnetic composites.

Sandwich structures are routinely used in automotive, aero-
space, and sports equipment, among other sectors [25]. In the lit-
erature, there exists a large body of research on this subject
across the length scale spectrum. In general, previous works focus
on the micromechanics and multiphysics responses, such as elasto-
dynamic, thermoelastic, and torsional rigidity [26–28]. The core of
a typical sandwich panel is commonly made of either foams, e.g.
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polyurethane and polyethylene foams, or periodic cellular solids,
e.g. honeycombs, corrugated metals, and other lattices [29,30].
Their cellular architecture is often preferred to their solid counter-
part not only for their low mass, but also for their ability to satisfy
multifunctional requirements, such as those prescribed for heat
exchangers, piezoelectric transducers, and bone tissue scaffolds
[31–33]. For example, thermal expansion, electric conductivity,
and flow permeability are some of the properties controlled by
the geometry of the unit cell, in particular its topology, nodal con-
nectivity, and relative density. While there are many studies on the
multifunctional properties of cellular materials [34–43], few of
them have used an eigenstrain analysis to study their mechanical
and multiphysics properties, and to investigate the residual stress
within the sandwich structure. For example, Schjodt-Thomsen and
Pyrz [44] used a model based on Eshelby’s equivalent eigenstrain
to analyze the influence of alternative statistical cell dispersions
on the local strain and the overall effective properties. The model
was capable of capturing the effect of microstructural morphology
on the stiffness properties. Nguyen et al. [45] examined the
homogenization problem by imposing an eigenstrain that repre-
sents the thermal or piezoelectric strain within the representative
volume element (RVE). The authors highlighted the simplicity of
their model which was then used to obtain the effective properties.
Moreover, Liu and Liang [46], through a micromechanics approach,
obtained the effective elastic moduli of triangular lattices with
microstructural defects. In this case, the use of eigenstrain was
proved to be effective in the assessment of the role of defects
occurring during the manufacturing of a set of cellular solids.

More recently, electrically conducting cellular structures under
a prescribed magnetic field have garnered a great deal of attention
in a range of applications, such as medical microrobots driven by
magnetic actuations [47], hydrophones [48], and metamaterials
with negative permeability and negative refraction properties for
optics [49]. Advances in additive manufacturing have also enabled
the fabrication of cellular solids with electrically conducting
microarchitecture, specifically for real-time measurement of struc-
tural performance [50–52]. Sandwich structures with electrically
conducting solids experience the Lorentz force, according to the
uncoupled magnetoelasticity theory [53], which dictates their
multifunctional responses. To date, however, the behavior of a
sandwich cylinder with an electrically conducting cellular core
subjected to a prescribed magnetic field has been rarely studied
in the literature. To the best knowledge of authors, the analysis
conducted in reference [37] is the only contribution considering
the effect of magnetic field on the behavior of porous sandwich
structures where the cellular layers have square cells. This subject
matter is thus the focus of this work, which contributes to the body
of literature dealing with the multiphysics analysis of cellular
materials in the presence of eigenstrain.

The following clarifies the differences and originality that dis-
tinguish this work from that in reference [37]. This paper focuses
on the role of cell topology in the magnetic properties of a periodic
cellular solid. Besides the square cell, additional four cell topolo-
gies are investigated for the first time in this paper. For each of
them, we present closed-form expressions describing the role of
cell topology in the response of a sandwich cylinder subjected to
a non-uniform eigenstrain which can assume any arbitrary form.
Reference [37], on the other hand, studies the effect of relative den-
sity and property gradients for cellular layers with square cells. In
addition, this work studies the effect of bonding imperfections on
the multiphysics responses of lightweight sandwich cylinders, as
opposed to our previous work which assumes perfect bonding
among layers. Furthermore, here we present expressions for the
effective magnetic permeability that are obtained numerically via
standard mechanics and theoretically with closed form bounds.
We also conduct a finite element analysis to validate the theoreti-
cal predictions. In reference [37], the relative density is assumed to
vary linearly and only the Voigt model is used for the calculation;
the results presented in this paper show how crude those approx-
imations are, with inaccuracy up to 75% for the effective magnetic
permeability.

The paper is organized as follows. Selected planar topologies for
the unit cell are examined in Section 2 and their effective magne-
toelastic properties are obtained via standard mechanics homoge-
nization. In Sections 3 and 4, a dynamic eigenstrain excitation in
the radial direction is expressed as a polynomial with an arbitrary
order, which can be applied to any layer of a sandwich cylinder.
The results are verified with finite element results and those found
in the literature (Sections 5.1 and 5.2). The last part of the paper
studies the influence of bonding imperfection, eigenstrain distribu-
tion, external magnetic field, cell topology, and relative density,
besides mapping these factors in charts that illustrate the time-
harmonic responses of alternative sandwich layouts.

2. Effective magnetoelastic properties of periodic cellular solids

Homogenization theory is commonly used to determine the
effective properties of cellular solids and other periodic materials
[54–58]. Many methods have been proposed, including micropolar
theory, standard mechanics, asymptotic homogenization, and
micromechanical models [36,59], and effectively used to predict
the properties of a cellular domain from of a limited portion of it,
namely the Representative Volume Element. One main advantage
of homogenization methods is the reduced computation cost as
compared to a fully detailed analysis, where each cell element
would be individually modeled. In this section, we present the
effective magnetoelastic properties obtained by standard mechan-
ics (numerical homogenization) and micromechanical closed-form
expressions.

For the cellular core of the cylinder, we examine five alternative
planar topologies of the unit cell (Figs. 1 and 2): square, mixed (tri-
angular) A, and mixed (triangular) B with cubic symmetry, and
Kagome and triangular with isotropic properties. Their material
properties are conveniently expressed as a function of their rela-
tive density qr:

qr ¼
�q
qs

ð1Þ

where �q and qs are, respectively, the effective density of the unit
cell of cellular solids and the density of the constituent solid
material.

Standardmechanics homogenization with periodic boundary con-
ditions applied to each unit cell (Figs. 1 and 2), along with the classi-
cal elasticity theory are here used to obtain the effective
magnetoelastic properties numerically. In particular, the effective
stiffness and magnetic permeability tensors of an electrically conduc-
tive representative volume element (RVE) are here expressed as:

�Cijkl ¼ 1
VRVE

Z
CijmnM

C
mnkldVRVE;

�lij ¼ 1
VRVE

Z
likM

l
kjdVRVE

ð2Þ

where Cijkl and lij ði; j; k; l;m;n ¼ 1;2;3Þ are stiffness and magnetic
permeability tensors, VRVE represents the RVE volume (for a planar
RVE, VRVE is replaced by the area ARVE). Local structural ðMC

ijklÞ and

local magnetic ðMl
ij Þ tensors are defined as:

eij ¼ MC
ijkl
�ekl; u;i ¼ Ml

ij
�u;j ð3Þ

where eij and u represent strain tensor and magnetic potential,
respectively [25]. The overbar in Eqs. (1)–(3) stands for the effective
properties ð�q; �Cijkl; �lijÞ or average fields ð�eij; �uÞ. For planar lattices,



Fig. 2. Normalized magnetic permeability for the whole range of relative density: (a) effect of micromechanics models and (b) effect of cell topology (cell topology transition
occurs at qr ¼ 0:65 for Kagome lattices).

Fig. 1. Normalized effective (a) Young’s modulus, (b) Poisson’s ratio, and (c) shear modulus for plane stress lattices [38].
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the components of the local structural and local magnetic tensors
are first evaluated by using Eq. (3) and by applying three indepen-
dent unit strains and two independent unit magnetic field intensi-
ties (spatial derivatives of magnetic potential) [54]. Then, the
effective magnetoelastic properties are obtained via Eq. (2). Herein,
the numerical results have been fitted via a fourth-order polynomial
that best reduces the curve-fitting error:

�vðqrÞ ¼ P0 þ P1qr þ P2q2
r þ P3q3

r þ P4q4
r ð4Þ

with �v representing a given effective property, such as normalized
Young’s modulus ð�E=EsÞ, Poisson’s ratio ð�m=msÞ, shear modulus
ð�G=GsÞ, and magnetic permeability ð�l=lsÞ. The subscript ‘‘s” repre-
sents the properties of a given solid material. The coefficients
Piði ¼ 0;1;2;3;4Þ, given in Tables 1 and 2, pertain to the plane strain
and plane stress conditions. In the following sections, we drop the
overbar symbol for the effective properties of cellular materials to
simplify the notation.

In addition to the results above, we develop here close-form
expressions that predict the magnetic permeability of planar cellu-
lar solids. These relations are similar to the formulas given for the
effective thermal conductivity and dielectric coefficient of porous
media [60,61]:

� Parallel : l ¼ qrls þ ð1� qrÞlg ð5:1Þ

� Series : l ¼ lslg ð5:2Þ
lgqr þ lsð1� qrÞ
� Geometric mean : l ¼ lqr

s l
ð1�qrÞ
g ð5:3Þ



Table 2
Curve fitting coefficients for effective material properties for alternative 2D cell topologies under plane stress condition.

Cell topology Effective properties P0 P1 P2 P3 P4

E
Es

0.0104 0.2868 1.3521 �2.2736 1.6222

m
ms

0.0104 0.7914 �0.7211 1.6908 �0.7467

G
Es

0.0032 0.0524 �0.1853 0.01245 0.3884

l
ls

0.0105 0.4793 0.3522 �0.3113 0.4691

E
Es

0.0022 0.2875 0.4348 �0.6018 0.8755

m
ms

0.9944 0.1857 �0.4195 0.1036 0.1386

G
Es

0.0005 0.1187 0.1112 �0.1405 0.2843

l
ls

0.0101 0.5074 0.0973 0.2941 0.09

E
Es

0.0198 �0.0608 2.2346 �3.9441 2.7464

m
ms

1.0186 �0.1654 1.8532 �4.2593 2.5492

G
Es

0.0055 0.0155 0.6347 �1.1232 0.8415

l
ls

0.0129 0.4065 0.781 �1.2302 1.0273

E
Es

0.021 �0.1402 2.4344 �4.3914 3.0714

m
ms

1.2744 �0.4365 3.2031 �6.831 3.7828

G
Es

0.0066 0.0086 0.7849 �1.421 0.9944

l
ls

0.014 0.3728 0.9712 �1.6004 1.2379

E
Es

0.0239 �0.1083 2.6699 �4.7654 3.1746

m
ms

2.5257 �4.4859 2.273 �0.1233 0.8051

G
Es

0.006 �0.019 0.7059 �1.3103 0.9911

l
ls

0.0139 0.3759 0.958 �1.577 1.2248

Table 1
Curve fitting coefficients for effective material properties of square cell under plane strain condition [38].

Cell topology Effective properties P0 P1 P2 P3 P4

E
Es

0.0242 0.1544 1.7328 �2.6485 1.7282

m
ms

�0.0336 1.2921 �2.3185 3.7418 �1.6554

G
Es

�0.0103 0.1275 �0.4206 0.4226 0.2678

l
ls

0.0105 0.4793 0.3522 �0.3113 0.4691
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� Hashin—Shtrikman bounds :

l ¼ ls þ
1� qr
1

lg�ls
þ qr

3ls

ðUpper boundÞ ð5:4aÞ
l ¼ lg þ
qr

1
ls�lg

þ 1�qr
3lg

ðLower boundÞ ð5:4bÞ

� Iso-magnetic bounds for a planar square cell (analogous to
Crane–Vachon model [62]), with a unit length, strut thickness

t, and relative density qr ¼ 1� ð1� tÞ2:
l ¼ t
ls

þ 1� t
tls þ tðt � 1Þlg

 !�1

ðIso-magnetic potentialÞ

ð5:5aÞ

l ¼ lst

þ lglsð1� tÞ
lgt þ lsð1� tÞ ðIso-magnetic inductionÞ ð5:5bÞ
where lg ¼ 4p� 10�7 H
m is the magnetic permeability of free space.

Figs. 1 and 2 illustrate the effective magnetoelastic properties of
the unit cells here examined under a plane stress condition. Fig. 1
presents the effective properties (Young’s modulus, Poisson’s ratio,
and shear modulus) obtained numerically via standard mechanics.
Fig. 2 compares the effective magnetic permeability obtained via
standard mechanics homogenization and alternative techniques,
i.e. the micromechanical models presented in Eqs. (5.1)–(5.5).
The results show the role of cell topology on the magnetic perme-
ability for electrically conducting cellular solids. Fig. 2a compares
the normalized magnetic permeability predicted by the following
micromechanics models: parallel, series, and geometric mean
models, Hashin bounds, iso-magnetic potential/induction bounds,
and standard mechanics homogenization. Compared to the results
from standard mechanics homogenization, Fig. 2a shows that the
parallel micromechanics model overpredicts the magnetic perme-
ability as opposed to the series model, which underpredicts them.
Because of its simplicity, the parallel model has been used widely
in the literature for predicting magnetic properties. Our numerical
results, however, shows that a discrepancy of up to 75.5% can be
observed between the effective magnetic permeability predicted
by the parallel model considered in Ref. [37] and the standard
mechanics homogenization, which is our benchmark model here.
In addition, Fig. 2a demonstrates that the iso-magnetic potential/
induction model provides closer bounds to the results obtained
from the standard mechanics homogenization, than those provided
by the Hashin bounds.

As seen in Fig. 2b, the effective magnetic permeability of peri-
odic cellular solids is mainly governed by the relative density qr;
however, the cell topology can also play a role. Kagome and mixed
A cell topologies draw, respectively, the upper and lower bounds of
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the magnetic permeability among the planar lattices under inves-
tigation. The maximum discrepancy of 7.8% is found between the
magnetic permeability of the Kagome and mixed A cell topologies.
The following sections examine specifically the role of relative den-
sity and cell topology on the dynamic responses of an electrically
conducting sandwich cylinder.

3. Problem definition

We consider a multilayered infinitely long cylinder for which
we can assume plane strain, and a multilayered thin disk which
satisfies the condition of plane stress. The cylinder (or disk) is elec-
trically conducting and subjected to a constant external magnetic
field, Hz, parallel to the out of plane axis (Fig. 3). A dynamic eigen-
strain is assumed within an arbitrary layer. The outer radius of the
kth layer is represented by Rk (k ¼ 1;2; . . . ;N), where N is the total
number of layers.

It is assumed that the kth layer undergoes a dynamic eigen-

strain, e�ðkÞmn , with a predetermined distribution in the radial direc-
tion [2]:

e�ðkÞmn ðr; tÞ ¼ dmnE
�ðkÞðrÞ/ðtÞ ð6Þ

where the superscript k corresponds to the kth layer, dmn

ðm;n ¼ 1;2;3Þ is the Kronecker delta function, r represents the
radial coordinate, and t is time. In this paper, the predetermined
spatial distribution of the eigenstrain along the radial direction is

assumed by an arbitrary Lth-order polynomial as E�ðkÞðrÞ ¼PL
l¼0A

ðkÞ
l rl with arbitrary coefficients AðkÞ

l ðl ¼ 0;1; . . . ; LÞ; /ðtÞ is the
temporal function of the time-dependent eigenstrain. We recall that

e�ðkÞmn might assume a special-order inelastic strain distribution, e.g.
hygrothermal, if the material is heterogeneous and/or anisotropic

[15]. The relation of the elastic strain, eðkÞmn, eigenstrain, e
�ðkÞ
mn , and

the total strain, eðkÞmn, is [2]:

eðkÞmn ¼ eðkÞmn þ e�ðkÞmn ð7Þ
The constitutive equation for an isotropic material is written as

[2]:

rðkÞ
mn ¼ 2G0ðkÞ eðkÞmn þ

mðkÞ

1� 2mðkÞ
eðkÞdmn

� �
ð8Þ

where rðkÞ
mn and mðkÞ are stress components and Poisson’s ratio,

respectively; eðkÞ ¼ eðkÞmm represents the volumetric strain expressed
Fig. 3. A multilayered infinitely long cylinder or
with the Einstein’s tensorial convention. Furthermore,

G0ðkÞ ¼ EðkÞ
2ð1þmðkÞÞ, where EðkÞ is the Young’s modulus.

For an axisymmetric electrically conducting cylinder/disk
under a constant external magnetic field Hz [63], the equation of
motion is:

rðkÞ
rr;r þ

rðkÞ
rr � rðkÞ

hh

r
þ lðkÞH2

z uðkÞ
;r þ uðkÞ

r

� �
;r

¼ qðkÞ€uðkÞ ð9Þ

where qðkÞ is density, lðkÞ is the magnetic permeability, and uðkÞ is
the radial displacement. The symbol ‘‘double over-dots” represents
the second-order derivative with respect to time and a subscript
comma denotes the differentiation with respect to the radial coor-
dinate. From Eqs. (6)–(9), we can obtain the differential equation
for a radially distributed eigenstrain of an arbitrary order of
polynomial:

uðkÞ
;rr þ

uðkÞ
;r

r
� uðkÞ

r2
þ aðkÞ€uðkÞ ¼ �bðkÞ XL

l¼1

lAðkÞ
l rl�1

 !
/ðtÞ ð10Þ

where

aðkÞ ¼
qðkÞð2mðkÞ�1Þ

2G0ðkÞð1�mðkÞÞþlðkÞH2
z ð1�2mðkÞÞ ;plane strain

qðkÞðmðkÞ�1Þ
2G0ðkÞþlðkÞH2

z ð1�mðkÞÞ
; plane stress

8><
>: ð11aÞ

bðkÞ ¼
� 2G0ðkÞð1þmðkÞÞ

2G0ðkÞð1�mðkÞÞþlðkÞH2
z ð1�2mðkÞÞ ; plane strain

� 2G0ðkÞð1þmðkÞÞ
2G0ðkÞþlðkÞH2

z ð1�mðkÞÞ
; plane stress

8><
>: ð11bÞ
4. Methodology

The multilayered cylinder, presented in Section 3, could contain
layers of solid or cellular materials. The effective magnetoelastic
properties, obtained in Section 2 are used here for the layers made
of a cellular material. As an example, Fig. 4 depicts a simplified
homogenization scheme for a cellular layer, sandwiched between
two solid layers.Herein, we present a methodology for the dynamic
analysis of sandwich cylinders/disks undergoing a time-harmonic
or a transient eigenstrain. For time-harmonic analysis, the time
function is assumed as uðtÞ ¼ e�jxt , where the complex variable
is j ¼

ffiffiffiffiffiffiffi
�1

p
and x stands for the angular frequency of the harmonic

eigenstrain.Being uðtÞ ¼ e�jxt , the resultant elastic fields written
for a time-harmonic eigenstrain at frequency x are:
thin disk under a prescribed magnetic field.
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uðkÞðr; tÞ ¼ �uðkÞðrÞe�jxt ð12aÞ

rðkÞ
rr ðr; tÞ ¼ �rðkÞ

rr ðrÞe�jxt ;

rðkÞ
hh ðr; tÞ ¼ �rðkÞ

hh ðrÞe�jxt ;

rðkÞ
zz ðr; tÞ ¼ �rðkÞ

zz ðrÞe�jxt

ð12bÞ

By substituting Eq. (12a) into Eq. (10), the governing equation is
reduced to:

uðkÞ
;rr þ

uðkÞ
;r

r
� ð1þ aðkÞx2r2ÞuðkÞ

r2
¼ �bðkÞ XL

l¼1

lAðkÞ
l rl�1

 !
ð13Þ

The solution of Eq. (13) can be obtained as:

�uðkÞ ¼ CðkÞ
1 J1

ffiffiffiffiffiffiffiffiffiffiffi
�aðkÞ

p
xr

� �
þ CðkÞ

2 Y1

ffiffiffiffiffiffiffiffiffiffiffi
�aðkÞ

p
xr

� �

þ pbðkÞAðkÞ
1

2aðkÞx2 H1

ffiffiffiffiffiffiffiffiffiffiffi
�aðkÞ

p
xr

� �
� bðkÞ XL

l¼2iþ2

lAðkÞ
l Sl;1

ffiffiffiffiffiffiffiffiffiffiffi
�aðkÞ

p
xr

� �
ð�aðkÞx2Þðlþ1Þ=2

� bðkÞ XL
l¼2iþ3

lAðkÞ
l sl;1

ffiffiffiffiffiffiffiffiffiffiffi
�aðkÞ

p
xr

� �
ð�aðkÞx2Þðlþ1Þ=2 ; i ¼ 0;1;2; � � � ð14Þ

where CðkÞ
1 and CðkÞ

2 are unknown coefficients, determined from the
boundary conditions; J and Y are the Bessel functions of the first
and second kind, respectively. The Struve function Ha and the
Lommel functions Sl;v and sl;v , in Eq. (14), are defined as [64]:

HaðxÞ ¼
X1
i¼0

ð�1Þi x
2

� �2iþaþ1

C 1
2 ð2iþ 3Þ� �

C 1
2 ð2iþ 2aþ 3Þ� � ð15aÞ

sl;mðxÞ ¼ xl�1
X1
i¼0

ð�1ÞiC 1
2 ðl� mþ 1Þ� �

C 1
2 ðlþ mþ 1Þ� �

x
2

� �2iþ2

C 1
2 ðl� mþ 2iþ 3Þ� �

C 1
2 ðlþ mþ 2iþ 3Þ� �

ð15bÞ

Sl;mðxÞ ¼ sl;mðxÞ þ 2l�1C
1
2
ðl� mþ 1Þ

� �
C

1
2
ðlþ mþ 1Þ

� �

� sin
1
2
ðl� mÞp

	 

JmðxÞ � cos

1
2
ðl� mÞp

	 

YmðxÞ

� �
ð15cÞ

It is worth mentioning that the solutions obtained in references
[21] and [37] are only applicable to eigenstrain with a polynomial
distribution of the third-order polynomial. The current closed-form
solutions provided in Eq. (14), on the other hand, could be used for
a radially distributed eigenstrain with a polynomial of an arbitrary
Fig. 4. Sandwich cylinder with a middle layer of square
order. As a result, Eq. (14) could be employed along with a Taylor
series expansion to obtain closed-form solutions for eigenstrain
problems with any form of eigenstrain distribution.

Using Eq. (14), the radial stress for plane strain condition can be
obtained as:
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where f ðkÞ1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
�aðkÞ

p
x, f ðkÞ2 ¼ 1� mðkÞ, and f ðkÞ3 ¼ 2mðkÞ � 1. For a plane

stress condition, the radial stress is:
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lattice (left) and its homogenized properties (right).
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The hoop and axial stresses could be obtained similarly.
The boundary conditions for a multilayered composite cylin-

der/disk with imperfectly bonded interfaces can be written as
[21]:

�uð1Þðr ¼ 0Þ is finite ð18aÞ

�uðdþ1Þðr ¼ RdÞ � �uðdÞðr ¼ RdÞ ¼ vðdÞ �rðdÞ
rr ðr ¼ RdÞ ðd ¼ 1;2; . . . ;N � 1Þ

ð18bÞ

�rðdÞ
rr ðr ¼ RdÞ ¼ �rðdþ1Þ

rr ðr ¼ RdÞ ðd ¼ 1;2; . . . ;N � 1Þ ð18cÞ

�rðNÞ
rr ðr ¼ RNÞ ¼ 0 ð18dÞ

where vðdÞ are the compliance constants describing imperfect inter-
faces; vðdÞ ¼ 0 represents perfectly bonded interfaces. It is worth

noting that Eq. (18a) leads to Cð1Þ
2 ¼ 0 for the first layer due to the

singularity of the Bessel function of the second kind at r ¼ 0.
Substituting Eqs. (14) and (16) or (17) into the interfacial and

boundary condition equations (18) results in:

DC ¼ B ð19Þ
U ¼ u
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; Rrr ¼ rrr

Es
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Es
; Rzz ¼ rzz
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; f ¼ r
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2
z
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ð22Þ
where D is a 2N � 2N matrix and B is a 2N � 1 vector, whose
components are omitted here for the sake of brevity; C
represents a 2N � 1 vector of unknown coefficients as: C ¼
Cð1Þ
1 Cð1Þ

2 Cð2Þ
1 Cð2Þ

2 � � � CðN�1Þ
2 CðNÞ

1 CðNÞ
2

h iT
, where superscript

‘‘T” represents the transpose of a matrix. From Eq. (19), we deter-

mine CðkÞ
1 and CðkÞ

2 , which are used in Eqs. (14), (16), and (17), to
obtain the displacement and stress fields. Resonance occurs if the
frequency of the harmonic eigenstrain x equals the natural fre-
quency, calculated by setting the determinant of the D matrix equal
to zero.

For transient analysis, the function of time variation of eigen-
strain can be in an arbitrary form /ðtÞ. If we assume a Heaviside
step function for the time function (uðtÞ ¼ HðtÞ) and consider the
zero initial condition for displacement and velocity, applying the
Laplace transform to the governing equation (10) leads to:
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wheres represents the Laplace variable. The solution of Eq. (21) can
be written as:
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where XðkÞ
1 and XðkÞ

2 are unknown coefficients determined by apply-
ing the displacement and stress boundary conditions, similar to the
time-harmonic analysis. The numerical Laplace inversion via Jacobi
polynomial can then be used to retrieve the elastic fields in the time
domain [37,65].
5. Analysis of sandwich cylinders

In this section, we apply the analysis described above to a three-
layer ðN ¼ 3Þ sandwich cylinder subjected to a time-harmonic
eigenstrain. This scenario might represent, for example, a time-
dependent hygrothermal or electromagnetic disturbance. We
examine the role of bonding imperfection, relative density, and cell
topology on the time-dependent responses. Carbon steel with
Es ¼ 200� 109 Pa, ms ¼ 0:29, and qs ¼ 7:87� 103 kg=m3 is chosen
as the material for the cylinder, for both the solid skins and the cel-
lular core. The coefficients of the polynomial eigenstrain are

assumed unity, AðkÞ
l ðl ¼ 0;1;2; . . . ; LÞ ¼ 1, with identical compliance

constants ðvÞ describing imperfections at the layer interfaces. The
outer radii of the three layers are assumed as R1 ¼ 0:25 m,
R2 ¼ 0:75 m, and R3 ¼ 1 m. Moreover, we introduce the following
dimensionless parameters to represent time-harmonic radial dis-
placement, stress components, radial coordinate, the compliance
constant of imperfect bonding, and external magnetic field:
5.1. Role of bonding imperfection

The effect of bonding imperfection on the static ðx ¼ 0Þ struc-
tural responses of a three-layer, infinitely long cylinder is illus-
trated in Fig. 5. The eigenstrain applied in its middle layer is
described by a quadratic polynomial ðE�ð2Þ ¼ r2Þ, an assumption
that allows us to compare and validate the results with those given
in a previous study [66]. The cylinder is composed of layers of solid
material ðqr ¼ 1Þ and subjected to a constant magnetic field a ¼ 1.
As seen in Fig. 5, the radial displacement and radial stress are G0
(positional) continuous for perfectly bonded interfaces ðb ¼ 0Þ;
however, the presence of eigenstrain in the middle layer leads
the discontinuity of the hoop and axial stresses along the inter-
faces. These results confirm those reported in the literature [66].
On the other hand, the non-zero compliance constant b (bonding
defects) leads to discontinuous displacement and G0 continuous
radial stress distributions due to the interfacial boundary condi-
tions (Eq. (18)). As shown in Fig. 5, less stiff interfaces (higher b)
increase the radial displacement, hoop stress, and axial stress in
the middle layer, as opposed to the outer layers. In addition, we
observe lower radial stress in the first and second layers of the
cylinder, whereas b has little influence in the third layer. The stress
analysis presented here for imperfectly bonded cylindrical com-
posites under prescribed eigenstrains, such as hygrothermal and
residual strains, can capture the stress discontinuity and stress
peaks throughout the layers. It can thus be used to verify the occur-
rence of structural failure in multilayered composites with hetero-
geneity or residual stress.

5.2. Role of relative density

Assuming a perfect bonding ðb ¼ 0Þ among the layers, we study
here the role of relative density on the time-harmonic responses of
a sandwich disk (Fig. 4). The core material is a square lattice, with
material properties described in Appendix A. The relative density



Fig. 5. Effect of compliance constants, describing imperfect interfaces in a cylinder, on the distribution of: (a) radial displacement, (b) radial stress, (c) hoop stress, and (d)
axial stress.
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of the cellular core is qð2Þ
r ¼ qr , while the material of the inner and

outer layers (first and third layers) is solid ðqð1Þ
r ¼ qð3Þ

r ¼ 1Þ. The
sandwich disk is subjected to a constant magnetic field a ¼ 1,
whereas the inner layer endures a time-dependent eigenstrain.
Fig. A1, in Appendix A, compares the radial displacement of a sand-
wich cylinder subjected to time-harmonic eigenstrains with sev-
eral orders of polynomial distribution. While increasing the order
of the polynomial from second to third enhances the maximum
value of radial displacement by 1%, the increase is less than 0.2%
if the order of the polynomial rises from third to fourth. This infers
that a third-order polynomial is appropriate, and thus is chosen
here for the rest of the analysis.

Fig. 6a and b show the influence of relative density on the dis-
tribution of dimensionless, time-harmonic ðx ¼ 1000 rad=sÞ radial
displacement and von Mises stress ðRVM ¼ rVM

Es
Þ. The domain

describing the radial displacement and von Mises stress is shown
for a range of relative density ð0:01 6 qr 6 1Þ. We observe that a
reduction in the relative density causes an increase in the maxi-
mum radial displacement and a decrease in the von Mises stress
within the circular disk. The domain boundaries are set approxi-
mately by curves for qr ¼ 0:01, qr ¼ 0:7, and qr ¼ 1 (solid mate-
rial). These maps offer an insight into the design of sandwich
disks, which require satisfying requirements for structural defor-
mation (Fig. 6a) and failure (Fig. 6b).

Fig. 7 illustrates the role of relative density on the first natural
frequency for alternative compliance constants and external mag-
netic fields. For perfectly bonded sandwich disks, ðb ¼ 0Þ and in the
absence of external magnetic field ða ¼ 0Þ, the numerical results
are plotted together with those from a finite element analysis via
the software package Abaqus Inc. (Dassault Systèmes). As seen in
Fig. 7, the theoretical predictions follow the computational results
with a maximum error of 1% at qr ¼ 0:6. Reducing the relative den-
sity of the cellular core decreases the weight and first natural fre-
quency, an undesirable outcome for certain applications. Two
phases are distinguished in Fig. 7; phase I ða ¼ 0Þ shows the role
of the compliance constant of the interfaces and phase II ðb ¼ 0Þ
reveals the effect of the external magnetic field. On one hand,
increasing the external magnetic field increases the natural



Fig. 6. Effect of relative density of cellular core on time-harmonic: (a) radial displacement and (b) von Mises stress.

Fig. 7. First natural frequency for a sandwich disk obtained via theory and finite
element analysis for the full range of relative density of the square cellular core.
Phases I and II show, respectively, the effect of bonding imperfection and external
magnetic field.
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frequency and inhibits the resonance of a sandwich working under
a dynamic load with a specific range of frequency. On the other
hand, less stiff interfaces undesirably lead to lower natural fre-
quencies, a phenomenon that is negligible for lower values of rel-
ative density.
5.3. Influence of cell topology

We examine a sandwich disk with a cellular core of qr ¼ 0:2
and look at the impact of the cell topology of the cellular core
on its time-harmonic magnetoelastic responses. A perfect bonding
ðb ¼ 0Þ is assumed among the layers, subjected to a constant
magnetic field a ¼ 1. The inner layer endures a time-harmonic
eigenstrain ðx ¼ 1000 rad=sÞ with a cubic radial distribution
ðE�ð1Þ ¼ 1þ r þ r2 þ r3Þ. Fig. 8a and b show the impact of five planar
cell topologies on the dimensionless radial displacement and von
Mises stress. As shown in Section 2, the cell topology controls
the magnetoelastic properties throughout the layers and hence
changes the magnetoelastic responses. The choice of a given cell
topology has either a beneficial or an adverse impact on the struc-
tural responses. On one hand, Fig. 8a shows that a square cell core
decreases the maximum displacement by 3.7%, compared to a
mixed A cell. On the other hand, the radial displacement of the
outer edge of the sandwich disk ðURÞ increases by 37.6% for a
square cellular layer. Moreover, compared to the square cell, the
mixed A cell decreases by 93.4% the maximum von Mises stress
in the cellular core and increases it by 19.9% in the solid layers.

Fig. 9a illustrates the role of cell topology on the maximum dis-
placement of an electrically conducting sandwich disk with respect
to its outer edge displacement. Similarly, Fig 9b plots the maxi-
mum von Mises stress versus the first natural frequency for the
whole range of relative density ð0:01 6 qr 6 1Þ. The displacement
and stress contours are also embedded in each figure. As can be
seen, all cell topologies follow a similar trend, where an increase
in relative density decreases the maximum radial displacement,
and increases the radial displacement of the outer edge, the max-
imum von Mises stress, and the first natural frequency. Cell topol-
ogy selection for the cellular core can also play a role in the
magnitude of each structural response. For instance, the applica-
tion of a mixed A lattice (point B), rather than a square lattice
(point A) as a core of a sandwich disk with qr ¼ 0:25, decreases
the displacement of the outer edge and the maximum von Mises
stress by 23.3% and 30.9%, respectively; this comes with an



Fig. 8. Effect of the core cell topology on the time-harmonic: (a) radial displacement, and (b) von Mises stress distributions in a sandwich disk.

Fig. 9. Cell topology and relative density of the cellular core govern (a) maximum displacement vs. outer edge displacement and (b) maximum von Mises stress vs. natural
frequency; Points A (square lattice with a ¼ 0), B (mixed A lattice with a ¼ 0), and C (square lattice with a ¼ 5) refer to sandwich disks with qr ¼ 0:25. Coordinates of marked
points are: a1ðUR ¼ 0:0761;Umax ¼ 0:2014Þ, b1ðUR ¼ 0:8098;Umax ¼ 0:2442Þ, c1ðUR ¼ 0:0733;Umax ¼ 0:2603Þ, d1ðUR ¼ 0:0099;Umax ¼ 0:2978Þ, a2ðxn ¼ 5960;

P
VM ¼ 0:1341Þ,

b2ðxn ¼ 7509;
P

VM ¼ 0:3974Þ, c2ðxn ¼ 8260;
P

VM ¼ 0:5678Þ, d2ðxn ¼ 10760;
P

VM ¼ 1:042Þ.
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undesirable 2.8% decrease in the first natural frequency and 4.7%
increase in the maximum radial displacement.

Moreover, Fig. 9 shows the influence of an applied magnetic
field on the structural performance of the sandwich disk. For
instance, increasing the magnetic field from a ¼ 0 (point A) to
a ¼ 5 (point C) for a sandwich disk with a square lattice of
qr ¼ 0:25, favorably increases its natural frequency, with the detri-
ment of making the disk more compliant, and increasing its von
Mises stress regime, and the outer edge displacement. The trend
does not change for the whole range of relative density of any of
the five cell topologies considered in this work. These numerical
results show the role played by the applied magnetic field on the
structural properties of an electrically conducting sandwich
structure.

Finally the effect of cell topology on the vibratory behavior of a
sandwich disk is illustrated in Fig. 10. The harmonic responses in
the absence of external magnetic field ða ¼ 0Þ are plotted for the
five cell topologies. The perfectly bonded ðb ¼ 0Þ sandwich disk



Fig. A1. Radial displacement for alternative radial distributions of eigenstrain.

Fig. 10. Effect of cell topology on harmonic responses.
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consists of a cellular core of qr ¼ 0:2. As shown in Fig. 10, the care-
ful selection of the cell topology can postpone the resonance of the
sandwich structure effectively and increase the natural frequen-
cies. The influence of the cell topology on the natural frequency
is more evident for higher values of the natural frequency. For
instance, while the first natural frequency of a sandwich disk with
a square lattice core is 3.1% higher than the mixed A lattice core, for
the second natural frequency the increase in natural frequency
increases to 21.6%. In addition to cell topology, Appendix B reports
the influence of the geometric layout of a sandwich cylinder on its
vibratory responses.

6. Concluding remarks

This paper has examined the magnetoelastic time-dependent
response of sandwich cylinders subjected to a dynamic eigenstrain.
Time-harmonic and transient eigenstrains have been described by
a radial distribution of an arbitrary order polynomial. Closed-form
solutions are derived for time-harmonic plane stress/strain condi-
tions, which can be applied for any type of eigenstrain distribution.
The effective magnetoelastic properties of the cellular core
obtained via standard mechanics homogenization shows the role
relative density and cell topology play on displacement, stress dis-
tribution, and natural frequency.

The numerical results for sandwich cylinders and disks offer an
insight into the role of interfacial bonding, relative density, cell
topology, and external magnetic field. The present closed-form
solutions can be also useful for the evaluation of the internal and
residual stresses caused during the cold-rolled manufacturing
and the microfabrication of sandwich structures. From this work,
we can draw the following points:

(a) The closed-form solutions here derived can be used to eval-
uate the harmonic responses of a composite cylinder sub-
jected to any arbitrary distribution of eigenstrain.

(b) The analytic iso-magnetic potential/induction model
enables to identify a bound for the effective electromagnetic
properties of cellular solids very close to the standard
mechanics homogenization results.
(c) Bonding imperfection drastically increases the maximum
hoop stress and the radial displacement within the sandwich
cylinder.

(d) An increase of the relative density of the cellular core
reduces the maximum radial displacement and raises the
radial displacement of the outer edge, the maximum von
Mises stress, and the natural frequency.

(e) Careful selection of the cell topology for the core can be used
to further improve the structure responses. For example, the
application of Mixed A cells instead of squares, decreases the
displacement of the outer edge and the maximum von Mises
stress by 23.3% and 30.9%, respectively, while reducing the
first natural frequency by 2.8%.

(f) Higher values of the external magnetic field improve the
natural frequency of the sandwich and inhibit the resonance
without the need to add an extra mass to the system.
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Appendix A

Fig. A1 illustrates the effect of the eigenstrain distribution on
the radial displacement of a sandwich cylinder. The maximum
radial displacement occurs at the interface of the inner layer and
cellular core. The higher the order of the eigenstrain polynomial,
the greater the radial displacement within the sandwich. However,
the effect of a higher-order polynomial eigenstrain on the radial
displacement decreases with higher order values of the polyno-
mial. For instance, increasing the highest order of a polynomial
from second to third increases the maximum value of radial dis-
placement by 1%; the increase is less than 0.2% when we increase
the order of polynomial from third to fourth. This justifies the
choice of the third-order polynomial used in this paper.



Fig. B1. Role of cell topology of the sandwich core on the first natural frequency
plotted against the thickness of the solid layers.
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Appendix B

Fig. B1 shows the role of the geometrical layout of a sandwich
disk on the first natural frequency. The disk consists of two layers
of solid materials with the thickness of ts ð0 6 ts 6 0:5Þ, and a cel-
lular core with the thickness of tc ð0 6 tc 6 1Þ ts þ tc

2 ¼ 1
� �

. As seen
in Fig. B1, increasing ts initially decreases the natural frequency of
the sandwich disk; the natural frequency is then increased as ts
enhances. Similar trends are observed for alternative cell topolo-
gies and relative densities. Among the five cell topologies consid-
ered in this paper a sandwich disk with a square lattice core
show the highest natural frequency, whereas a core with mixed
A cells has the lowest natural frequency.
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